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Introduction

Billions of people are using computers or smartphones, which are computers before
being phones. One doesn’t need to understand how computers work to use them, but
if you want to know, this book might help you.

Popular science books about this topic intentionally leave out many details. On
the other hand, textbooks emphasize theoretical aspects and focus on a narrow topic.
This book is different. Its goal is to introduce how computer hardware and common
programming languages and operating systems work, via a practical example which
can be understood down to the smallest detail.

For this it proposes you to assemble and program your own toy computer. And
to make sure not to omit any details, it explains how you can do this from scratch,
without using any existing programming tool. It is organized in four parts:

• the first part briefly presents the main basic ideas used to design microprocessors,
which are the core component of a computer. This is necessary to understand the
main concepts used in the next parts. It ends with the presentation of a virtual, toy
microprocessor, which can be simulated online, and of a few programs using it.
• the second part explains how the components of your toy computer work, how they

can be programmed, and how to assemble them. Based on this, it then describes
how to build a basic system allowing programs to use the computer’s keyboard
and screen. Finally, it presents how an initial program can read and execute other
programs, based on this input and output system.
• the third part explains how a computer can be programmed in a language which can

be “easily” understood by humans, unlike the 0s and 1s used by its microprocessor.
For this it describes how to progressively build a toy language, and a program which
can translate it into 0s and 1s that the microprocessor can execute. In order to give
you an idea of what common programming languages look like, this toy language
is an extremely simplified version of real and popular ones.
• the fourth part explains how users can easily store files and launch applications on

their computer, thanks to a (set of) program(s) called an operating system. For this
it describes how to progressively build a toy operating system for your toy computer.
For the same reason as above, this system is an extremely simplified version of real,
frequently used ones.

Target audience
This book is designed for people looking for a practical and fully detailed example
introducing how microprocessors, programming languages and operating systems
work. It does not explain the theories and principles behind this. If you want to
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learn them, you should read computer science textbooks instead (some references
are provided at the end of each part). Conversely, if you only want to understand the
general ideas, it is better to read popular science books instead.

How to read this book
You can read this book without actually assembling or programming a toy computer,
just to understand how this could be done. In this case you can skip the tutorial-like
sections, which describe concrete steps to follow (plug this wire here, type this on the
keyboard, press this button, etc). This is the case, in particular, of the “Experiments”
and “Compilation and tests” sections.

Alternatively, you can read this book while following the instructions on an
emulator. In this case you do not need to assemble a toy computer, nor to buy the
necessary components for this (described in Appendix A). Instead, simply use the
emulator provided at https://ebruneton.github.io/toypc/emulator.html. For this you
need a desktop or laptop computer (tablets and smartphones are not really usable for
this task).

Finally, you can buy the components, assemble them, and follow the instructions
for real. This is more costly but probably more fun than the previous methods. This
method also requires a desktop or laptop computer, with a USB port and capable of
running python3. You can also use all three methods: start with the first one, then
re-read the book with the second method and optionally with the third, if you feel
that you need to (typing a program is slower than reading it – this can trigger some
questions, and finding the answers yourself can give you a better understanding).

Note also that, if you are stuck or simply want to skip some steps, you can follow
the instructions of any chapter without doing those of the previous ones (once the
computer is physically assembled, if you choose this method). Hence, for instance,
you can skip the instructions of part 2, do those of part 3 on the emulator, and those of
part 4 for real. You can also already have a look at the final programs and operating
system obtained at the end of this book, on the emulator, by opening the following link:
https://ebruneton.github.io/toypc/emulator.html?script=backups/final.txt. See the
companion website of this book for more details (https://ebruneton.github.io/toypc/).
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Introduction

Before programming a toy computer from scratch it is useful to have some basic ideas
about how computers work. For this, one method is to build a toy computer from
scratch. It is possible to build one for real from individual electromagnetic relays [5]
or transistors [18]. But this requires a lot of time and space, and a significant budget.
Moreover, the resulting computer would be too small to run or even store the toy
programs of this book. For this reason, this part presents how a toy computer could be
built, but does not give all the details necessary to physically build one. It is organized
as follows:

• Chapter 1 briefly presents binary numbers, which are the basis of how computers
work, and how to compute with them.
• Chapter 2 explains how an electric circuit can compute additions and subtractions

of binary numbers.
• Chapter 3 shows how loops in circuits can be used to memorize numbers, and in

particular the (intermediate) results obtained with the above arithmetic circuits.
• Chapter 4 shows how a circuit can control another, in order to make it perform a

series of computations, specified by a program.
• Chapter 5 puts everything together to obtain a toy microprocessor, and shows how

it can be programmed with a few examples.

Note Most of the circuits presented in this part are also available on CircuitVerse
(https://circuitverse.org/), an online digital circuit simulator. Thanks to it you can
interact with the circuits presented in this part, which helps getting a better and more
practical understanding of how they work. See the companion website of this book
for more details (https://ebruneton.github.io/toypc/).
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1
CHAPTER

Binary Numbers

As its name implies, a computer performs computations, on numbers. A number is
an abstract concept which can be represented in many different concrete ways. For
example, the number of days in a week can be represented with “seven”, “7”, “VII”,
etc. Some representation methods, also called numeral systems, are more practical
than others to perform computations. For instance, doing additions and multiplications
is easier in the arabic numeral system than in the roman one. In fact they are even
easier to do in the so called binary numeral system. Computers use it for this reason.
In order to understand how they work it is thus necessary to know first what binary
numbers are, and how to compute with them. This is the goal of this chapter.

1.1 Binary numbers
An arabic number such as 237 represents 2 times 100, plus 3 times 10, plus 7 times 1.
In mathematical notation this gives

237 = 2 ∗ 100 + 3 ∗ 10 + 7 ∗ 1 = 2 ∗ 102 + 3 ∗ 101 + 7 ∗ 100

where xn denotes 1 if n = 0, or x ∗ x ∗ . . . x (n times) otherwise. In other words, an
arabic number is a sequence of digits between 0 and 9, where the ith digit from the
right (counting from 0) represents a quantity of 10i.

A binary number is similar but uses two digits instead of ten, namely 0 and 1,
called bits. It is thus a sequence of bits, where the ith bit from the right (counting
from 0) represents a quantity of 2i. For example

1012 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1 = 5

where the subscript 2 indicates a binary number (to avoid confusions with arabic
numbers; 1012 = 5 ̸= 101 = “one hundred one”). Another example is

111011012 = 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 0 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

= 1 ∗ 128 + 1 ∗ 64 + 1 ∗ 32 + 0 ∗ 16 + 1 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1
= 237

The leftmost bit of a binary number is called its most significant bit. Conversely,
the rightmost bit is called the least significant. The ith bit from the right (counting
from 0), is called bit number i, or simply bit i.
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CHAPTER 1 Binary Numbers

n 2n 2n 2n − 1 2n − 1

0 1 12 0 0

1 2 102 1 1

2 4 1002 3 112

3 8 10002 7 1112

4 16 100002 15 11112

5 32 1000002 31 111112

6 64 10000002 63 1111112

7 128 100000002 127 11111112

8 256 1000000002 255 111111112

16 65536 100000000000000002 65535 11111111111111112

TABLE 1.1 Some frequently used powers of 2, in arabic and binary notation.

Some numbers have a very simple binary representation and are frequently used.
For instance, 2n is a one followed by n zeros in binary, like 10n in arabic notation.
Another example is 2n − 1, which is simply n ones (like 10n − 1 is n nines in arabic).
Table 1.1 gives some examples of these numbers.

1.2 Arithmetic operations
1.2.1 Addition
Adding two binary numbers can be done as with arabic numbers. Namely one column
at a time, from right to left. For instance, adding 11010102 and 1011102 can be done
as follows:

1 1
1 1

1
0

1
1

1
0 1 0

+ 1 0 1 1 1 0

1 0 0 1 1 0 0 0

1
1
0 6

+ 4 6

1 5 2

Starting from the right, we add 0 and 0, which gives 0. We then add 1 and 1, which
gives 2 = 102. Since this is more than one bit, we put the least significant one, here 0,
in the current column, and we carry the most significant one, here 1, in the column
on the left (shown in red). This is similar to the addition of the equivalent arabic
numbers, shown on the right, where 6 + 6 gives 12, leading to a carry of 1.

We continue by adding 0 and 1, plus the carry from the previous column, which
gives 2 again. In the next step we add 1 and 1, plus the carry from the previous
column, which gives 3 = 112. We thus put 1 at the bottom of this column, and carry
1 in the next one. And so on for the remaining columns.

Although the overall process is the same for binary and arabic numbers, adding
binary numbers is much easier, as stated above. Indeed, there are only 2 ∗ 2 = 4
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1.2 Arithmetic operations

result bit: a b a+b
0 0 0
0 1 1
1 0 1
1 1 0

carry bit: a b a+b
0 0 0
0 1 0
1 0 0
1 1 1

TABLE 1.2 The binary addition tables.

result bit: a b a-b
0 0 0
0 1 1
1 0 1
1 1 0

carry bit: a b a-b
0 0 0
0 1 1
1 0 0
1 1 0

TABLE 1.3 The binary subtraction tables.

possible cases when adding two bits, but 10 ∗ 10 = 100 cases when adding two
decimal digits. These four cases are summarized in Table 1.2.

1.2.2 Subtraction
Similarly, subtracting two binary numbers can be done as with arabic numbers. For
instance, subtracting 1011102 from 11010102 can be done as follows:

1 1 0 1 0 1 0
−

1
1
1
0
1
1
1
1 1 0

0 1 1 1 1 0 0

1 0 6
−

1
4 6

0 6 0

Starting from the right, we subtract 0 from 0, and then 1 from 1, which gives
0 in both cases. In the next step, since we cannot subtract 1 from 0, we subtract it
from 102 = 2 instead, which gives 1. We thus put a 1 in the current column, and
a carry of 1 in the subtrahend on the left column (shown in red). This is similar to
the subtraction of the equivalent arabic numbers, shown on the right, where 0− 4 is
replaced with 10− 4, yielding the result 6 and the carry 1.

We continue by subtracting 1, plus the carry from the previous column (i.e., a
total of 2), from 1. Since this is not possible we subtract them from 112 = 3 instead,
which gives the result 1 and the carry 1. And so on for the remaining columns.

As with additions, there are only four possible cases when subtracting two bits,
which is much simpler than the hundred possible cases for decimal digits. These four
cases are summarized in Table 1.3.
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CHAPTER 1 Binary Numbers

1.2.3 Multiplication
Multiplying two binary numbers can also be done as with arabic numbers. Namely by
multiplying the first by each bit / digit of the second. And by adding the results, each
shifted by one bit / digit to the left from the previous one. For instance, multiplying
11010102 by 1011102 can be done as follows:

1 1 0 1 0 1 0
∗ 1 0 1 1 1 0

0 0 0 0 0 0 0
1 1 0 1 0 1 0

1 1 0 1 0 1 0
1 1 0 1 0 1 0

0 0 0 0 0 0 0
1 1 0 1 0 1 0

1 0 0 1 1 0 0 0 0 1 1 0 0

1 0 6
∗ 4 6

6 3 6
4 2 4

4 8 7 6

Here again, although the process is the same, multiplying binary numbers is
much easier than arabic numbers. Indeed, multiplying the first number by each bit
of the second boils down to multiplications by 0 or 1, which are trivial. By contrast,
multiplying an arabic number by a decimal digit requires using a multiplication table
with 100 possible cases. It also involves carries.

Some multiplications are even easier to do than with the general method described
above. In particular, multiplying x by 2n can be done by simply shifting x by n bits to
the left, i.e., by adding n zeros on the right. For instance, 11010102 = 106 multiplied
by 23 = 8 is simply 11010100002 = 848. This is similar to multiplications by 10n

in arabic notation (for example, 46 times 103 = 1000 is 46000). Shifting a binary
number x by n bits to the left is noted x≪ n.

The opposite operation, shifting x by n bits to the right, i.e., dropping the n least
significant bits, is noted x ≫ n. It corresponds to dividing x by 2n. For instance,
shifting 11010102 = 106 by 3 bits to the right gives 11012 = 13 = ⌊106/23⌋1. This
is similar to dropping the n least significant digits of an arabic number, which divide
it by 10n (for example, 4876 shifted to the right by 2 digits is 48 = ⌊4876/100⌋).
Dividing arbitrary binary numbers can be done as with arabic numbers, but is not
presented here.

1.2.4 Conversions
Computers do all their computations with binary numbers because, as shown above,
this is much easier to do than with arabic numbers. However, humans prefer to specify
inputs with arabic numbers, and to get results in arabic too. This requires converting
arabic numbers to binary ones, and vice versa.

1The ⌊x⌋ notation designates the integer part of x. For instance, 106/8 = 13.25 and ⌊13.25⌋ = 13.
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1.3 Logical operations

One method to convert an arabic number to binary is to convert each digit from
left to right, and to multiply the result by 10 before adding the next digit. For instance,
to convert 46 to binary, we start by converting 4, which gives 1002. We multiply
this by 10 = 8 + 2, which can be done by shifting 1002 by 3 bits and by 1 bit to the
left, and by adding the results: 1000002 + 10002 = 1010002. Finally we convert
6, which gives 1102 and we add this to the previous result, yielding 1011102. This
method is well suited for computers since it only involves computations on binary
numbers (plus a small conversion table for each digit from 0 to 9).

Another method consists in dividing the arabic number by 2 repeatedly. The
remainders give the bits of the equivalent binary number, from right to left. For instance,
dividing 46 by 2 repeatedly gives 23 (remainder 0), 11 (remainder 1), 5 (remainder
1), 2 (remainder 1), 1 (remainder 0), and 0 (remainder 1). The corresponding binary
number is thus 1011102. Since this method involves divisions on arabic numbers, it
is more adapted for humans than for computers.

Similarly, one method to convert a binary number to arabic is to “convert” each
bit from left to right, and to multiply the result by 2 before adding the next bit. For
instance, converting 1011102 gives successively 1, 1 ∗ 2 + 0 = 2, 2 ∗ 2 + 1 = 5,
5 ∗ 2 + 1 = 11, 11 ∗ 2 + 1 = 23, and 23 ∗ 2 + 0 = 46. Since this method involves
multiplications of arabic numbers, it is more adapted for humans. But it can also be
used on computers, if necessary.

Another method to convert a binary number is to divide it by 10 repeatedly. The
remainders, converted to arabic, give the digits of the equivalent arabic number, from
right to left. It is well suited for computers since it only involves computations on
binary numbers (plus a small conversion table for each binary number from 0 to
10012 = 9).

1.3 Logical operations
Binary numbers can also be used to perform logical operations, unlike arabic numbers.
A logical operation computes whether some proposition is true of false, depending on
the status of one or more other propositions. A proposition is a statement which is
either true or false.

Consider for example a keyboard. A proposition might be “the E key is currently
pressed”, “the left Shift key is currently released”, or “the e letter is currently pressed”.
They are either true or false, depending on the current state of the keyboard. These
propositions, noted KeyPressed(k), KeyReleased(k), and LetterPressed(l), are
not completely independent. Some can be computed from the others. For example,
we can compute KeyReleased(k) as the opposite of KeyPressed(k). This logical
operation is the negation, also called not, and is noted ¬:

KeyReleased(k) = ¬KeyPressed(k)

We can also compute whether the proposition “a Shift key is pressed” is true from
the above propositions. Indeed, this is the case if at least one of the two Shift keys is
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CHAPTER 1 Binary Numbers

p ¬p
0 1
1 0

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

p q p⊕ q

0 0 0
0 1 1
1 0 1
1 1 0

TABLE 1.4 The truth tables of not (¬), and (∧), or (∨), and exclusive or (⊕).

pressed. This logical operation is the disjunction, also called or, and is noted ∨:

ShiftPressed = KeyPressed(LeftShift) ∨KeyPressed(RightShift)

The keyboard is in “uppercase mode” if a Shift key is currently pressed, or if caps
are locked, but not both (a Shift key reverses the effect of CapsLock). This logical
operation is the exclusive disjunction, also called exclusive or, and is noted ⊕:

UppercaseMode = ShiftPressed⊕ CapsLocked

As a last example, we can also compute whether LetterPressed(E) is true from
KeyPressed(E) and UppercaseMode. Indeed, this is the case if both are true. This
logical operation is the conjunction, also called and, and is noted ∧:

LetterPressed(E) = KeyPressed(E) ∧UppercaseMode

LetterPressed(e) = KeyPressed(E) ∧ ¬UppercaseMode

The above logical operations do not depend on the meaning of the propositions,
but only on whether they are true or false. And their result is either true or false. For
instance, ¬ true is false, p ∧ q is true if and only if both p and q are true, p ∨ q is true
if at least one of p and q is true, etc. By representing true with 1 and false with 0,
they can be seen as operations on individual bits. This gives, for example, ¬1 = 0,
1∧ 0 = 0, 1∧ 1 = 1, etc. By doing this for all possible cases we get the truth table of
each operation, represented in Table 1.4. Note that the truth tables of ⊕ and ∧ are
identical to those giving the result and carry bit of a+ b, respectively (see Table 1.2).
The result bit of a− b is also equal to a⊕ b, and the carry bit is b∧¬a (see Table 1.3).
Hence, it suffice to know how to implement these logical operations with electric
circuits, or other technologies, in order to be able to implement arithmetic circuits.

We can then generalize these logical operations from individual bits to whole
binary numbers. By definition, a bitwise logical operation on two binary numbers is
done by applying it on each bit separately, column by column. Thus, for instance:

1 1 0 0
∧ 1 0 1 0
1 0 0 0

1 1 0 0
∨ 1 0 1 0
1 1 1 0

1 1 0 0
⊕ 1 0 1 0

0 1 1 0
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This can be used to perform several logical operations in parallel (since there is
no carry each column can be computed independently of the others, possibly at the
same time). For instance, we can represent the current state of a 100 keys keyboard
with a 100 bits binary number S, using one bit per key. We can then do the following
operations, which are commonly used in many similar contexts:

• to check whether at least one letter key is pressed, we can compute S ∧ L, where L
is the binary number whose ith bit is 1 if and only if the ith key is a letter. If the
result is 0 no letter key is pressed, otherwise at least one is pressed.
• if a new set of keys if pressed, we can compute the representation of the new

keyboard state with S′ = S ∨ P , where P represents the newly pressed keys. For
instance, if the 0th and 3rd keys are currently pressed, and if the user presses the
0th and 2nd keys2, we get S = 10012, P = 1012 and S′ = 11012. This correctly
represents the fact that the 0th, 2nd, and 3rd keys are now pressed.
• if a new set of keys if released, we can compute the representation of the new

keyboard state with S′ = S ∧ ¬R, where R represents the newly released keys.
For instance, if the 0th and 3rd keys are currently pressed, and if the user releases
the third, we get S = 10012, R = 10002 and S′ = 1. This correctly represents the
fact that only the 0th key remains pressed.

1.4 Hexadecimal numbers
Binary numbers are very practical to perform computations, but are not very compact.
Arabic numbers are much more compact (a given number has about 3.3 less digits
than bits on average), but converting between binary and arabic is not so easy. To
solve these issues hexadecimal numbers are commonly used.

Hexadecimal numbers are like arabic numbers, but use 16 digits instead of 10.
They are called hex digits and are noted 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (= 10), B (= 11),
C (= 12), D (= 13), E (= 14), and F (= 15). An hexadecimal number is thus
a sequence of hex digits, where the ith hex digit from the right (counting from 0)
represents a quantity of 16i. For instance

ED16 = E16 ∗ 161 +D16 ∗ 160 = 14 ∗ 16 + 13 = 237

where the subscript 16 indicates an hexadecimal number (to avoid confusions with
words or arabic numbers; 1016 = 16 ̸= 10 = “ten”).

Each hex digit can be represented with up to 4 bits, and each group of 4 bits can
be represented with an hex digit, as shown in Table 1.5. It is thus very easy to convert
a binary number to hexadecimal: simply convert each group of 4 bits independently,
with Table 1.5. For instance, to convert 111011012, we convert 11102 (E16), 11012
(D16), and concatenate the results, yielding ED16. Conversely, to convert ED16

to binary we simply concatenate the conversions of E16 (11102) and D16 (11012),
yielding 111011012.

2A pressed key can be “pressed” again due to autorepeat.
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binary hex binary hex binary hex binary hex
0000 0 0100 4 1000 8 1100 C
0001 1 0101 5 1001 9 1101 D
0010 2 0110 6 1010 A 1110 E
0011 3 0111 7 1011 B 1111 F

TABLE 1.5 Conversion between binary and hexadecimal.

Hexadecimal numbers are thus compact (a given number has about 4 times less
hex digits and bits) and easy to convert to and from binary, which solves the above
issues. On the other hand, doing arithmetic computations with them is harder than
with arabic numbers (this involves tables with 16 ∗ 16 = 256 entries). But this is not
necessary since we can convert them to binary, do computations in binary, and convert
the result back to hexadecimal.
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2
CHAPTER

Logic Gates and
Arithmetic Circuits

As explained in the previous chapter, computing arithmetic operations on binary
numbers boils down to the computation of simple logical operations such as conjunc-
tions and exclusive disjunctions. This chapter explains how these operations can be
implemented with electric circuits, and then how these circuits can be combined to
perform arithmetic operations.

2.1 Transistors
In order to implement a logical operation with an electric circuit we first need a way to
represent 0 and 1 with some electric states. One possibility is to view a wire connected
to the ground as 0, and a wire connected to the power source (e.g., +5V) as 1. To
implement a circuit for ¬p, for instance, we can use an input wire for p, and an output
wire for the result ¬p. The circuit in the middle must then connect the output wire to
the ground (resp. power source) if the input wire is connected to the power source
(resp. ground). A simple switch can do this, provided it is controlled by the input
wire, instead of manually. In fact, as illustrated in the next sections, such switches are
sufficient to implement any logical operation.

An electric switch itself controlled by electricity connects or disconnects two
terminals, hereafter noted a and b, depending on the voltage or current in a third one,
noted c. One method to do this is to use a transistor. Another method is to use a relay.
Transistors are much more efficient than relays, and are used virtually everywhere.
But relays are simpler to understand and, for this reason, we use them in this chapter
to explain how logic gates work.

A relay can be built with an electromagnet controlling a metallic connector. There
are two types of relays connecting or disconnecting two terminals (see Figure 2.1):

• in a normally open relay, the a and b terminals are disconnected when no current is
flowing through the electromagnet. They are connected when the relay is active,
i.e., when there is a current in the electromagnet.
• in a normally closed relay, the a and b terminals are connected when the relay is

inactive, i.e., when there is no current in the electromagnet. They are disconnected
when it is active.

In the following we represent relays with the symbols illustrated in Figure 2.2. We

13



CHAPTER 2 Logic Gates and Arithmetic Circuits

Inactive Active

a

b

c

Normally open

Normally closed

a

b

c

a

b

c
+5V

+5V

groundelectromagnet

spring (at rest)

a

b

c

FIGURE 2.1 The two types of relays used in this chapter. The electromagnet, when
active (right), attracts a metallic piece. This connects the a and b terminals of a
normally open relay (top), and disconnects those of a normally closed one (bottom).
When the electromagnet inactive, a spring moves the metallic piece away from it.

0 1 0 1
0

1
X1

X 0

input
output

=

=

inactive activeinactive inactive activeinactive

FIGURE 2.2 The symbols and colors used for normally closed (left) and normally
open (right) relays, as well as for wires and input (black) and output (blue) terminals
connected to the ground, to the power source (up triangle), or to nothing (in red).

draw input terminals connected to the ground (resp. power source) with a 0 (resp. 1)
inside a black square. Similarly, we use a 0 (resp. 1) inside a blue square for output
terminals connected to the ground (resp. power source). We represent those which
are not connected to anything with an X inside a red square. Finally, we draw wires
connected to the ground, to the power source, or to nothing in blue, green, and red,
respectively (see Figure 2.2).

2.2 Logic gates
2.2.1 NOT
A NOT gate is a circuit implementing the logical not operation. This gate can be built
with two relays controlled by the same input1. The first, normally closed, connects

1In practice, with electromagnet relays, 0 can be represented with a terminal connected to the ground or
to nothing. Then a single normally closed relay is sufficient to build a NOT gate [5]. In this chapter we do
as if it was not the case. This leads to circuits which are much closer to those built with the most common
technology, namely Complementary Metal Oxide Semi-conductors (CMOS).
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0 11 0
p p¬p ¬p

FIGURE 2.3 The two possible states of the NOT gate.

1
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1

0

0

0

1000
p

q

p ∧ q

0

0

1

0

0

1

1

1

1 1 1 0
p

q

¬(p ∧ q)

FIGURE 2.4 The four possible states of the AND (top) and NAND (bottom) gates.

the output to the power source by default. The second, normally open, connects the
output to the ground when active (see Figure 2.3). Hence, when the input is 0 the first
relay connects the output to the power source, i.e., sets it to 1 (while the second does
nothing). Conversely, when the input is 1, the first relay has no effect but the second
connects the output to the ground, i.e., sets it to 0 (see Figure 2.3).

2.2.2 AND and NAND
The AND gate is a circuit implementing the logical and operation. This circuit must
connect the output to the power source when both inputs are 1. This can be done with
two normally open relays connected in series. Conversely, this gate must connect the
output to the ground when at least one input is 0. This can be done with two normally
closed relays connected in parallel (see Figure 2.4).

The NAND gate implements the negation of the logical and, i.e., it computes
¬(p ∧ q). It can be obtained by connecting a NOT gate to the output of an AND gate.
But a simpler method is to switch the power source and the ground of the AND gate
or, equivalently, the upper and lower halves of this circuit2 (see Figure 2.4).

2With the CMOS technology “normally closed” (resp. “open”) transistors are only used in the upper
(resp. lower) half of a gate. Hence a CMOS AND gate is built with a NAND gate followed by a NOT.
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1
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1

1
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0

0

0

0 001
p

q

¬(p ∨ q)

FIGURE 2.5 The four possible states of the OR (top) and NOR (bottom) gates.

2.2.3 OR and NOR
The OR gate is a circuit implementing the logical or operation. This gate must connect
the output to the power source when at least one input is 1. This can be done with two
normally open relays connected in parallel. Conversely, this gate must connect the
output to the ground when both inputs are 0. This can be done with two normally
closed relays connected in series (see Figure 2.5).

The NOR gate implements the negation of the logical or, i.e., it computes ¬(p∨ q).
As the NAND gate, it can be obtained by switching the upper and lower halves of the
OR gate circuit (see Figure 2.5).

2.2.4 XOR
The XOR gate implements the exclusive or operation. The result of p⊕ q is 1 when p
is 1 and q is 0, or when p is 0 and q is 1. This gate must thus connect the output to the
power source if at least one these two cases happens. This can be done with two sub
circuits, one for each case, connected in parallel. Each sub circuit must connect its
output to the power source when both inputs have a specific value. This can be done
with two relays connected in series: a normally open for p or q, and a normally closed
for ¬p or ¬q.

Conversely, the result of p⊕ q is 0 when both “p is 0 or q is 1” and “p is 1 or q is
0” are true. The same reasoning as above leads to two sub circuits connected in series,
where each sub circuit uses two relays connected in parallel. This lead to the final
circuit shown in Figure 2.6.

In the following, to simplify figures and to make it easier to distinguish each logic
gate, we represent them with their American National Standards Institute (ANSI)
symbols, shown in Figure 2.7.
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0
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p⊕ q

FIGURE 2.6 The four possible states of the XOR gate.
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NOT AND NAND OR NOR XOR

FIGURE 2.7 The ANSI symbols of the NOT, AND, NAND, OR, NOR and XOR logic gates.

2.3 Multiplexers and demultiplexers
Logic gates can be assembled to create more and more complex circuits. A simple
example is the demultiplexer, shown below, and represented with the symbol on the
right:

1

0

1

0

1

0

1

0
1
0

i

s

i

s

o0

o1

o0

o1

This circuit copies its input i to the os output, i.e., to o0 if s = 0 or to o1 if
s = 1. It sets the other to 0. It can be viewed as a “railroad switch” for signals. The
multiplexer, shown below and represented with the symbol on the right, does the
opposite:

11

1

0

1

0

00 0
1

ss

i0

i1

i0

i1

oo

This circuit sets its output o to the is input, i.e., to i0 if s = 0, or to i1 if s = 1.
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0 0 0 0

0

1 11 11 00 0

0
0

0

0

0101

0

a b ai bi

ci−1

a0 b0a1 b1a2 b2a3 b3

c

a+ b

ai + bi + ci−1

ci

Half-adder Full-adder

FIGURE 2.8 A circuit to add two 4-bit numbers (bottom) can be built with 4 full-adder
circuits (top right), each made of two half-adders (top left) and an OR gate. Here this
circuit computes 01112 + 00112 = 10102 (7 + 3 = 10).

2.4 Arithmetic circuits
2.4.1 Adder
As shown in the previous chapter, the addition of two bits is simply their exclusive
disjunction, with a carry equal to their conjunction. In other words, we can add two
bits with an XOR gate, plus an AND gate for the carry. The resulting circuit, called a
half-adder, is illustrated in Figure 2.8.

As explained in Section 1.2.1, adding two binary numbers a and b must be done
step by step, from right to left. At each step, one bit ai from a must be added to one
bit bi from b, and to the carry ci−1 from the previous step. In other words, three bits
must be added at each step, but the above circuit can only add two. The solution is to
connect two copies of it: a first copy adds ai and bi, and a second adds ci−1 to the
result of the first. Each copy produces a new carry, but at most one of these can be
1. Indeed, if ai + bi gives a carry then the second stage necessarily adds ci−1 to 0,
which cannot give a carry. Hence the new carry ci resulting from ai + bi + ci−1 can
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0 0 0 0

0

0 11 10 11 0

0
0

0

0

1100

0

a b ai bi

ci−1

a0 b0a1 b1a2 b2a3 b3

c

a− b

ai − bi − ci−1

ci

Half-subtractor Full-subtractor

FIGURE 2.9 A circuit to subtract two 4-bit numbers (bottom) can be built with 4
full-subtractor circuits (top right), each made of two half-subtractors (top left) and
an OR gate. Here this circuit computes 10102 − 01112 = 00112 (10− 7 = 3).

be computed with a disjunction of the carries from the two half-adders. This leads to
the full adder circuit shown in Figure 2.8.

Finally, to add two binary numbers with n bits each, we simply need to connect n
full-adder circuits, with the output carry ci of step i connected to the input carry ci−1
of step i+ 1 (see Figure 2.8).

2.4.2 Subtractor
Subtracting two binary numbers can be done with a very similar circuit. As shown in
the previous chapter, subtracting a bit b from a gives their exclusive disjunction (as
their addition), plus a carry equal to the conjunction of ¬a and b (versus of a and b for
an addition). In other words, a circuit to subtract b from a can be obtained by adding
a NOT gate in a half-adder circuit. The result, called a half-subtractor, is illustrated
in Figure 2.9.

Subtracting two binary numbers a and b must be done step by step, from right to
left. At each step, one bit bi from b, and the carry ci−1 from the previous step, must
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0 11 10 11 01

1100
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a0 b0a1 b1a2 b2a3 b3subtract

c0c1c2c3
is_not_zero

carry

FIGURE 2.10 A simple Arithmetic Unit which can perform additions, subtractions,
and comparisons of 4-bit numbers.

be subtracted from a bit ai from a. In other words, three bits must be subtracted at
each step, but the above circuit can only subtract two. The solution is to connect two
copies of it: a first copy subtracts bi from ai, and a second subtracts ci−1 from the
result of the first. Each copy produces a new carry, but at most one of these can be 1.
Indeed, if ai − bi gives a carry then the second stage necessarily subtracts ci−1 from
1, which cannot give a carry. Hence the new carry ci resulting from ai − bi − ci−1
can be computed with a disjunction of the carries from the two half-subtractors. This
leads to the full subtractor circuit shown in Figure 2.9.

Finally, to subtract two binary numbers with n bits each, we simply need to
connect n full subtractor circuits, with the output carry ci of step i connected to the
input carry ci−1 of step i+ 1 (see Figure 2.9).

2.4.3 Arithmetic and Logic Unit
As shown in Section 1.2.1, multiplying two binary numbers a and b boils down to
additions of left shifted copies of a, each multiplied by a bit of b. Furthermore, ai ∗ bj
gives the same result as ai ∧ bj . Hence a circuit to multiply two n-bit binary numbers
(yielding 2n bits) can be obtained with n copies of an n-bit adder, plus n2 AND gates
to compute the ai ∧ bj terms.

Comparing two n-bit binary numbers is also easy to do. Indeed:

• a = b if and only if the n least significant bits of a− b are equal to 0.
• a > b if and only if at least one of the n least significant bits of a− b is different

from 0, and if there is no carry in the nth column (counting from 0).
• a < b if and only if at least one of the n least significant bits of a− b is different

from 0, and if there is a carry in the nth column (counting from 0).
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2.4 Arithmetic circuits

Hence a subtractor circuit, plus a another computing whether its output (excluding the
carry) is different from 0, is sufficient to compare two numbers.

Finally, circuits computing bitwise logical operations on n-bit numbers are trivial
to implement. Indeed, we just need n copies of the corresponding logic gate, each
computing one bit of the result, independently of the others (i.e., in parallel).

All these circuits can be put together into a larger circuit called an Arithmetic
and Logic Unit. Such a circuit accepts two binary numbers as input, plus a third one
specifying an operation to perform on them. It produces as output the result of this
operation, on the given numbers.

For instance, a very simple Arithmetic “and Logic” Unit which can only perform
additions, subtractions, and comparisons is shown in Figure 2.10. If its subtract
input is 1 it subtracts its two 4-bit inputs. Otherwise it adds them. For this it uses a
subtractor circuit where the NOT gates are replaced with XOR gates, connected to
the subtract input. When this input is 0, the XOR gates behave as a simple wire
(p⊕ 0 = p), which gives an adder circuit. When subtract is 1 these gates behave
as NOT gates (p⊕ 1 = ¬p), yielding a subtractor. Finally, three OR gates compute
whether at least one bit of the output is 1. Together with the carry bit, this can be used
to compare the inputs, as explained above.

To conclude this chapter, it should be noted that a relay takes some time to switch
between its active and inactive states (because its moving metallic piece cannot move
instantly). This is the case for transistors too. Consequently, the output of a logic gate
does not change instantly when its inputs change. And this is the same for all circuits.
The more logic gates there is between an input and an output, the longer it takes for an
input change to propagate to the output. These propagation delays must be taken into
account in some circuits, including some presented in the next chapters.
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3
CHAPTER

Register and
Memory Circuits

The very basic Arithmetic Unit presented in the previous chapter can perform several
operations, but only one at a time. To do a sequence of operations one has to memorize
intermediate results, or to note them somewhere. For instance, to add a, b, and c, one
has to set the inputs to a and b, memorize the output a+ b, and replace the inputs with
a+ b and c (changing the inputs immediately changes the output, hence one cannot
directly “copy” it to an input). To avoid this mental or manual work, a solution is to
use additional circuits to memorize intermediate results. This chapter explains how
this can be done with logic gates.

3.1 Memory cells
3.1.1 SR latch
A circuit which can memorize a single bit must have some inputs to set the value to
memorize, and an output equal to the last memorized value, noted Q. One possibility
is to use one input to set the memorized value to 1, noted S, and another to reset it to 0,
noted R. Connecting S to the power source should change Q to 1, but connecting it to
the ground should not change Q to 0 (otherwise this circuit would have no “memory”).
Likewise, setting R to 1 should reset Q to 0, but setting it to 0 should not change Q.
In particular, when both S and R are 0, Q should keep its memorized value, which
can be 0 or 1.

The above requirements lead to a circuit whose output is not completely determined
by its current inputs, unlike all the circuits presented so far (since Q can be 0 or 1
when S = R = 0). To achieve this a solution is to use a “hidden” input equal to the
last value of Q, noted Qlast. Then Q can be defined as a function of its inputs again
(Q = Qlast if S = R = 0). By definition Qlast is the last output of the circuit, which
leads to a loop:

0

0

0???
S

R

Q

When S = R = 0, Q should be equal to the Qlast input. For this the circuit in the
above box cannot simply connect Q to Qlast, since an electric current cannot flow in a
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CHAPTER 3 Register and Memory Circuits

loop. A solution is to use two NOT gates in series instead. Indeed, this leads to a loop
which has two stable states, Q = 0 and Q = 1:

0

0

0

0

0 1S

R

S

R

Q Q

??? ???

To set Q to 1 we need to force the output of the right NOT gate to 1 or, equivalently,
to force the output of the left NOT gate to 0. The latter can be done by replacing the
left NOT gate with a NOR gate connected to S:

0

0

1

0

0 1S

R

S

R

Q Q

??? ???

Indeed, this NOR gate behaves like a NOT gate whenS = 0 (since¬(x∨0) = ¬x),
but forces its output to 0 when S = 1 (because ¬(x ∨ 1) = 0). Similarly, we can set
Q to 0 when R = 1 by replacing the remaining NOT gate with a NOR gate connected
to R. This yields the following circuit, called an SR latch:

0

0

0

1
1 0

S

R

S

R
Q Q

If S = R = 1 the two NOR gates force their output to 0. Switching from this
state to S = R = 0 make them behave as NOT gates again, but starting with their
input and output equal to 0. This state is unstable: depending on which gate updates
its output to 1 first, the end result can be Q = 0 or Q = 1 (or, in theory, an infinite
oscillation between 0 and 1). For this reason S and R must not be set to 1 at the same
time. Note that the above unstable state also occurs when the circuit is powered on. In
the following we assume that the R input of each SR latch is briefly set to 1 when
circuits are powered on, so that their initial state is always 0.

3.1.2 D latch
Using set and reset inputs is only one possibility to change the memorized value Q.
Another is to set Q to the current value of some “data” input, noted D, when a “copy”
input, noted C, is 1 (and to keep it unchanged when C = 0). In other words, Q should
be set to 1 when D = 1 and C = 1, should be reset to 0 when D = 0 and C = 1, and
should keep its value when C = 0. This is easy to do with an SR latch and 3 more
gates to convert D and C to appropriate values of S and R:

0

0

1
D

C

Q
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3.1 Memory cells

This circuit is called a D latch. One advantage, compared to the SR latch, is that it
does not have forbidden inputs such as S = R = 1. Indeed, thanks to the gates in
front of the SR latch, this case can never happen.

3.1.3 D flip-flop
As long as C = 1, the output Q of a D latch changes each time D changes. This is not
practical to memorize the value of D at a precise moment, unless C remains equal to
1 only for a very brief time (but long enough to allow the SR latch to stabilize to a
potentially new state). To solve this issue, a possibility is to make sure that D does not
change while C = 1. This can be done with two D latches in series, using opposite
values for C, as shown below:

0

0 1

D

C Q
D latch

D latch

C0
C1

D1

D0

Indeed:

• when C = 1 the output D1 of the first D latch does not change when D changes,
because C0 = 0. Hence the output of the second D latch does not change either,
although its C1 input is 1. In other words, the first D latch makes sure that D1 does
not change while C1 = 1, as required.
• when C = 0 the output D1 of the first D latch changes each time D changes,

because C0 = 1. But then C1 = 0 and thus the output Q of the second D latch
does not change.
• when C changes from 1 to 0, the first D latch memorizes the value of D and its

output D1 changes to this potentially new value. But this takes some time, whereas
C1 changes immediately when C changes. Hence, when D1 changes, C1 is already
0, and thus Q does not change.
• when C changes from 0 to 1, the first D latch keeps its state, i.e., D1 remains equal

to the current value of D (this was the case since C was last set to 0). But C1 also
changes from 0 to 1. The second D latch thus memorizes D, and Q changes to D.

In summary, this circuit1, called a D flip-flop, memorizes the value of D at the
precise moment when C changes from 0 to 1, and keeps its state otherwise. In the
following, to simplify figures and to make it easier to distinguish memory cells, we
represent SR latches and D flip-flops as shown in Figure 3.1.

1Other circuits can achieve the same effect, with less gates and transistors (especially with relays [5]).
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0

0

0

0
0 00 0

S

R

D

C
Q Q

SR latch D flip-flop

FIGURE 3.1 SR latches and D flip-flops are represented with their currently memo-
rized value inside a large black square. The D flip-flop symbol differs from the SR
latch symbol with a small black triangle on its C input.

3.2 Memory circuits
To memorize an intermediate result of the Arithmetic Unit we need to memorize n bits
simultaneously. This is easy to do with n flip-flops connected to the same C input:

0

1 0 1 1

1 0 0 1

01 0 1C

i3 i2 i1 i0

o3 o2 o1 o0

4-bit register

This circuit is called a register. It memorizes its input when C changes from 0 to
1. Its output is the last memorized value.

To memorize several intermediate results we can connect the n outputs of the
Arithmetic Unit to several n bit registers. We can then choose in which register to
store this output by activating the C input of only one of these registers. For instance,
the following circuit can store a 4-bit number in one of 3 registers:

0

1 0 1 1

0

0

1 0 0 1

0 1 1 0

0 0 0 0

01 0 1

10 1 0

00 0 0

C0

i3 i2 i1 i0

C1

C2

However, getting the value from one these registers is not very easy because this
circuit has too many output wires. To make it easier to use we can add one more input
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0 0

1 0

1

1

1

0

0

0

0 X1XX

FIGURE 3.2 The four possible input combinations of a tristate buffer and the corre-
sponding outputs (left). A tristate buffer is like a normally open relay (right).

per register, to optionally connect its outputs to n shared output wires. For this we
can connect the ith flip flop of each register to a shared output wire oi via a normally
open relay:

0

1 0 1 1

0

0

0

X X X X

01 0 1

10 1 0

C0

i3 i2 i1 i0

C1

G0

G1

o3 o2 o1 o0

Together with additional inputs Gj , connected to the control inputs of all the relays
of the jth register, this allows connecting or disconnecting a whole register to the
shared output wires. Normally open relays used in this way are called tristate buffers
and are represented as shown in Figure 3.2. Their name comes from the fact that their
output can have 3 states: 0, 1, or “disconnected”.

In the above circuit G0 and G1 must not be simultaneously set to 1. Indeed, doing
so could connect together the outputs of two flip flops with different states, resulting
in a short circuit. More generally, with more than 2 registers, at most one Gj input
must be set to 1 at a time. This can be done with a binary decoder. A binary decoder
with k inputs a0, a1, . . . ak−1 has 2k outputs o0, o1, . . . o2k−1. It sets its output oj to
its i input, and all the others to 0, where j is the binary number ak−1 . . . a1a0. This
circuit can be implemented with several demultiplexers, as illustrated in Figure 3.3.

We can connect it to 2k registers as shown in Figure 3.4. This new circuit connects
the outputs of the binary decoder to the Gj inputs of the registers and, via AND gates
connected to a new w input, to their Cj inputs. This forms a Random Access Memory
(RAM), called this way because it allows reading and writing (i.e., to get and set)
values in any order. For instance, with the circuit in Figure 3.4:

• reading the value of the jth register can be done by setting the a2a1a0 inputs to the
bits of j in binary. The value is then obtained on the o3o2o1o0 outputs. j = a2a1a0
is called the address of this register.
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FIGURE 3.3 A binary decoder with 3 inputs. Here a2a1a0 = 1102 = 6, hence o6 = i.
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FIGURE 3.4 A Random Access Memory (RAM) storing eight 4-bit values. This circuit
currently reads the value at address a2a1a0 = 0112 = 3, namely 11102. Setting w to
1 would write the input value i3i2i1i0 = 10112 at address 3.
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3.3 Bus

• writing a value v in the jth register can be done by setting i3i2i1i0 to the bits of
v in binary, by setting the a2a1a0 inputs to the bits of j in binary, and finally by
changing w from 0 to 1. The last step changes the C inputs of all the flip flops of
the jth register, making it memorize the shared inputs i3i2i1i0.

This basic circuit uses one address per group of 4 bits. In practice, most computers
use one address per group of 8 bits, called a byte. They also use much more than 3
bits per address. A 10-bit address can refer to 210 = 1024 bytes, called a kilobyte
(KB). A 20-bit address can refer to 1024 kilobytes, called a megabyte (MB). And a
30-bit address can refer to one gigabyte (GB – 1024 megabytes).

3.3 Bus
The above RAM circuit can store several intermediate results, but it has only one input
address and one output value. Hence it is not sufficient, for instance, to directly add or
subtract two intermediate results with the Arithmetic Unit. To solve this we can use
two separate registers as input of the Arithmetic Unit, provided we have a way to copy
values from the RAM to one or the other of these registers.

A circuit which can copy values from one register to another, or from a register
to RAM or vice-versa, is called a bus. A 1-bit bus connecting n flip-flops is easy to
build. We just need to connect the D input of each flip flop to a common wire, and to
connect their Q output to this same wire via a tristate buffer, as in the RAM circuit:

0

0

1

0

0

1

writeA

writeB

readA

readB 1-bit bus

The above circuit can copy the value from A to B by setting readA to 1 and then by
changing writeB from 0 to 1. The first step connects A’s output to the bus and thus to
the D input of B. The second step memorizes this value in B. Conversely, this circuit
can copy the value from B to A by setting readB to 1 and then by changing writeA
from 0 to 1. It easy to generalize to 3 or more flip-flops. It can also be generalized
to an n-bit bus, to copy values between 2 or more n-bit registers, or the RAM. For
instance, the circuit in Figure 3.5 can copy values between two 3-bit registers. It is
made of three copies of the 1-bit bus, with shared “read” and “write” inputs. Copying
3-bit values from A to B or vice versa can be done as with the 1-bit bus.

To maintain a register connected in “read mode” to the bus we can memorize the
“read” inputs in SR latches. And, to make it easier to read another register, we can
connect the S input of each latch to the R input of all the others (so that setting one
resets the others – as in the RAM, at most one register must be connected to the bus
at a time). For instance, the circuit in Figure 3.6 sets readA to 1, readB to 0, and
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FIGURE 3.5 A 3-bit bus (right) connected to two 3-bit registers (left).
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selectC

readA

readB

readC

FIGURE 3.6 A possible “controller” for a 3-bit bus, to maintain one of the 3 registers
connected to the bus.

readC to 0 when selectA is 1, and keeps them in this state even if selectA is reset to 0.
Similarly, it sets readB (resp. readC) to 1, and resets the others to 0, when selectB
(resp. selectC) is 1. At most one “select” input must be set to 1 at a time.

3.4 Example
We can now use the circuits presented in this chapter to memorize the intermediate
results of an Arithmetic and Logic Unit (ALU). The circuit in Figure 3.7 connects the
ALU from Figure 2.10 (with 3 bits only to simplify) to 3 input bits, a RAM, and two
registers named R0 and R1, via a bus, as schematized in Figure 3.8.

Thanks to the bus, this circuit can copy values from any source (Input, RAM,
R0, or the ALU’s output) to any sink (RAM, R0, or R1), which gives 4 ∗ 3 = 12
possibilities. For example, computing a+ b− c can be done as follows:

• set the input to a and copy it in R0. For this, first send a pulse on selectINPUT (i.e.,
set it to 1 for a short time and then reset it to 0). Then send a pulse on writeR0 (this
memorizes a when writeR0 changes from 0 to 1).
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FIGURE 3.7 A 3-bit Arithmetic Unit (bottom) connected to 3 input bits (top right), a 4
values RAM (top left), and 2 registers R0 and R1 (middle), via a bus (right).
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RAM

R0 register

Bus controller

Carry Arithmetic Unit
subtract

Bus

R1 register̸= 0

Input

address a1a0

wselectRAM
selectINPUT

selectALU
selectR0

writeR0

writeR1

writeCarry

FIGURE 3.8 The block diagram corresponding to Figure 3.7.

• set the input to b and copy it in R1 by sending a pulse on writeR1 (there is no need
to send a pulse on selectINPUT first since the bus controller keeps the last selected
source connected).
• set and maintain “subtract” to 0, send a pulse on selectALU, and wait a short time

until the ALU has computed a+ b. Then store the result in R0 by sending a pulse
on writeR0.
• set the input to c and copy it in R1 by sending a pulse on selectINPUT, followed by

a pulse on writeR1.
• set and maintain “subtract” to 1, send a pulse on selectALU, and wait a short time

until the ALU has computed a+ b (in R0) minus c (in R1). Then store the result in
R0 by sending a pulse on writeR0.

At this stage we can use the is_not_zero and carry outputs, for instance, to test if
a + b − c is equal to 0, or to compare a + b and c. We can also store a + b − c in
RAM for later use. For this it suffice to send a pulse on selectR0, followed by a pulse
on w, after having set a1a0 to the desired destination address.
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Thanks to registers and memory circuits we can use an Arithmetic and Logic Unit
to perform computations without having to mentally memorize intermediate results.
Instead, as shown in the previous chapter, we can simply send a series of pulse signals
on the correct inputs, and in the correct order. But this requires to memorize this
procedure. And executing it manually is very slow and error-prone, even if the circuit
does each operation very quickly. To solve the first issue a solution is to store some
description of the desired procedure in Random Access Memory. To solve the second
one we can use new circuits to execute this procedure for us, by sending the appropriate
pulses. This chapter explains how this can be done.

4.1 Instructions
A procedure such as the one presented in Section 3.4 could be described in an abstract
way as “read 3 numbers a, b, and c in input, compute a+ b− c, and write the result
in RAM at address x”. However, representing such descriptions with one or more
numbers which can be stored in RAM is not easy. And figuring out which pulses to
send to execute them would also be quite complicated.

This procedure can also be described as a sequence of elementary actions: “wait an
input value”, “send a pulse on selectInput”, ”send a pulse on writeR0”, “wait an input
value”, ”send a pulse on writeR1”, etc. Each action can easily be represented with a
small number (e.g., 0 for “wait an input value”, 1 for “send a pulse on selectInput”,
etc). And each action is easy to execute. However, such a description is hard to design
and to understand for humans (because its high level meaning is lost in the details).

A trade-off is to describe this procedure with more abstract actions, but not too
abstract either, called instructions. For instance, an instruction could be “wait an input
value and store it in R0”, “add the values in R0 and R1 and store the result in R0”, or
“copy the value in R0 in RAM, at address 3”. As shown below, such instructions are
not too complex to represent with a number, called their encoding (to store them in
memory). And they are still quite simple to execute (each instruction only requires
sending 2 or 3 pulses at most). Finally, a sequence of instructions is less hard to design
and to understand than the corresponding sequence of pulses (but still quite hard; we
address this problem in Part 3).

Simple procedures, also called programs, can be described with a sequence of
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instructions, to be executed one after the other. For this we can store their encoding one
after the other in memory, i.e., at consecutive addresses. Then, after the instruction at
address a is executed, the one at address a+ 1 should execute1.

4.1.1 Jump instructions
Some programs need to repeat the same sequence of instructions two or more times.
For instance, a “calculator” program needs to repeat forever the same sequence (read
two numbers in input, compute and output their sum, repeat). In other words, after
the last instruction of the sequence is executed, the instruction at the next address
should not be executed. Instead, execution should restart at the first instruction of the
sequence. This can be described with a so called jump instruction. A “jump to a”
instruction specifies that the next instruction to execute is the one at address a.

In many cases a sequence of instructions must be repeated a precise number of
times. For instance, to compute a ∗ b with the circuit of Figure 3.7, we can repeat
b times a sequence adding a to R0 (initially set to 0). Then, after a has been added
to R0, there are two cases: either we need to repeat the sequence again, or we need
to continue with the rest of the program (e.g., output the result a ∗ b). This can be
described with a conditional jump instruction. Such an instruction either jumps to a
given address, or continues to the instruction at the next address, depending on some
condition (for instance, whether R0 is equal to 0 or not).

4.2 A toy instruction set
To illustrate the above discussion we define in this section a concrete set of instructions
for a circuit such as the one in Figure 3.7 (i.e., with a RAM and two registers R0 and
R1 as input of a very basic Arithmetic Unit). These instructions are the following:

• Memory:

• the Load instruction copies the value at a given address a into the R0 register.
• the Store instruction copies the value in the R0 register at a given address a.

• Arithmetic:

• the Add instruction adds the value at address a to the value in the R0 register,
and stores the result in R0.

• the Subtract instruction subtracts the value at address a from the value in the R0
register, and stores the result in R0.

• Jumps:

• the Jump instruction specifies that the next instruction to execute is the one at
address a.

1Assuming that each encoded instruction can fit in the n bits between two consecutive addresses.
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• the Jump If Zero instruction specifies that the next instruction to execute is the
one at address a if the value in R0 is equal to 0. Otherwise execution continues
with the instruction at the next address.
• the Jump If Carry instruction specifies that the next instruction to execute is the

one at address a if the last Add or Subtract instruction produced a non-zero carry
bit. Otherwise execution continues with the instruction at the next address.

• Input and output:

• the Input instruction waits for the user to press a button, and then copies the
value on the input wires into the R0 register.
• the Output instruction displays the value in the R0 register, and then waits until

the user presses a button.

4.2.1 Encoding
The above instruction set contains 9 instructions. We can thus give them numbers
from 0 to 8, called operation codes, or opcodes. This requires at least 4 bits to encode
each instruction. But all instructions except the last two have an associated address
a, called an operand. This operand must also be encoded as part of the instruction,
which requires more bits.

In the following we assume that the memory contains 25 = 32 bytes, each with
their own address, and that R0, R1, and the Arithmetic Unit work on 8-bit values. We
then use 5 bits per address, and we encode each instruction in one byte, as follows:

LDR R0← mem8[a] 0 0 1 a

STR R0→ mem8[a] 0 0 0 a

ADD R0← R0 +mem8[a] 0 1 0 a

SUB R0← R0−mem8[a] 0 1 1 a

JMP jump to a 1 0 0 a

IFZ if R0 = 0 then jump to a 1 0 1 a

IFC if carry ̸= 0 then jump to a 1 1 0 a

IN R0← input 1 1 1 0
OUT R0→ output 1 1 1 1

The left column is the instruction mnemonic, an abbreviation of the instruction
name. The middle column is a symbolic description of the effect each instruction.
Here dst ← src or src → dst means a copy of the value in src into dst , and mem8[a]
means the 8-bit value at address a. Finally, the right column is the binary number
corresponding to this instruction, i.e., its encoding. For instance, the encoding of
the LDR 7 instruction, which copies the byte at address 7 = 1112 into R0, is 0012
followed by 7 encoded in 5 bits, 001112, which gives 001001112 = 39.
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4.2.2 Example program
With the above instruction set a “calculator” program adding numbers in an endless
loop can be implemented as follows:

IN R0← input 1 1 1 0 0 0 0 0 0

STR R0→ mem8[6 ] 0 0 0 0 0 1 1 0 1

IN R0← input 1 1 1 0 0 0 0 0 2

ADD R0← R0 +mem8[6 ] 0 1 0 0 0 1 1 0 3

OUT R0→ output 1 1 1 1 0 0 0 0 4

JMP jump to 0 1 0 0 0 0 0 0 0 5

(data) the a number 0 0 0 0 0 0 0 0 6

where the left part gives the symbolic description of each instruction, and the right
part their encoding and their address (in gray).

The first two instructions read a number a as input and store it at address 6. The
next two instructions read a second number b, and add a to it. The last two instructions
output the value in R0, which at this stage contains a+ b, and jump back to the first
instruction to add two new numbers. The next byte after these five instructions is the
one used to store a.

4.2.3 Notes
Adding two 8-bit numbers can give a 9-bit number. For instance, 111111112 = 255
plus 1 gives the 9-bit number 1000000002 = 256. However, the registers and the
memory can only store 8-bit numbers, and the Arithmetic Unit can only use 8-bit
numbers as input. Hence, in practice, and unless a program does something special
with the carry bit (with the IFC instruction), all additions are modulo 28 = 256. This
means that adding a and b does not give a+b but the remainder of the division of a+b
by 256. It is noted (a+ b) mod 256, where x mod m is defined as x−⌊x/m⌋ ∗m.
For instance, adding 255 and 1 gives 02.

Similarly, subtracting two numbers can give a negative result, but the registers
and the memory can only store nonnegative numbers. Hence, in practice, and unless
a program does something special with the carry bit, all subtractions are modulo
256 too. For instance, subtracting 1 from 0 gives 255 because −1 mod 256 =
−1− ⌊−1/256⌋ ∗ 256 = −1− (−1) ∗ 256 = 255 (recall that ⌊y⌋ means the integer
part of y).

When a+ b differs from (a+ b) mod 2n we say that there is an (integer) overflow
(where n is the Arithmetic Unit’s “bit width”). We say the same when a− b ̸= (a− b)
mod 2n, a ∗ b ̸= (a ∗ b) mod 2n, etc. With an Arithmetic Unit such as the one in
Figure 2.10, there is an overflow if and only if the carry output is 1.

2This modular arithmetic is used in everyday life with hours. For example, 10 a.m plus 5 hours is 3 p.m
because (10 + 5) mod 12 = 3.
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4.3 Control circuits

4.3 Control circuits
We now have a way to describe a sequence of instructions with some numbers stored
in memory. The next step, as described in the introduction of this chapter, is to
build a circuit to automatically execute these instructions. Which means sending a
corresponding sequence of pulse signals on the registers, memory, and bus circuits.
For instance, to execute an IN instruction with the circuit in Figure 3.7, one needs to:

• connect the input wires to the bus by sending a pulse on “selectInput”.
• wait for the user to press a button.
• store the input value in R0 by sending a pulse on “writeR0”.

More generally, all instructions can be executed by sending appropriate pulses
1) on the correct wires, 2) in the correct order, and 3) at appropriate times (signals
must have time to propagate throughout the circuit between two pulses). The first two
items can be ensured with circuits of the following form:

0

0 0 0

c

wire1 wire2 wire3 wire4

When this circuit is powered on “wire1” and “wire2” change from 0 to 1 due to
the NOT gate. Changing c from 0 to 1 (and back to 0) makes the first and second D
flip-flops memorize 1. This resets “wire1” and “wire2” to 0, and sets “wire3” to 1:

0

1 1 0

c

wire1 wire2 wire3 wire4

Changing c from 0 to 1 (and back to 0) again makes the second and third flip-flops
memorize 0 and 1, respectively. This resets “wire3” to 0, and sets “wire4” to 1:

0

1 0 1

c

wire1 wire2 wire3 wire4

Finally, changing c from 0 to 1 (and back to 0) one more time resets “wire4” to 0:

0

1 0 0

c

wire1 wire2 wire3 wire4
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In other words, with a series of pulses on the c input, one gets two simultaneous
pulses on “wire1” and “wire2”, followed by a pulse on “wire3” and then on “wire4”:

c

wire1

wire4 time

wire2
wire3 power on

0

1

Each wire pulse starts and ends at the precise moment when c switches from 0 to
1. This shows that, with circuits like the one above, it is possible to send pulses on
specific wires, in a specific order. The only requirement is the ability to send a series
of pulses on a shared input c, which can be done with a clock.

4.3.1 Clock
A clock is a circuit which generates a signal switching between 0 and 1 at a constant
frequency. A clock can be implemented in many ways. For instance, one could use
a pendulum acting on a switch. But this would not be very practical, and can not
produce high frequencies. Instead, a frequently used method is to use the oscillations
of a crystal. Crystals can oscillate one million times per second or more (i.e., at 1 MHz
or more). In the following we represent a clock with the symbol on the left:

clock time
period

A clock generates the signal shown above (right). A period, also called a clock
cycle, is the time between successive pulses. The clock frequency is the number of
pulses per second, i.e., the inverse of its period. Increasing the frequency increases the
number of instructions which are executed per second. However, the frequency cannot
be increased without limit. Indeed, there must be enough time between two pulses
for signals to propagate throughout the circuit. For instance, computing an addition
in an Arithmetic Unit takes some time, because the input values have to propagate
through all its logic gates, up to the carry output. If a pulse is sent to write the sum in
a register before this delay, a wrong result will be stored.

4.3.2 Control loop
A circuit like the one above can generate a sequence of pulses to execute one instruction.
But each type of instruction needs a different sequence of pulses to be executed. The
solution is to use several circuits like this, one per type of instruction. And to connect
them to a binary decoder, so that the correct subcircuit is used depending on the
instruction opcode. For instance, if there are only 4 different opcodes, we can use a
circuit similar to the following:
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0 0

0 0

0
0

0 0

0 0

0
1
0

1
0

1
0

op1 op0
wire0-1 wire0-2 wire0-3

wire1-1 wire1-2 wire1-3

wire2-1 wire2-2 wire2-3

wire3-1 wire3-2 wire3-3

DECODE EXECUTE

Depending on the two bits of the instruction opcode, op1op0, the above circuit
sends pulses on “wire0-1” to “wire0-3”, or on “wire1-1” to “wire1-3”, etc. Before this
the instruction must be read in memory, so that op1op0 contain the correct values. This
can be done, as shown later, with a so called FETCH circuit sending an appropriate
sequence of pulses. Finally, after the instruction has been executed, the next one must
be fetched, decoded, and executed. For this it suffice to connect the outputs of the
EXECUTE subcircuit back to the input of the FETCH circuit:

0 0

0 0

0
0

0 0

0 0

0
0 0

1
0

1
0

1
0

op1 op0

DECODE
EXECUTE

FETCH

In this way we get a pulse which loops forever in the FETCH, DECODE and
EXECUTE circuits, each time going through a specific EXECUTE subcircuit.

4.4 A toy control unit
To illustrate the above discussions we design in this section a very basic control unit
for the circuit of Figure 3.8 (with an 8-bit architecture, i.e., an 8-bit Arithmetic Unit,
8-bit registers, etc). As its name implies, a control unit controls the rest of the circuit,
called the processing unit (i.e., the Arithmetic and Logic Unit, the registers, the bus,
etc). It does so by executing instructions stored in memory. We assume here that
these instructions are those defined in Section 4.2.
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R1 register̸= 0

Input

w

selectINPUT
selectRAM
selectALU

selectR0

writeR0

writeR1

PC

PC+1

selectIR
selectPC

selectPC+1

writeCarry

writeIR

writePC

FIGURE 4.1 A basic control unit (yellow background) for the circuit in Figure 3.8
(white background), with the instruction set of Section 4.2.

The core part of our example control unit is a control loop circuit with FETCH,
DECODE, and EXECUTE subcircuits, as presented above. To implement it we need
two new registers, in addition to R0 and R1 (see Figure 4.1):

• the Program Counter (PC) register stores the address of the instruction being
currently executed or, once it has been executed, the address of the next instruction
to execute. Since addresses use only 5 bits, this register is a 5-bit register.

• the Instruction Register (IR) stores the encoding of the instruction being currently
executed. This 8-bit register stores a copy of the original instruction in memory.
This is necessary to have access to its value during its execution, which might
require reading or writing values at other addresses in memory.

Once an instruction has been executed, the Program Counter value must be
incremented by one to execute the next instruction. Unless the last instruction was a
jump. In this case the Program Counter value must be replaced with the operand of
this jump instruction. To do this we include two more circuits in our control unit (see
Figure 4.1):

• a 5-bit incrementer, which computes “PC+1”, i.e., the value in the Program Counter
register plus 1. This is an adder circuit similar to the one in Section 2.4.1, simplified
for the case where one input is always 1.

• a 5-bit address bus, to which we connect the Program Counter, the output of the
above incrementer, and the 5 least significant bits of the Instruction Register (i.e.,
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4.4 A toy control unit

the address operand). This bus is also connected to the address decoder of the
RAM and thus selects which address to read or write to.

Thanks to these components, we can increment the Program Counter by connecting
the output of the incrementer to the address bus, and by sending a pulse on “writePC”
to store this value (see Figure 4.1). Likewise, we can replace the Program Counter
with the operand of a jump instruction by connecting the Instruction Register to the
address bus, and by sending a pulse on “writePC”.

4.4.1 FETCH circuit
With the above architecture, fetching an instruction can be done as follows:

• send simultaneous pulses on “selectPC” and “selectRAM” to read the value in
memory at the address stored in the Program Counter, and to get it on the data bus.
• send a pulse on “writeIR” to write this value in the Instruction Register.
• send a pulse on “selectIR” to prepare reading or writing a value at the address

operand of the new instruction. Technically this step is part of the instruction’s
execution, but we include it in the FETCH circuit to avoid duplications (it is
common to all instructions except IN and OUT).

4.4.2 DECODE circuit
Decoding an instruction can be done with a binary decoder with 3 inputs, namely
the 3 most significant bits of the Instruction Register. Plus a single demultiplexer,
controlled by the 4th most significant bit, in order to distinguish the IN and OUT
instructions (the 3 most significant bits are 1112 for both instructions).

4.4.3 EXECUTE circuit
The EXECUTE circuit has 9 subcircuits, one per type of instruction:

LDR This subcircuit sends a pulse on “writeR0” to store the value read from memory
at the instruction’s address operand (selected by the last step of the FETCH circuit).
It then increments the PC value with a pulse on “selectPC+1”, followed by one on
“writePC”.

STR This subcircuit sends a pulse on “selectR0”, followed by a pulse on w to store
R0’s value in memory, at the instruction’s address operand (selected by the last step
of the FETCH circuit). It then increments the PC value, as above.

ADD This subcircuit sends a pulse on “writeR1” to store the value at the instruction’s
address operand in R1. It then sends a pulse on “selectALU” to get the sum of the
values in R0 and R1 on the bus, followed by simultaneous pulses on “writeR0” and
“writeCarry” to write it in R0 and Carry. It then increments the PC value as above.
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SUB This subcircuit is almost the same as the ADD subcircuit. It just sends an
additional pulse on “subtract”, at the same time as the “selectALU” pulse. These
pulses last until the one on “writeR0” starts. This ensures that the correct result, the
difference of R0 and R1 values, is written in R0.

JMP This subcircuit just sends a pulse on “writePC” to replace the Program Counter
with the instruction’s address operand (selected by the last step of the FETCH circuit).

IFZ This subcircuit has two branches. The first, executed if the value in R0 is 0, is the
same as the JMP subcircuit. The second, executed if R0’s value is not 0, increments
the PC value as for non-jump instructions. The two branches are connected to a
demultiplexer controlled by the “̸= 0” signal (see Figure 4.1):

0

1
0DECODE

is zero

is not zero
̸= 0

......

IFC This subcircuit is almost the same as the IFZ one, except that its demultiplexer is
controlled by the value of the Carry register.

IN This subcircuit sends a pulse on “selectInput”, and then waits until a button is
pressed. This can be done with a loop similar to the control loop, with a demultiplexer
to either wait, or to continue with the next instruction:

0

0 1
0

DECODE

button pressed

......

selectInput writeR0

In the latter case, this subcircuit sends a pulse on “writeR0”, and then increments the
Program Counter as above.

OUT This subcircuit sends a pulse on “selectR0” and then waits until a button is
pressed, with the same method as above. It then increments the Program Counter’s
value.
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CHAPTER

A Toy Microprocessor

Thanks to control circuits we can now run a program stored in memory in an automated
way, which is much faster and safer than using a processing unit manually. Together, a
control unit and the processing unit it controls form a Central Processing Unit (CPU),
also called a microprocessor. This chapter presents a very simple one, based on the
design introduced in the previous chapter. It also illustrates its capabilities with two
example programs.

5.1 Implementation
The circuit in Figure 5.1 is a microprocessor for the instruction set of Section 4.2. It
is based on the circuit of Figure 3.7 (extended to an 8-bit architecture), augmented
with the control unit designed in Section 4.4. Its physical layout matches more or less
the block diagram in Figure 4.1. This section only presents the parts of this circuit
which have not been explained in the previous chapters.

5.1.1 Input and output
The input is made of 8 pins which are connected to the bus via tristate buffers, plus a
Light Emitting Diode (LED). When on, the LED indicates that the microprocessor is
waiting a value on the input pins. The user must set them to 0 or 1 as desired, and
press a button when done. Similarly, the output is made of 8 pins connected to the
bus, plus a LED. When on, the LED indicates that a value is available on the output
pins, and that the user must press a button to resume the execution of the program.

The two LEDs are connected to the two loops inside the EXECUTE subcircuit
(for the IN and OUT instructions), which wait for the user to press a button. In this
way they are turned on when an IN or OUT instruction starts, and turned off when the
button is pressed.

The button is a push button, used for both IN and OUT instructions. Due to its
speed, the microprocessor might execute several instructions during the time this
button stays pressed. In particular, it might execute several IN or OUT instructions. In
this case the user would not have the time to enter a second value, or to read the first
output value. To avoid this, the push button is connected to a circuit which generates
a short pulse (lasting one clock cycle) when it transitions from the “open” to the
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FIGURE 5.1 A toy microprocessor, implementing the instruction set of Section 4.2,
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and its 25 bytes Random Access Memory and 7 bytes Read-Only Memory.
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“closed” state. It is then necessary to release and press again this button to generate a
new pulse. The pulse generator circuit is the following:

0push button

The output of the D flip-flop is the push button’s state at the previous clock cycle.
Hence the output of the AND gate is 1 if and only if the button is currently pressed,
and was not pressed at the previous clock cycle. In other words, it is 1 only when the
button transitions from the “open” to the “closed” state, as desired.

5.1.2 Boot program
To run a program with our microprocessor we first need to store it in memory (as we
assumed earlier, all flip-flops are initially 0, and thus all the memory too). But we no
longer have any manual control over the memory, since we transferred it to the control
unit. Hence the only way to store anything in memory is to use a program reading
values in input and writing them in memory. But then we need to store this program
in memory first! To solve this chicken and egg problem, a solution is to store it in a
Read-Only Memory (ROM), i.e., a memory containing immutable values.

This is what the memory circuit in Figure 5.1 does: values at addresses 0 to 25
excluded (which is noted [0, 25[ = [0, 24]) can be read and written, but values at
addresses [25, 32[ cannot be modified. On the other hand, the latter do not need to
be initialized first. They can thus contain a program which is ready to be executed
when the microprocessor boots, i.e., when it is powered on. The ROM in Figure 5.1
contains the following boot program:

LDR R0← mem8[24 ] 0 0 1 1 1 0 0 0 25

ADD R0← R0 +mem8[31 ] 0 1 0 1 1 1 1 1 26

STR R0→ mem8[24 ] 0 0 0 1 1 0 0 0 27

IN R0← input 1 1 1 0 0 0 0 0 28

IFZ if R0 = 0 then jump to 0 1 0 1 0 0 0 0 0 29

JMP jump to 24 1 0 0 1 1 0 0 0 30

(data) the value 1 0 0 0 0 0 0 0 1 31

Moreover, the Program Counter register uses NOT gates around its three most
significant bits, which give it the initial value 111002 = 28. Hence, when it boots,
our microprocessor starts by executing the IN instruction at address 28. It thus waits a
value v0 in input. If this value is not 0, the instruction at address 30 jumps to address
24. Initially, the value at this address, in RAM, is 0. This corresponds to a STR 0
instruction, which thus stores v0 at address 0. The next 3 instructions, in [25, 27[, add
1 to the value at address 24. This value thus becomes 1, which corresponds to STR 1.
Hence, after a second value v1 is read in input, and if it is not 0, the new instruction at
address 24 stores v1 at address 1. And so on with the next input values: v2 stored at
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address 2, v3 at address 3, etc. This loop ends when the input value is 0. In this case
the IFZ instruction at address 29 jumps to address 0. The effect is to run the program
v0, v1, . . . vn stored in memory by the previous steps, starting at address 0.

5.2 Example programs
The above microprocessor can run several “useful” programs. A first example is the
adder program of Section 4.2.2. To run it, one first need to enter its 6 instructions with
the boot program, followed by a 0 value. After that the programs reads two values in
input, outputs their sum, and repeats these two steps forever.

5.2.1 Multiplier
Another example is a program to compute products. Since the Arithmetic Unit cannot
perform multiplications, nor shifts (see Section 1.2.3), we need a program computing
them with repeated additions. The general algorithm, i.e., the specification of the
main steps that this program must follow, is the following:

1. read two numbers a and b in input, and initialize c to 0.
2. if b = 0 go to step 4.
3. otherwise, subtract 1 from b, add a to c, and go back to step 2.
4. output c and go back to step 1 to compute another product.

This algorithm executes step 3 b times, and thus adds a to c b times. Hence, when
b = 0, c contains a ∗ b and can be output. Assuming that a, b, and c are stored at
addresses A, B, and C, respectively, and that the values at addresses ZERO and
ONE are 0 and 1, this gives the following (abstract) instructions:

• step 1: IN, STR A (store an input value in a), IN, STR B (store an input value in b),
LDR ZERO, STR C (store 0 in c).
• step 2: LDR B, IFZ “step4”.
• step 3: SUB ONE, STR B (subtract 1 from B, still in R0), LDR C, ADD A, STR C

(add a to c), JMP “step2” (go back to step 2).
• step 4: LDR C, OUT (output c), JMP 0 (go back to step 1).

Step 1 has 6 instructions, and thus step 2 starts at address 6. Step 2 and 3 have
a total of 8 instructions, and thus step 4 starts at address 6 + 8 = 14. We can thus
replace IFZ “step4” with IFZ 14, and JMP “step2” with JMP 6. We can also store a,
b, c, 0, and 1 after the last instruction, i.e., starting at address 17 (since there are 17
instructions). In the following we use ONE = 17, ZERO = 18, A = 19, B = 20
and C = 21. This leads to the following machine code, i.e., a list of instructions in
binary form that the machine (the microprocessor) can directly execute:

IN R0← input 1 1 1 0 0 0 0 0 0

STR R0→ mem8[19 ] 0 0 0 1 0 0 1 1 1

IN R0← input 1 1 1 0 0 0 0 0 2
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STR R0→ mem8[20 ] 0 0 0 1 0 1 0 0 3

LDR R0← mem8[18 ] 0 0 1 1 0 0 1 0 4

STR R0→ mem8[21 ] 0 0 0 1 0 1 0 1 5

LDR R0← mem8[20 ] 0 0 1 1 0 1 0 0 6

IFZ if R0 = 0 then jump to 14 1 0 1 0 1 1 1 0 7

SUB R0← R0−mem8[17 ] 0 1 1 1 0 0 0 1 8

STR R0→ mem8[20 ] 0 0 0 1 0 1 0 0 9

LDR R0← mem8[21 ] 0 0 1 1 0 1 0 1 10

ADD R0← R0 +mem8[19 ] 0 1 0 1 0 0 1 1 11

STR R0→ mem8[21 ] 0 0 0 1 0 1 0 1 12

JMP jump to 6 1 0 0 0 0 1 1 0 13

LDR R0← mem8[21 ] 0 0 1 1 0 1 0 1 14

OUT R0→ output 1 1 1 1 0 0 0 0 15

JMP jump to 0 1 0 0 0 0 0 0 0 16

(data) the value 1 0 0 0 0 0 0 0 1 17

(data) the value 0 0 0 0 0 0 0 0 0 18

(data) the a number 0 0 0 0 0 0 0 0 19

(data) the b number 0 0 0 0 0 0 0 0 20

(data) the c number 0 0 0 0 0 0 0 0 21

To run it one fist need to enter its 17 instructions, plus the ONE value, followed
by a 0, with the boot program.

5.2.2 Prime numbers enumerator
A third and last example is a program which outputs all the prime numbers less than or
equal to 255 (the maximum value of an 8-bit number). For this the general algorithm
is the following:

1. add 1 to n, supposed initially equal to 1.
2. if n is prime go to step 4.
3. go back to step 1.
4. output n and go back to step 1 to find the next prime number.

This algorithm tests each number n one by one, in increasing order, and starting
from n = 2. Step 2 needs to check whether n can be divided by some number f in
[2, n[. For this, a simple method is to check all values of f in decreasing order, from
n− 1 to 2. Step 2 can then be replaced with the following algorithm:

1. initialize f to n.
2. subtract 1 from f .
3. if f = 1, n is prime, stop (all f values have been tested and no divisor was found).
4. if f does not divide n, go back to step 2.
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Finally, to check whether f divides n or not, and since the Arithmetic Unit cannot
perform divisions, we can use an algorithm which repeatedly subtracts f from n. If
this process ends with 0 then f divides n, otherwise it does not:

1. initialize r to n.
2. subtract f from r.
3. if r = 0, f divides n, n is not prime, stop.
4. if r < 0, f does not divide n, stop.
5. go back to step 2 to continue the division of n by f .

By putting together the above partial algorithms we get the following complete
algorithm:

1. add 1 to n, supposed initially equal to 1, and initialize f to n.
2. subtract 1 from f .
3. if f = 1 then n is prime, go to step 9.
4. initialize r to n.
5. subtract f from r.
6. if r = 0, f divides n, n is not prime. Go to step 1 to try the next n.
7. if r < 0, f does not divide n, go back to step 2 to try the next f .
8. go back to step 5 to continue the division of n by f .
9. output n and go back to step 1 to find the next prime number.

Assuming that n and f are stored at addresses N and F , respectively, that the
value at address ONE is 1, and by storing r in R0, this gives the following (abstract)
instructions:

• step 1: LDR N, ADD ONE, STR N (add 1 to n), STR F (initialize f to n).
• step 2: LDR F, SUB ONE, STR F (subtract 1 from f ).
• step 3: SUB ONE, IFZ “step 9” (if f − 1 = 0 go to step 9).
• step 4: LDR N (initialize r to n).
• step 5: SUB F (subtract f from r).
• step 6: IFZ 0 (if r = 0, go back to step 1).
• step 7: IFC “step 2” (if r < 0, go back to step 2).
• step 8: JMP “step 5”
• step 9: LDR N, OUT, JMP 0 (output n and go back to step 1).

Finally, with the same method as for the multiplier program, we can replace IFZ
“step 9”, IFC “step 2”, JMP “step5” with IFZ 14, IFC 4, and JMP 10, respectively.
And we can store n, f and 1 after the last instruction, i.e., starting at address 17. By
using ONE = 17, N = 18, and F = 19 we get the following machine code:

LDR R0← mem8[18 ] 0 0 1 1 0 0 1 0 0

ADD R0← R0 +mem8[17 ] 0 1 0 1 0 0 0 1 1

STR R0→ mem8[18 ] 0 0 0 1 0 0 1 0 2

STR R0→ mem8[19 ] 0 0 0 1 0 0 1 1 3

LDR R0← mem8[19 ] 0 0 1 1 0 0 1 1 4
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SUB R0← R0−mem8[17 ] 0 1 1 1 0 0 0 1 5

STR R0→ mem8[19 ] 0 0 0 1 0 0 1 1 6

SUB R0← R0−mem8[17 ] 0 1 1 1 0 0 0 1 7

IFZ if R0 = 0 then jump to 14 1 0 1 0 1 1 1 0 8

LDR R0← mem8[18 ] 0 0 1 1 0 0 1 0 9

SUB R0← R0−mem8[19 ] 0 1 1 1 0 0 1 1 10

IFZ if R0 = 0 then jump to 0 1 0 1 0 0 0 0 0 11

IFC if carry ̸= 0 then jump to 4 1 1 0 0 0 1 0 0 12

JMP jump to 10 1 0 0 0 1 0 1 0 13

LDR R0← mem8[18 ] 0 0 1 1 0 0 1 0 14

OUT R0→ output 1 1 1 1 0 0 0 0 15

JMP jump to 1 1 0 0 0 0 0 0 1 16

(data) the value 1 0 0 0 0 0 0 0 1 17

(data) the value n 0 0 0 0 0 0 0 1 18

(data) the value f 0 0 0 0 0 0 0 0 19

To run it one fist need to enter its 17 instructions, plus the ONE and initial n
values, followed by a 0, with the boot program.
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Conclusion

Microprocessors are made of electrically controlled switches, assembled into logic
gates, themselves assembled into arithmetic and logic circuits, registers, memories,
and control circuits. Most of them use the architecture presented in this part, made
of a control unit, a processing unit, input and output mechanisms, and a memory
containing data and instructions. It is called the von Neumann architecture because it
was first published by John von Neumann in 1945.

The toy microprocessor presented in the previous chapter is extremely limited,
especially because it can only address 32 bytes of memory. To solve this problem, most
modern microprocessors use a 32 or 64-bit architecture. A 32-bit architecture is based
on 32-bit registers, buses, and Arithmetic and Logic Units. A 32-bit microprocessor
generally use 32-bit addresses, and can thus use up to 232 = 4 GB of memory. It can
also perform computations on 32-bit values, called words1. However, even with more
memory, microprocessors can only do computations on numbers. But then how can
computers create or edit text, music or videos?

Data representation
The answer is that text, sound, images, videos, or in fact any information, can be
represented with numbers. And doing some computations on these numbers can edit
this information.

For instance, one could represent letters from “a” to “z” with numbers from 0 to
26 (excluded), letters from “A” to “Z” with numbers from 26 to 52 (excluded), a space
with 52, a dot with 53, etc. Then, for instance, a program reading bytes and adding
26 to those smaller than 26 can capitalize text. A program can also edit text based
on keys typed by the user, as shown in Chapter 14. Or transform text into program
instructions which, as explained in Section 4.2, can also be represented with numbers
(see Part 3).

Similarly, one can digitize sound, which is a pressure wave, by measuring the
pressure many times per second, and by storing each measurement in one byte (or
more). Then, for instance, a program reading pairs of bytes, and computing their
average, can mix two sound samples to produce a new one.

Likewise, one can digitize an image by decomposing it in a grid of pixels (for
“picture element”), and by representing the luminosity of each pixel with one byte
(from 0 for black to 255 for white). These values can then be stored in memory one
after the other, for example from left to right and from top to bottom. Then, for
instance, a program reading bytes and subtracting them from 255 can compute the

1A word is a 32-bit value in a 32-bit microprocessor, a 64-bit value in a 64-bit microprocessor, etc.
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negative of an image. A color image can be represented in a similar way, with 3 values
per pixel (for the intensity of the red, green, and blue components). And a video can
be represented as a sequence of images (typically 24 or 25 per second).

Further readings
The design of our toy microprocessor, although sufficient to explain the main ideas,
is not fully representative of real ones. For instance, real microprocessors do not
wait for input values. Instead, when a new input value is available, it interrupts the
microprocessor (like a notification or a phone call interrupts what you are doing). To
learn more about the design and architecture of real microprocessors, you can read
the following books:

• “Digital Design and Computer Architecture, RISC-V Edition” [12]. This book
presents the CMOS technology (the most frequently used to build real micro-
processors), gives more details about logical operations (negation, conjunctions,
disjonctions, etc), explains how programs can be used to design complex cir-
cuits, and presents some advanced microprocessor architectures used to improve
performance.
• “Computer Architecture” [10]. This book gives a historic perspective on computer

design, gives more details about number systems, data representation, input and
output mechanisms, etc. It also presents several microprocessor architecture styles.
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Introduction

This part has two goals. The first one is to assemble the hardware components of our
toy computer, mainly a keyboard, a screen, and an Arduino Due board. This board
provides in a single chip a microprocessor, various memories, and integrated circuits
to control external devices (such as light emitting diodes, motors, sensors, but also
keyboards or displays). We present how these components work, how to connect them
together, and how programs can use them. The second goal of this part is to install on
this assembled computer a very basic input and output system, using the keyboard
and the screen, in order to make it completely autonomous.

Normally the Arduino Due is not autonomous: it requires an external computer
to be used. The usual process is the following. Users write their application (e.g.,
a mobile robot controller) with a text editor in some programming language. They
transform it with a program called a compiler into machine code that the Arduino can
execute. Finally, they send this machine code with a third program to the Arduino, as
a series of 0s and 1s (via a USB cable). All this happens on an existing computer,
with already existing programs (operating system, text editor, compiler, etc).

Since our goal in this book is to program a toy computer from scratch, we should
in theory avoid using any existing computer, already programmed. Otherwise we
would need to show how this existing computer was programmed in the first place (the
answer is from yet another already programmed computer – and so on). To solve this
chicken and egg problem, we should instead send 0s and 1s “manually” to the Arduino.
Doing this completely by hand, with a switch, is not possible because the Arduino
expects to receive these 0s and 1s by groups of 8 bits, each group being transmitted at
115,000 bits per second (i.e., in about 70µs). Of course, no one can operate a switch
at this speed. Instead, we could build a small digital circuit, connected to a keyboard,
which would send a specific group of 8 bits at 115,200 bits per second each time a key
is pressed (for instance the group 010000002 for ’A’, 010000012 for ’B’, etc). This
circuit would not need to be programmed, which would avoid the above chicken and
egg problem. However, doing this would be very impractical and error-prone (typos
would be hard to detect without a visual feedback, i.e., some kind of display).

In this part, we therefore use an external computer to program the Arduino.
However, we try to use it in a minimal way to show convincingly that avoiding its
use altogether would be possible. In particular, instead of using a text editor and a
compiler to produce the 0s and 1s from a program written in some programming
language, we compute these bits manually. The only program we use on the external
computer is the one used to send these bits to the Arduino, at the expected speed.
Moreover, we use this method only to install a small initial program on the Arduino,
namely a very basic input and output system. Its goal is to read other programs (still
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in binary form at first) input on a keyboard connected to the Arduino, to output them
on a screen also connected to the Arduino, and to execute them. In other words, its
goal is to make our toy computer completely autonomous, i.e., to avoid any further
need of an external computer (including in Parts 3 and 4).

In order to do this, our basic input output system has the following components:

• a keyboard driver. Connecting a keyboard to the Arduino does not “just work”. A
small program is needed on the Arduino to decode the signals sent by the keyboard
and to interpret them as characters. This small program is called a keyboard driver.
• a “graphics card” driver. Similarly, connecting a display to the Arduino does not

“just work”. For the display we want to use, things are even worse: we can’t even
connect the display directly to the Arduino because it does not have the necessary
connector. To solve this we use an intermediate board, which we call the graphics
card. It can connect to the display on one end, and to the Arduino on the other. But
here again, a small program is needed on the Arduino to send the correct signals
to the graphics card, in order to display the desired characters on the screen. This
small program is the graphics card driver.
• a memory editor. This extremely basic editor uses the above drivers to display the

memory’s content on the screen (in hexadecimal format), and to allow the user
to edit it, with the keyboard. It can also execute a program at a given location in
memory. These features allow users to store programs in memory and to run them.
• a virtual machine. Even if the above programs are small, they would still require

hundreds of machine code instructions, which use a complicated binary format.
Writing all these instructions manually is possible but painful and error prone. In
order to simplify this a bit, we use a tiny virtual machine. This program simulates a
virtual microprocessor using very simple instructions called bytecode instructions.
This small program must be written in Arduino Due’s machine code but, once
this is done, all other programs can be written in simpler bytecode instructions
(simulated by the virtual machine). This is what we do for the above drivers and
the memory editor.

The rest of this part presents the hardware components of our toy computer, shows
how they are assembled, and explains how our input output system is built and installed
on the Arduino. It is organized as follows:

• Chapter 6 gives an overview of the Arduino Due board and of its main chip. We use
this at the end to control a LED with commands sent “manually” to the Arduino.
• Chapter 7 gives an overview of the microprocessor inside the Arduino’s main chip.

It presents a subset of its registers and instructions. We use this at the end to blink
a LED, with a first program made of a few machine code instructions.
• Chapter 8 builds on this to implement our toy virtual machine, written in Arduino’s

machine code, and to store it in flash memory.
• Chapter 9 presents the clock used by the Arduino, and explains how to change

its frequency. We then use this knowledge to implement a small program, using
bytecode instructions, to set the clock to its maximum frequency.
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• Chapter 10 presents how Liquid Crystal Displays work in general, how our specific
Thin Film Transistor display works, what the graphics card is doing, how to
communicate with it from the Arduino, and how to use it. It then provides the
graphics card driver implementation. We test it at the end to display the traditional
“Hello, World!” message.
• Chapter 11 presents how keyboards work in general, and PS/2 keyboards in particular.

It then provides a small keyboard driver. We test it at the end with a small “echo”
program, which simply displays on screen each key typed on the keyboard.
• Chapter 12 uses all the previous components to implement a basic memory editor,

finally making our toy computer completely autonomous.
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6
CHAPTER

First Steps with the
Arduino Due

This chapter gives a short overview of the Arduino Due board. We use this at the end
to control a LED with commands sent “manually” to the Arduino.

But first, why do we use an Arduino Due? The short answer is that it is well
suited for our purpose. A longer answer is the following. First of all, desktop and
laptop computers already include a Basic Input Output System (the BIOS), using the
keyboard and the screen. We do not have to use it, but since our goal is to program a
toy computer from scratch, it is better if we really have to implement a BIOS.

Single board computers, such as Raspberry Pi boards, are complete computers on
a single printed circuit board. They can run usual operating systems such as Windows
or Linux. They generally do not have a BIOS but, at least for Raspberry Pi boards,
they have a complex boot process which makes it hard to start completely from scratch,
with a few hand-written machine code instructions.

Single board microcontrollers are even simpler than single board computers. As
their name suggest, they provide two things:

• a microcontroller. This is a single chip which contains everything we need for a
toy computer: a microprocessor, volatile and non-volatile memory, and dedicated
circuits to control external devices in a simple way.
• a printed circuit board on which the microcontroller is soldered. A microcontroller

alone is just a chip, which would be hard to use directly. Its pins are very small, yet
they need to be connected to a power source, to external devices which have “large”
connectors, etc. The board makes this easy to do.

Single board microcontrollers do not have a BIOS and generally have a simpler
boot process than single board computers. We therefore chose such a board to build
our toy computer. More specifically, we chose the Arduino Due board because it is
easy to use completely from scratch. And also because Arduino is a very popular
platform for makers. In this way, after having built your toy computer with it, you will
have everything you might need to reuse the Arduino Due for other purposes.

6.1 Overview of the Arduino Due
The Arduino Due board is based on the SAM3X8E microcontroller from Atmel, which
is presented in the next section. This microcontroller is soldered on a printed circuit
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board (see Figure 6.1), which connects its 144 pins – 36 on each side of the chip – to
several other components on this board, including:

• 86 female header pins on 3 sides of the board. These pins provide a convenient way
to connect wires to the otherwise very tiny pins of the microcontroller itself. Each
board pin has a number and/or a name printed next to it (some of them are shown,
in white, in Figure 6.1). Most of these board pins are directly connected to the
SAM3X8E pins, whose names are shown in yellow in the figure. For instance, pin
19 is connected to the PA10 pin of the microcontroller, pin 13 is connected to the
PB27 pin, etc. Likewise, the “GND” (ground) and “3.3V” pins are connected to
the USB ports, which provide power, and to the microcontroller. They can be used
to power external devices which require a 3.3V power source. As an exception, the
“5V” pin is not connected to the microcontroller. It can be used to power external
devices which require a 5V power source, such as PS/2 keyboards. All the other
pins of the board output 3.3V, and only support up to 3.3V inputs.
• A few male header pins, including 6 very close to the microcontroller, labeled

“SPI”. These male pins are also directly connected to corresponding pins of the
microcontroller, including the PA25, PA26 and PA27 pins (see Figure 6.1).
• A few built-in LEDs. A green one, labeled “ON” indicates when the card is

powered. The one next to it, orange and labeled “L”, is connected to the PB27 pin
of the microcontroller. It can be turned on and off by programs running on the
microcontroller.
• Two micro-USB ports. They can be used to power the card. At the same time,

they can also be used by the microcontroller’s boot assistant, a program which
can read and execute other programs sent by an external computer. Finally, the
“native” port can be used to plug USB devices, for instance a keyboard, to be used
by applications running on the microcontroller. However, doing so requires a USB
driver program, and writing one from scratch is not a trivial task.
• A “RESET” button, in a corner of the board. Pushing this button is equivalent to

turning off and on again the whole card. In particular, it erases the content of the
volatile memory, and restarts the microcontroller from a well defined initial state.
• An “ERASE” button. Pushing this button while the card is powered erases the

content of the non-volatile memory. This is equivalent to erasing the content of the
hard drive of a desktop or laptop computer.

The components and connections of the Arduino Due which are used in the rest of
this book are shown in Figure 6.1. If you want to know more, the full list can be found
on the Arduino Due web page at https://store.arduino.cc/products/arduino-due. This
page links to specifications of the full mapping between the board pin names and the
microcontroller pin names [3], and of all the board components and connections [11].

At this stage we can do our first tests with the Arduino. First, connect one of its
USB ports to your computer with a USB cable, or directly to an outlet with a USB
phone charger. The “ON” and “L” LEDs should be on. As shown in Figure 6.1, the
“L” LED is connected on one end to pin PB27, which is also connected to pin 13. The
other end is connected to the ground. With a male-male wire, connect the “GND” and
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13 pins. What happens? The LED turns off because it is no longer powered. Finally,
remove the wire and unplug the Arduino.

6.2 Overview of the Atmel SAM3X8E
As indicated above, the Arduino Due is based on the Atmel SAM3X8E [8]. This
section gives a brief overview of the main internal components of this microcontroller,
ignoring those we don’t need in our toy computer. The next sections and chapters give
more details about each of them. These components are the following (see Figure 6.2):
• an ARM Cortex-M3 microprocessor, which has a 32-bit architecture and can execute

up to 84 million instructions per second. It contains sub components such as a
System Timer (SysTick) and a Memory Protection Unit (MPU). See Section 7.1.
• 512 KB of non-volatile flash memory, split in two memory banks of 256 KB, each

with its own controller (to erase data, flash new data, etc). See Section 6.5.
• 16 KB of ROM, providing a boot assistant. As explained earlier, this program can

read and execute other programs sent by an external computer. See Section 6.4.
• 96 KB of volatile RAM, split in one bank of 64 KB and one bank of 32 KB.
• 4 Parallel Input Output (PIO) controllers, named A, B, C and D. Each controller

manages up to 32 pins of the microcontroller. For instance, controller A manages
the 30 pins named PA0 to PA29, while controller D manages only 10 pins named
PD0 to PD9. Each pin can be configured as an input or as an output. See Section 6.6.
• Many peripheral controllers to communicate with a large variety of external devices.

These include a Serial Peripheral Interface (SPI) controller to interact with devices
supporting the SPI protocol (see Section 10.3), and a Universal Synchronous
Asynchronous Receiver Transmitter (USART) for external devices using a serial
connection (i.e., transmitting one bit at a time – see Section 11.2). There is also a
Pulse Width Modulation (PWM) controller (which can be used to control motors,
loud speakers, etc), an Analog to Digital converter, etc. The peripheral controllers
do not interact with the microcontroller pins directly, but instead go through the
PIO controllers (see Figure 6.2).
• A Power Management Controller (PMC), connected to an external crystal oscillator.

This component provides clock signals (in green in Figure 6.2) to the other
components, including the microprocessor and the peripheral controllers. It can
generate clock signals at various frequencies. See Section 9.1.
• A Reset Controller (RSTC), which resets all the components to their initial state

when the RESET button, connected to the “NRST” pin of the microcontroller, is
pushed on the Arduino board.
• A Watchdog Timer (WDT), which also resets all the components to their initial state

(via the Reset Controller) when the timer expires. To avoid being reset, the program
running on the microcontroller must periodically reset this timer (or disable it).
• A memory bus interconnecting all these components, thus allowing the micropro-

cessor to use them. See Section 6.3.
The SAM3X8E microcontroller contains many other components, not shown in
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FIGURE 6.2 The components of the SAM3X8E microcontroller [8] used in this book.

Figure 6.2. A more complete diagram can be found in Figure 2-3 at page 6 of the
SAM3X/3A Series Datasheet [8]. This very long reference manual (1459 pages!)
gives an exhaustive description of all the components, except the microprocessor
itself (described in other reference manuals, including the 858 pages long Armv7-M
Architecture Reference Manual [17]). The next sections and chapters give a summary
of the parts of these manuals that we need to program our toy computer.

6.3 Memory bus
Each component inside the microcontroller, except the memory banks, contains one
or more 32-bit “registers” which allow the microprocessor to interact with it. For
instance, the Parallel Input Output A controller has a 32-bit register whose bits reflect
the input voltage of the pins connected to it. For instance, if the pins PA2 and PA5 are
at 3.3V and if all the other PA pins are at 0V, then all the bits of this register are 0,
except bits 2 and 5 (i.e., the value of the register is 1001002 = 36). Another register of
this controller allows the microprocessor to set the voltage of the desired pins to 3.3V.
For example, writing the value 17 = 100012 in this register, sets pins PA0 and PA4 to
3.3V, and leaves the other pins unchanged.
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FIGURE 6.3 The memory map after a full erase, showing how memory banks and
microcontroller registers (bottom) are mapped to memory addresses (top).

These registers must not be confused with the microprocessor registers. The latter
can be used directly by arithmetic instructions, such as “add the value of register
number 1 to the value of register number 3 and store the result in register number
4”. This is not the case of the former. Instead, each microcontroller register has a
predefined memory address, and can only be used by reading or writing values in
memory, at this address. For example, the Parallel Input Output A controller registers
mentioned above have the addresses 400E0E3016 and 400E0E3C16. If the only PA
pins at 3.3V are PA2 and PA5, then the value in memory at address 400E0E3016 is 36.
Similarly, writing the value 17 at memory address 400E0E3C16 sets the pins PA0 and
PA4 to 3.3V1.

The role of the memory bus is to send each memory access request to the
component or memory bank which is responsible for it. In the previous example, the
bus sends the load request for address 400E0E3016 to the PIO A controller, because
this is the component responsible for this address. It does the same with the store
request for address 400E0E3C16, for the same reason.

In order to do this, the bus must have a “map” of the memory, indicating which
component “lives” at which address(es). After a full erase, with the ERASE button,
this memory map is the one illustrated in Figure 6.3. An important thing to note is
that different addresses can map to the same physical location (just as a building at the
intersection between two roads could have two addresses, one per road):

• The 16 KB the ROM memory bank are mapped to the addresses in [0,400016[
(400016=16 KB), but also to the addresses in [400016,800016[, and so on up to
[7C00016,8000016[. In total, this physical memory region is mapped 32 times in
the 512 KB “Boot” region in Figure 6.3. It is also mapped 64 more times in the
1 MB “ROM” region, between addresses 10000016 and 20000016 (excluded).
• The 64 KB of the RAM0 memory bank are mapped 8 times in the first 512 KB of

the “RAM” region, between addresses 2000000016 and 2008000016 (excluded).

1Provided a few other registers of this controller are set up correctly, see Section 6.6.
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• The 32 KB of the RAM1 memory bank are mapped 16 times in the second 512 KB
of the “RAM” region, between addresses 2008000016 and 2010000016 (excluded).

Another thing to note is that most memory addresses are not mapped to anything.
This is the case, for instance, of the 510 MB between the “ROM” and “RAM” regions,
and of a 1 GB range before the “System” region (see Figure 6.3). These regions are
“reserved” for future versions and should not be used.

The registers of the microcontroller components are mapped in the “Controllers”
region, a 1 MB region starting at address 4000000016. This includes the Parallel Input
Output controllers, the Serial Peripheral Interface controller, the Power Management
Controller, etc. Some details of this region are presented in the next sections and
chapters, for the registers we need (a full description of the whole memory map can
be found in chapter 7 of [8], which refines the map defined in chapter 4 of [16]).

Finally, as illustrated in Figure 6.3, the registers of the microprocessor’s internal
components, such as the System Timer and the Memory Protection Unit, are mapped
in the last part of the memory, starting at address E000000016 (only a few kilobytes
inside this 1 GB region are actually used).

In the following we do not use the whole RAM region, but only its central part, in
[2007000016,2008800016[ (see Figure 6.3). This is the only part where the two RAM
banks are seen as a contiguous sequence of 96 ∗ 1024 bytes, without repetition.

6.4 Boot assistant
When it is reset after a full erase, the Arduino Due runs its boot assistant program,
stored in ROM (like the boot program of Section 5.1.2). As said earlier, this program
can read and execute other programs, sent by an external computer. This section
explains how. We use this at the end to explore the Arduino’s memory.

6.4.1 User interface
The boot assistant, in an endless loop, waits a for request sent by an external computer,
executes it, and returns a response. A request is a sequence of characters ending with
a sharp (#). The boot assistant supports 12 types of requests. The main ones are the
following:

• waddress,# reads a 32-bit word in memory at address, and returns the result (both in
hexadecimal). For example, w2008000C,# returns the word at address 2008000C16.
• Waddress,value# writes the 32-bit hexadecimal value in memory, at address. For

example, W2008000C,1234ABCD# writes 1234ABCD16 at address 2008000C16.
• haddress,# and Haddress,value# do the same thing, but for 16-bit half words.
• oaddress,# and Oaddress,value# do the same thing, but for bytes.
• Gaddress# runs the program starting at address. More precisely, it runs the program

starting at the address stored in memory at address+4. This command is explained
in more details in Section 7.5.3.
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• V# returns the boot assistant’s version number.

Using these requests, an external computer can send a program to the Arduino,
word by word (or byte by byte), and can then run it on the Arduino.

6.4.2 Communication protocol
The above requests must be sent character by character, by using the ASCII code [14].
This American Standard Code for Information Interchange assigns a number to each
letter. For instance, # is represented with 35 = 001000112. Thus, to send a #, the
external computer must send the byte 001000112 to the Arduino, one bit at a time,
starting with the least significant one. This can be done in 3 different ways:

• via the pin 0 / RX0 on the Arduino board. In this case each byte must be sent at
115,200 bauds, i.e., bits per second. Responses from the boot assistant are sent in
the same format on pin 1 / TX0. As said in introduction of Part 2, this method
could theoretically be used to program the Arduino without any external computer.
• via the USB “programming port” (see Figure 6.1). This port is connected, via a

small chip, to the above RX0 and TX0 pins. This small chip (an ATmega16U2
microcontroller, with only 512 bytes of RAM) converts the USB signals into the
above format.
• via the USB “native port” (see Figure 6.1). This port is directly connected to an

USB controller component in the SAM3X8E (not shown in Figure 6.2).

6.4.3 Experiments
Lets put what we learned so far into practice. For this you need a small program
on your computer to send requests to the Arduino, via a USB cable. Download
https://ebruneton.github.io/toypc/scripts.zip, unzip it, and follow the installation
instructions in its README file. Open a terminal on your computer, hereafter called
the “host”, and go to the directory containing the unzipped files. Then, connect the
Arduino Due’s native port to your computer with a USB cable. Press the ERASE
button for about 2 seconds, then press the RESET button. At this stage the boot
assistant is running on the Arduino and is waiting for requests.

In the host terminal, type python3 boot_helper.py to connect to the Arduino
(for completeness, this script is also given in Appendix E). You should see a prompt >.
Type V# and press Enter to check that everything works fine. You should see the boot
assistant’s version number (which might differ from the one shown here):
user@host:~$ python3 boot_helper.py
>V#
v1.1 Dec 15 2010 19:25:04

Lets read some words in the “Boot” region (see Figure 6.3). Type the following
requests, and observe the responses:
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>w10,#
0x001000C7
>w4010,#
0x001000C7
>w8010,#
0x001000C7

This shows that the ROM is indeed mapped several times in this region (the 0x prefix
means that the following value is in hexadecimal; it is not part of the value itself). We
could also check that it is mapped several times in the “ROM” region too (try reading
the values at 10001016 or 10401016). A look at the “Flash” region shows that all its
bits have been erased to 1s:
>w80000,#
0xFFFFFFFF
>w80004,#
0xFFFFFFFF

Lets now try to write some words in memory. We can first check that the ROM is
really read-only, by trying to write in it:
>W10,12345678#
>w10,#
0x001000C7

The write has no effect, as expected. Writes in “Flash” have no effect either:
>W80000,12345678#
>w80000,#
0xFFFFFFFF

In fact it is possible to write in flash memory, but this requires a more complex process,
explained in Section 6.5. Lets now try to write some value in the “RAM” region. The
first 4 KB of RAM are used by the boot assistant, and we don’t want to change them.
Lets use the first word after this:
>W20071000,12345678#
>w20071000,#
0x12345678

It works! Here we could check again that the RAM0 bank is mapped several times in
the “RAM” region (try reading the value at 2008100016). A more interesting test is to
read the 4 bytes starting at 2007100016:
>o20071000,#
0x78
>o20071001,#
0x56
>o20071002,#
0x34
>o20071003,#
0x12
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We see that the least significant byte of 1234567816, namely 7816, is stored at address
2007100016. The most significant one, 1216, is stored at address 2007100316. This is
called the little endian order. The opposite – least significant byte at 2007100316 and
most significant at 2007100016 – is called the big endian order.

Finally, lets see what happens if we try to read a value in the “reserved” region
after the “ROM” region:
>w200000,#
ERROR: no response from device.

You should see nothing during 5s, then the host program exits with an error message.
This is because the boot assistant crashed while trying to read a reserved memory
address! In such cases you can restart it by pressing the RESET button on the Arduino.
You can then restart the boot_helper.py program. To exit it normally, type exit#
(this command is not sent to the Arduino; instead the host program stops itself).

6.5 Flash controller
Flash memory has the advantage of being non-volatile. Unfortunately, this comes
with a cost: the memory must be erased before it can be written, and erasing it is slow
(a few milliseconds, whatever the number of bytes erased). It is thus impractical to
write into it word by word (this is why, as we saw above, writing values directly in
flash memory has no effect). Instead, to amortize this cost, flash memory is divided
into pages of 256 bytes (or 64 words), and is erased and written one page at a time.
This process is controlled by an Enhanced Embedded Flash Controller (EEFC), one
per flash memory bank (see Figure 6.2). This section presents these controllers, and
shows how they can be used via the boot assistant.

6.5.1 Memory pages
Erasing and writing a page into flash memory requires the following process:

1. Write the 64 words of the page into 64 internal “registers”, shared between the two
flash controllers. All the registers must be written to, even if we only care about
some of them (otherwise the next step does not work).

2. Ask the flash memory bank’s controller to write the content of these registers into
a specific page, which is erased first. The page is identified by its index, from 0 to
1023 (included).

3. Wait a few milliseconds until the flash controller is done writing the registers in
memory. During this time the flash memory bank cannot be used, and the above
registers must not be modified.

The first step of the above process is simple, because the above 64 internal registers
are mapped repeatedly (2048 times) inside the 512 KB “Flash” region. This means
that writing a word in this memory region writes a value in one of these registers2.

2In this region, writing a word at an address which is not a multiple of 4 is not supported. Writing half
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Name Type EEFC0 EEFC1
Mode Register Read-Write 400E0A0016 400E0C0016

Command Register Write-Only 400E0A0416 400E0C0416

Status Register Read-Only 400E0A0816 400E0C0816

TABLE 6.1 The Enhanced Embedded Flash Controller registers used in this book.

Note that these registers are only used for writes. Reading a value in this region reads
the flash memory, not these internal registers.

The second step is done by writing a specific value in the Command Register of the
memory bank’s controller (see Table 6.1). This 32-bit value must have the following
binary form, where password = 5A16, command = 3 (which means “erase and
write page”), and argument is the page index:

password argument command

The third step is done by reading the Status Register of the memory bank’s
controller repeatedly, until its least significant bit is 1. Indeed, this bit is 0 while the
controller is writing the page into flash memory, and 1 when the process is done.

To illustrate this, lets assume we want to write the fourth page (counting from 0)
controlled by the second flash controller, i.e., the 64 words in [C040016,C050016[. We
first need to write the 64 words at these addresses (writing them in [8000016,8010016[,
for instance, would work too, since the registers are mapped there too). We must then
write the 5A00040316 command in the EEFC1 Command Register, i.e., at address
400E0C0416. Finally, we need to wait until bit 0 of the EEFC1 Status Register, at
address 400E0C0816, is 1.

6.5.2 Boot mode
Besides controlling the flash memory banks, the flash controllers also control 3
additional bits of non-volatile memory: bit 0 (security), bit 1 (boot mode selection),
and bit 2 (flash selection). In this book we use only the boot mode selection bit. When
this bit is 0, which is the case after a full erase, the memory mapped in the “Boot”
region [0,8000016[ is the ROM (see Figure 6.3). When it is 1, the memory mapped in
this region is the flash memory (see Figure 6.4).

These bits can be modified with the EEFC0 Command Register. With the values
password = 5A16, command = B16, and argument = n, bit n is set to 1. With
command = C16 instead, bit n is reset to 0. Thus, writing 5A00010B16 at address
400E0A0416 sets the boot mode selection bit to 1, and writing 5A00010C16 instead
resets it to 0. In both cases, the least significant bit of the Status Register is set to 1
when the operation completes, as for a page write command.

words or bytes is not supported either.
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FIGURE 6.4 The memory map when the “boot mode selection” bit is 1, showing
how memory banks and microcontroller registers (bottom) are mapped to memory
addresses (top).

6.5.3 Experiments
We can now put this new knowledge into practice. First, connect the Arduino to your
computer, open a terminal as you did in Section 6.4.3, and start the boot_helper.py
program:
user@host:~$ python3 boot_helper.py

Lets then write some values in the fourth page of the second flash memory bank,
[C040016, C050016[, as described in Section 6.5. We first need to write the values in
the internal registers of the flash controllers. This is a bit painful because we need to
write 64 values (you can “cheat” by using copy paste):
>WC0400,1#
>WC0404,2#
>WC0408,3#
>WC040C,4#
>WC0410,5#
>WC0414,6#
>WC0418,7#
>WC041C,8#
>WC0420,9#
>WC0424,10#
>WC0428,11#
>WC042C,12#
>WC0430,13#

>WC0434,14#
>WC0438,15#
>WC043C,16#
>WC0440,17#
>WC0444,18#
>WC0448,19#
>WC044C,20#
>WC0450,21#
>WC0454,22#
>WC0458,23#
>WC045C,24#
>WC0460,25#
>WC0464,26#

>WC0468,27#
>WC046C,28#
>WC0470,29#
>WC0474,30#
>WC0478,31#
>WC047C,32#
>WC0480,33#
>WC0484,34#
>WC0488,35#
>WC048C,36#
>WC0490,37#
>WC0494,38#
>WC0498,39#

>WC049C,40#
>WC04A0,41#
>WC04A4,42#
>WC04A8,43#
>WC04AC,44#
>WC04B0,45#
>WC04B4,46#
>WC04B8,47#
>WC04BC,48#
>WC04C0,49#
>WC04C4,50#
>WC04C8,51#
>WC04CC,52#

>WC04D0,53#
>WC04D4,54#
>WC04D8,55#
>WC04DC,56#
>WC04E0,57#
>WC04E4,58#
>WC04E8,59#
>WC04EC,60#
>WC04F0,61#
>WC04F4,62#
>WC04F8,63#
>WC04FC,64#

We then write the “erase and write page” command in the Command Register, and
check that it is done with the Status Register:
>W400E0C04,5A000403#
>w400E0C08,#
0x00000001

Finally, we can check that the operation was successful by reading some values in the
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page we just wrote:
>wC0408,#
0x00000003
>wC0424,#
0x00000010
>exit#

We can also verify that these values are not lost when the Arduino is turned off. For
this, unplug the Arduino, plug it again, and read again the value at C042416:
user@host:~$ python3 boot_helper.py
>wC0424,#
0x00000010

Let us now test the boot mode selection bit. Set this bit to 1 as described above:
>W400E0A04,5A00010B#

The page we just wrote is now mapped in the “Boot” region as well, offset by 512 KB
from the “original” (see Figure 6.4), i.e., in [4040016,4050016[:
>w40408,#
0x00000003

Now reset the boot mode selection bit. This maps the ROM again in the “Boot” region:
>W400E0A04,5A00010C#
>w40408,#
0xB004F8CA
>exit#

Finally, press the Arduino’s ERASE button for a few seconds, to erase the page we
wrote, and unplug it.

6.6 Parallel Input Output controller
To conclude this chapter, we present here the Parallel Input Output (PIO) controllers.
They are an important part of the microcontroller, since all the peripheral controllers
use them to access the microcontroller’s pins. We use this at the end to turn a LED on
and off via the boot assistant.

6.6.1 User interface
The main goal of the PIO controllers is to enable the microcontroller to communicate
with external devices. Another important goal is to enable the microprocessor and the
peripheral controllers (USART, SPI, etc – see Figure 6.2) to share the microcontroller’s
pins in a principled way (i.e., one at a time). If each peripheral controller was using
its own private pins, then the SAM3X8E chip would need much more than 144 pins
to connect all of them. Hopefully, users rarely need to use them all at the same time.
The pins can thus be used by a subset of the peripherals for some time, then used by
another subset, and so on.

71



CHAPTER 6 First Steps with the Arduino Due

PIO Status

0

1

0

0

1
0

1
1

pin i

Output Data Status

Peripheral AB Select

Pull-up Status

Output Status

Output A

VCC

Output B

Output A Enable

Output B Enable

bit i

bit i

bit i

bit i

bit i

0... ...

1... ...

1... ...

1... ...0... ...

tristate
buffer

multiplexer

FIGURE 6.5 A simplified view of the circuit and registers (in gray) controlling the
output of each pin. The input part is not shown. See Figure 31-3 in [8].

This sharing is done as follows: each peripheral controller uses a fixed set of pins,
but a pin can be used by up to two peripherals. For instance, the USART peripheral
always uses pins PA10 and PA11 to receive and transmit data – this can’t be changed.
But PA10 can also be used by the Digital-to-Analog peripheral. Similarly, PA11 can
also be used by the Analog-to-Digital peripheral. In addition, all the PIO pins can also
be used directly by the microprocessor. This means that each pin can be controlled by
up to 3 entities (one at a time): two peripherals, hereafter named A and B3, and the
microprocessor.

To choose the entity controlling a pin at a given time, each PIO controller has the
following registers (see Figure 6.5 – here we use the PIO A controller as an example;
the others work in the same way):

• The PIO Status Register: if its nth bit is 1, then the PAn pin is controlled by the
microprocessor. This register can only be read. Writing to it has no effect. Instead,
one must write in the PIO Enable Register (resp. the PIO Disable Register) to set
(resp. clear) bits in the Status Register. For instance, writing 1012 in the Enable
Register sets bits 0 and 2 to 1 in the Status Register, and leaves the other bits
unchanged. Writing 10002 in the Clear Register sets bit 3 to 0 in the Status Register,
and leaves the other bits unchanged.
• The Output Status Register: if the PAn pin is controlled by the microprocessor, then

the nth bit of this register indicates if this pin is an output (bit equal to 1), or a pure
input (bit equal to 0). As for the Status Register, this register can only be read. It

3For PA10, peripheral A is the USART, and peripheral B is the Digital-to-Analog converter.
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Name Type PIO A PIO B
PIO Enable Register Write-Only 400E0E0016 400E100016

PIO Disable Register Write-Only 400E0E0416 400E100416

PIO Status Register Read-Only 400E0E0816 400E100816

Output Enable Register Write-Only 400E0E1016 400E101016

Output Disable Register Write-Only 400E0E1416 400E101416

Output Status Register Read-Only 400E0E1816 400E101816

Set Output Data Register Write-Only 400E0E3016 400E103016

Clear Output Data Register Write-Only 400E0E3416 400E103416

Output Data Status Register Read-Only 400E0E3816 400E103816

Pull-up Disable Register Write-Only 400E0E6016 400E106016

Pull-up Enable Register Write-Only 400E0E6416 400E106416

Pull-up Status Register Read-Only 400E0E6816 400E106816

Peripheral AB Select Register Read-Write 400E0E7016 400E107016

TABLE 6.2 The Parallel Input Output registers used in this book.

can only be changed via the Output Enable Register or the Output Disable Register.
• The Output Data Status Register: if the PAn pin is controlled by the microprocessor,

and if it is configured as an output, then the nth bit of this register defines the pin’s
output value. This register can only be changed via the Set Output Data Register or
the Clear Output Data Register.
• The Peripheral AB Select Register: if the PAn pin is not controlled by the

microprocessor, then the nth bit of this register indicates whether this pin is
controlled by peripheral A (bit equal to 0) or B (bit equal to 1). Unlike the above
registers, this register can be read and written. If a pin is controlled by a peripheral,
this peripheral decides whether it should be used as an output or not and, if yes,
which value to output.

In addition to this, i.e., independently of which entity controls it, each pin can
optionally be connected to the 3.3V power source via a pull-up resistor (see Figure 6.5).
When a pin is configured as an input but is not connected to an external device, this
resistor “pulls” the pin voltage up to 3.3V. Without it, a disconnected pin could be
at any voltage, depending on external interferences. Note that setting a pin’s output
value to 0 with the above registers sets the pin voltage to 0V (if it is configured as an
output), even if the pull-up resistor is enabled. The Pull-up Status Register indicates
which pins have their pull-up disabled: if its nth bit is 1, then the pull-up is disabled.
This register is read-only. It can only be modified by writing into the Pull-up Disable
Register or the Pull-up Enable Register.

A simplified representation of a small part of the digital circuit controlling each
pin is represented in Figure 6.5. The addresses of some of the registers of each PIO
controller are given in Table 6.2. The full circuit and the complete list of registers can
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be found in Chapter 31 of [8].

6.6.2 Experiments
Lets put this new knowledge into practice. We know that the “L” LED on the board is
connected to pin PB27 (see Figure 6.1). We have seen above how to control a pin
by writing values in memory. And we have already used the boot assistant to write
values in memory. Thus, we should be able to control the LED via the boot assistant.
For this, connect the Arduino to your computer and open a terminal as you did in
Section 6.4.3. Lets first check which entity controls the PB27 pin, by reading the PIO
Status Register:
user@host:~$ python3 boot_helper.py
>w400E1008,#
0x0FFFFFFF

We see that bit 27 is 1, meaning that the pin is controlled by the microprocessor.
Lets check the Output Status Register and the Output Data Status Register:
>w400E1018,#
0x00000000
>w400E1038,#
0x00000000

They are both 0, meaning that the pin is not used as output, i.e., it is disconnected
from the PIO controller circuit. Yet the LED is on. This probably means that the
pull-up resistor is enabled. We can check this by reading the Pull-up Status Register:
>w400E1068,#
0x00000000

All bits are 0, in particular bit 27, meaning that the pull-up is not disabled, i.e., it
is enabled as we suspected. Let us now configure the pin as an output, by setting the
27th bit (= 227 = 80000016) to 1 in the Output Status Register. As said above, this
must be done by using the Output Enable Register:
>W400E1010,8000000#

At this point you should see that the LED is off! Indeed we just configured the
pin as an output, and we saw above that the output value in the Output Data Status
Register was 0. The pin has thus been connected to the ground, as we did with a wire
at the end of Section 6.1. We can turn the LED on again by setting the pin’s output
value to 1, with the Set Output Data Register:
>W400E1030,8000000#

You can now exit# and unplug the Arduino.
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7
CHAPTER

First Steps with the
Cortex M3

This chapter gives a short overview of the Arduino Due microprocessor, the ARM
Cortex M3. This knowledge is necessary to go beyond our first steps with the Arduino,
in the previous chapter. We use it at the end to write our first program, to blink a LED.

7.1 Overview of the Cortex M3
The Cortex M3 microprocessor has a core instruction processing part and a few
other internal components (see Figure 6.2). The instruction processing part loads
instructions from memory, decodes them and executes them, in an endless loop. These
instructions form the Cortex M3 machine language. They are encoded in 16 or 32 bits,
and must always start at even addresses. They can be divided in 3 main categories,
namely data processing, load and store, and conditional and jump instructions:

• The data processing instructions perform arithmetic and logic operations (addition,
multiplication, bitwise and, etc). They can only operate on values stored in registers
(or encoded in the instruction itself), and can only store the result in registers. The
Cortex M3 has 16 32-bit registers available for this purpose, named R0 to R15. An
example data processing instruction is “add the values in R1 and R2, and store the
result in R5”.
• The load and store instructions load values from memory into registers, and store

values from registers in memory. An example load instruction is “load the value
from memory at the address in R3, offset by 10, and put the result in R0”. If R3
contains 60, this instruction loads the value at address 70 and store it in R0.
• The conditional and jump instructions can modify the normal flow of execution.

Instructions are normally executed sequentially, in increasing address order. In
other words, in the normal case, after the instruction i at address a is executed,
the instruction at address a + 2 (or a + 4 if i is a 32-bit instruction) is executed.
This can be changed with conditional instructions or jump instructions. As their
name suggest, conditional instructions are skipped if some condition is met. And
jump instructions cause the execution flow to jump, i.e., to continue at an arbitrary
address.

The other components of the Cortex M3 include a timer, an interrupt controller,
and a memory protection unit (they are presented in more details later in this book):
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• The timer component, called SysTick, can be used to measure time. It decrements a
24 bit counter by 1 at each clock cycle, and restarts it to a configurable value when
it reaches 0.
• The interrupt controller, called the Nested Vector Interrupt Controller (NVIC),

provides another way to modify the normal execution flow, other than the conditional
and jump instructions. It handles errors, also called exceptions, such as trying to
read the memory at a reserved address. It also handles external events, also called
interrupts, such as the reception of some data on an input pin. When an error or
event occurs, the NVIC causes the execution flow to jump to a predefined handler
address, associated with each error or event source.
• The memory protection unit can be used to control memory accesses. It can divide

the memory into regions, and can associate different access rights with each region.
For instance, one region can be made inaccessible, another read-only, etc. This can
be used to protect programs from each other, i.e., to avoid a crash in a program
to crash another one, or to prevent a program from reading sensitive data (e.g.,
passwords) in another program’s memory (see Chapter 26).

7.2 Registers
As said above, the Cortex M3 instructions can use 16 registers named R0 to R15. The
first 13 registers can be used for any purpose, but the last 3 have specific usages. They
are called the Program Counter, Link Register and Stack Pointer, and their main goal
is to make it easier to split programs into smaller building blocks called subroutines.
This section presents these registers and how subroutines work.

7.2.1 Program Counter
The R15 register is also called the Program Counter (PC). This register contains the
address of the currently executing instruction. More precisely, just before executing
an instruction at address a, it contains the value a. However, during the execution of
an instruction at address a, the PC contains the value a+ 4.

Writing into the PC is also possible, and causes a jump. Since instructions must
start at even addresses, the least significant bit of the jump address is always ignored.
For instance, attempting to write 17 into the PC actually writes 16, and jumps to
address 16. In fact, due to historical reasons1, some instructions require writing
a+ 1 into the PC in order to jump to the instruction at address a. a+ 1 is called the
instruction’s interworking address.

7.2.2 Link Register
The R14 register is also called the Link Register (LR). Some jump instructions, called
branch with link, set this register to the interworking address of the next instruction

1Some ARM processors support two instruction sets. They use this bit to specify the instruction set to
use after the jump. The Cortex M3 supports only one instruction set but still uses this mechanism.
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FIGURE 7.2 The Stack Pointer. When the SP contains the value a, pushing a 32-bit
value, here 3141592616, stores it at address a−4 and updates the SP to a−4. Popping
gets the value stored at the address given by the SP, and adds 4 to the SP.

in sequential order. For instance, a 32-bit branch with link instruction at address a,
jumping to address b, sets the LR to a+ 5. This allows the code starting at b, when its
task is done, to “resume” the execution of the initial code sequence, i.e., to jump to
the instruction at a+ 4. For this, it just needs to write the value stored in the LR into
the PC (see Figure 7.1).

7.2.3 Stack Pointer
The R13 register is also called the Stack Pointer (SP). A stack is similar to a pile of
plates: one can only add, or push, a value (a plate) on top of the stack (the pile), not
inside it. Similarly, one can only remove, or pop, a value from the top of the stack. A
pointer is a register or memory location which contains the address of some value,
called the pointer target. The Stack Pointer contains the address of the top stack value.
It is used by two instructions called PUSH and POP, which can push the values in
some registers into the stack, and pop values from the stack into registers. This stack
is called descending2 because pushing a new value decreases the Stack Pointer’s value.
For instance, if the SP contains the value a, pushing x means storing x in memory at

2Note that it may look ascending, if addresses are representing in ascending order from top to bottom.
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address a− 4, and updating the SP value to a− 4 (see Figure 7.2).
Note: from now on we use register names to designate either the register itself, or

the value it contains, depending on the context. For instance, in “add R1 and R2 and
store the result in R3”, R1 and R2 designate the values stored in these registers, while
R3 designates the register itself.

7.2.4 Subroutines
The main goal of the above registers is to organize programs into smaller subprograms
of increasingly higher abstraction levels, in a similar way as digital circuits, or even
living organisms, are organized (made of atoms, grouped in molecules, grouped
in cells, grouped in organs, grouped into organisms). For instance, a program to
draw figures could have a subprogram to draw text, which could itself use a “sub”
subprogram to draw characters. The advantage of this method is that each level can be
understood and programmed without knowing how the lower levels work internally.

At the machine code level considered here, these subprograms are called subrou-
tines. A subroutine is a list of instructions, some of which can call other subroutines.
After it has been executed, a subroutine returns to the subroutine which called it. A call
from an instruction at address a in subroutine A (e.g., “draw figure”), to subroutine B
(e.g., “draw text”), is a jump to B’s first instruction, preceded by instructions allowing
B to return in subroutine A. This includes storing the (interworking) return address
a+5 in the Link Register, as described above. However, this is generally not sufficient.
Consider the case where subroutine B needs to call a third subroutine C (e.g., “draw
character”), from address b + 4 (see Figure 7.3). It cannot simply store its own
(interworking) return address b + 9 in the Link Register, otherwise it would loose
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the value a+ 5 already stored there, and would no longer be able to return to A! To
solve this, B needs to save the current LR value first. The solution is to push it on the
stack. This is generally done at the very beginning of each subroutine (see Figure 7.3).
Returning to the caller, i.e., to A, can then be done by popping this value from the
stack, into the PC.

7.3 Instruction set
The Cortex M3 machine language has about 100 instructions. However, some
instructions have several variants and several encodings, on 16 or 32 bits. For instance,
the ADD instruction has 4 variants and 14 encodings. In total, there are more than
350 different encodings. Here we present only the main instructions and encodings
used in this book (about 40 – a few more are presented later), and we give only a short
overview for each. All the details about all the instructions can be found in [17].

7.3.1 Data processing instructions

ADD Rz ← Rz + c 01100 z c

ADD Rz ← Rx+Ry 0011000 zxy

ADD SP← SP + 4 ∗ c 000001101 c

ADD Rz ← SP + 4 ∗ c 10101 z c

The ADD instruction adds two registers, or a register and a constant, depending
on the variant used, and stores the result in a register. For instance, the first variant,
Rz ← Rz + c, adds the constant c to register Rz and stores the result in Rz. It is
encoded on 16 bits. The most significant ones are fixed to 001102. The next 3 bits
define which register is used, from R0 to R7. The last 8 bits define the constant to add
to this register. For instance, by replacing z with 112 = 3 and c with 1011012 = 45 we
get the instruction R3← R3+ 45. Its encoding is obtained by replacing z and c with
their values in the encoding schema, yielding 00110011001011012 = 332D16.

SUB Rz ← Rz − c 11100 z c

SUB Rz ← Rx− Ry 1011000 zxy

SUB SP← SP− 4 ∗ c 100001101 c

MUL Rz ← Rz ∗ Rx 1011000010 zx

The SUB and MUL instructions perform subtractions and multiplications. Note
that additions, subtractions, and multiplications are done modulo 232, and can thus
overflow (see Section 4.2.3).

UDIV Rz ← Rx /Ry

11011101111111111111 z xy
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The UDIV instruction, encoded on 32-bit, performs integer divisions, such as
⌊14/4⌋ = 3. Rx, Ry, and Rz must not be the SP or the PC.

AND Rz ← Rz ∧ Rx 0000000010 zx

ORR Rz ← Rz ∨ Rx 0011000010 zx

The AND instruction performs bitwise AND operations, such as 10102 ∧ 11002 =
10002. Similarly, the ORR instruction performs bitwise OR operations, such as 10102
∨ 11002 = 11102.

LSL Rz ← Rx≪ c 00000 zxc

LSL Rz ← Rz ≪ (Rx mod 32) 0100000010 zx

The Logical Shift Left (LSL) instruction shifts the 32 bits of a register to the left
by a certain amount. For instance, shifting the value 10111012 to the left by 3 inserts
3 zeros on the right (and drops the 3 most significant bits), yielding 10111010002.
Shifting to the left by n bits is equivalent to multiplying by 2n (modulo 232).

LSR Rz ← Rx≫ c 10000 zxc

LSR Rz ← Rz ≫ (Rx mod 32) 1100000010 zx

The Logical Shift Right (LSR) instruction shifts the 32 bits of a register to the
right by a certain amount. For instance, shifting the value 10111012 to the right by
3 drops the 3 least significant bits, yielding 10112. Shifting to the right by n bits is
equivalent to dividing by 2n.

MOV Rz ← c 00100 z c

MOV Rz1:z0 ← Rx 01100010 z1 z0x

The Move (MOV) instructions “move” (or more precisely copy) a value from a
register or a constant into a register. The z1:z0 notation above denotes a concatenation
of binary numbers. For instance, replacing z1 with 12 and z0 with 0112 gives 10112,
and thus Rz1:z0 = R11. The MOV: Rz1:z0 ← Rx instruction can thus access the 16
registers R0 to R15.

MOVW Rz ← c3:c2:c1:c0

001001011110 z c3c2c1 c0

The Move Wide (MOVW) instruction copies a 16-bit constant into a register,
which must not be the SP or the PC. It can copy values up to 65535, whereas the MOV
instruction is restricted to values up to 255.

MOVT Rz[31..16]← c3:c2:c1:c0
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001101011110 z c3c2c1 c0

The Move Top (MOVT) instruction copies a 16-bit constant into the 16 most
significant bits of a register (which must not be the SP or the PC), leaving the others
unchanged. Together with MOVW, it can be used to load a 32-bit constant in a
register. For this, first load the least significant bits with MOVW (which erases the
most significant bits), then load the most significant bits with MOVT.

CMP compare(Rx, c) 10100 x c

CMP compare(Rx,Ry) 0101000010 xy

The Compare (CMP) instructions compare two registers, or a register and a
constant. They store the comparison result, e.g., whether Rx is less than, equal
to, or greater than Ry in a special register, different from the R0-R15 ones. This
special register, similar to the Carry register in Section 3.4, is used by conditional
instructions3 (see Section 7.3.4).

ADR Rz ← ⌊PC⌋4 − c2:c1:c0

1111010101011110 z c2c1 c0

The Address To Register (ADR) instruction subtracts a constant from the PC and
stores the result in a register (which must not be the SP or the PC). More precisely, it
subtracts a constant from the largest multiple of 4 which is less than or equal to the PC,
noted ⌊PC⌋4. For instance, if the PC value is 102 = 4 ∗ 25 + 2, then ⌊PC⌋4 = 100.
If the PC value is 100, then ⌊PC⌋4 = 100. Do not forget also that when an instruction
executes, the PC value is the address of this instruction plus 4. Hence, an ADR
instruction at address a subtracts a constant from ⌊a+ 4⌋4 = ⌊a⌋4 + 4.

Incidentally, this raises the question of how 16 and 32-bit instructions are stored
in memory. We saw in Section 6.4.3 that 32-bit values are stored in little endian
order. In fact everything is stored in this order, including instructions. When a 16-bit
instruction of the form

byte1 byte0

is stored at address a, then byte0 is stored at address a, and byte1 at address a+ 1.
Similarly, when a 32-bit instruction of the form

byte3 byte2 byte1 byte0

is stored at address a, then byte0 is stored at address a, byte1 at address a+ 1, byte2
at address a+ 2, and byte3 at address a+ 34.

3Other instructions can store results in this special register. For simplicity, we don’t use this feature.
4These bytes are displayed in a different order in [17], see Figure A3-5, pA3-68.
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7.3.2 Load and store instructions

LDR Rz ← mem32[Rx+ 4 ∗ c] 10110 zxc

LDR Rz ← mem32[SP + 4 ∗ c] 11001 z c

LDR Rz ← mem32[⌊PC⌋4 + 4 ∗ c] 10010 z c

LDRH Rz ← mem16[Rx+ 2 ∗ c] 10001 zxc

LDRB Rz ← mem8[Rx+ c] 11110 zxc

The Load Register (LDR*) instructions load a value from memory and store it
in a register. There are 3 variants, LDR, LDRH(alf), and LDRB(yte), to load 32-bit,
16-bit, and 8-bit values from memory. The address from which the value must be
loaded can be in one of the R0-R7 registers, in the SP, or in the PC (in this case the
memory address actually used is ⌊PC⌋4 = ⌊a + 4⌋4, where a is the instruction’s
address). In all cases, a constant offset c can be added to this address.

STR Rz → mem32[Rx+ 4 ∗ c] 00110 zxc

STR Rz → mem32[SP + 4 ∗ c] 01001 z c

STRH Rz → mem16[Rx+ 2 ∗ c] 00001 zxc

STRB Rz → mem8[Rx+ c] 01110 zxc

The Store Register (STR*) instructions read a value in a register and store it in
memory. There are 3 variants, STR, STRH(alf), and STRB(yte), to store the 32-bits of
the register’s value, only its 16 least significant bits, or only its 8 least significant bits.
The address at which these bits must be stored can be in one of the R0-R7 registers, or
in the SP. In all cases, a constant offset c can be added to this address.

PUSH registers, l→ stack 0101101 registersl

The PUSH instruction pushes one or more of the R0-R7 registers, and optionally
the LR, onto the stack. A register Rn is pushed if and only if bit n of the registers
field is 1. For instance, if registers=110102 then registers R1, R3 and R4 are pushed.
The LR is pushed if the l field is 1. These registers are pushed in decreasing index
order (i.e., first the LR if it is selected, then R7 if selected, and so on down to R0).
The selected register with the smallest index thus ends up on top of the stack (see
Figure 7.4).

POP registers, p← stack 0111101 registersp

The POP instruction pops some values from the stack, and stores them in one or
more of the R0-R7 registers, and optionally in the PC. A popped value is stored in
register Rn if and only if bit n of the registers field is 1. A popped value is stored in
the PC if the p field is 1. In this case, it must be an interworking address. The number
of values popped from the stack is equal to the number of bits set to 1 in the previous
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PUSH R2 R3 LR POP R0 R1 PC

1234
...

SPa a

a− 8

a− 4

1234
...

SPa1234
19
16
42

...

SPa− 12

R0
before push after pop

R1 R2 R3 ... SP
a 1916422753 ...

PCLR R0 R1 R2 R3 ... SP
a 1916421642 18

PCLR

FIGURE 7.4 The PUSH and POP instructions. Registers are pushed in decreasing
index order (here LR, then R3, then R2). They are popped in increasing index order
(here R0, then R1, then PC – set to 18 = 19 - 1 because of interworking addresses).

fields. The popped values are stored in registers in increasing index order (i.e., first in
R0 if it is selected, then in R1 if selected, and so on up to the PC – see Figure 7.4).

7.3.3 Jump instructions

B PC← PC + signed12(2 ∗ c) 00111 c

The Branch (B) instruction jumps to an address which is obtained by adding a
constant 2 ∗ c to the PC. More precisely:

• if 2 ∗ c < 212−1, i.e., if 2 ∗ c < 2048, 2 ∗ c is added to the PC,
• otherwise, 2 ∗ c− 212 = 2 ∗ c− 4096, which is negative, is added to the PC.

BX PC← Rx− 1 000011100010 x

The Branch and Exchange (BX) instruction jumps to an interworking target address
stored in a register. It thus jumps to the instruction at address t if the register contains
an odd value t+ 1.

BLX PC← Rx− 1,LR← a+ 3 000111100010 x

The Branch with Link and Exchange (BLX) instruction does a branch with link
operation. It does the same jump as the BX instruction, but it also sets the LR to the
interworking address of the instruction just after itself. This is done so that the LR
can be directly copied into the PC to return from the called subroutine, without having
to think about interworking addresses. Rx must not be the PC.

BL PC← PC + signed23(2 ∗ c1:c0),LR← a+ 5

83



CHAPTER 7 First Steps with the Cortex M3

0111111111 c1c0

The Branch with Link (BL) instruction5 jumps to an address which is obtained by
adding a constant 2 ∗ c to the PC (where c = c1:c0). More precisely:

• if 2 ∗ c < 223−1, i.e., if 2 ∗ c < 4 MB, 2 ∗ c is added to the PC,
• otherwise, 2 ∗ c− 223 = 2 ∗ c− 8 MB, which is negative, is added to the PC.

In addition, the BL instruction sets the LR to the interworking address of the instruction
just after itself. This is done so that the LR can be directly copied into the PC to return
from the called subroutine, without having to think about interworking addresses.

TBB PC← PC + 2 ∗mem8[Rx+Ry]

101100010111000000001111 xy

The Table Branch Byte (TBB) instruction jumps to an address which is obtained
by adding to the PC (the double of) a byte offset, read in a table. For instance, suppose
there is a list of 5 bytes, [12, 34, 56, 78, 90], starting at address a in memory. If
Rx = a and Ry = 3, then this instruction adds to the PC the double of the 3rd value
in this table (counting from 0), i.e., 2 ∗ 78. Note that Rx can be the PC (but not Ry –
none of them can be the SP). In this case the table must start at the PC, i.e., just after
the TBB instruction itself (because the PC is the instruction’s address plus 4).

7.3.4 Conditional instructions

IT if c0:cn then In 11111101 c0 c1 c2 c3 c4 c5

The If Then (IT) instruction makes the following one to four instructions conditional.
This means that these instructions, noted I1, I2, I3, and I4, can either be executed
normally, or skipped. For instance, I1 and I3 could be executed, while I2 and I4
are skipped (i.e., after I1, execution would continue with I3, ignoring I2). Whether
In is executed or skipped depends on c0, c1, etc, and on the result of the last CMP
instruction6, as explained below.

First, I1 is always made conditional by the IT instruction, but I2, I3, and I4 can be
made conditional or not. This depends on c2:c3:c4:c5, which must not be 0:

• if c2:c3:c4:c5 = 10002, then only I1 is made conditional,
• if c2:c3:c4:c5 = c21002, then only I1 and I2 are made conditional,
• if c2:c3:c4:c5 = c2c3102, then only I1, I2 and I3 are made conditional,
• if c2:c3:c4:c5 = c2c3c412, then I1, I2, I3 and I4 are made conditional.

5For simplicity, we use a restricted version of the BL instruction, with 2 bits fixed to 1. The unrestricted
instruction can support ±16 MB jumps.

6For simplicity, we use IT instructions only immediately after a CMP instruction.
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Value 00002 00012 00102 00112 10002 10012
Meaning a = b a ̸= b a ≥ b a < b a > b a ≤ b

TABLE 7.1 Meaning of the condn = c0:cn values used in this book, for an IT instruction
following a CMP compare(a, b) instruction.

Second, if an instruction In is made conditional, it is executed if and only if the
last comparison result is the one corresponding to c0:cn (noted condn), as defined in
Table 7.1. As an example, if the IT instruction follows a CMP R1 R2 instruction, then
to execute I1 if R1 < R2, and I2 and I3 otherwise (with I4 unconditional), we must
use c0 = 0012, c1 = 12 and c2:c3:c4:c5 = 00102.

Finally, it should be noted that I1, I2, I3, I4 cannot be arbitrary instructions.
For instance, they cannot be IT instructions themselves. Jump instructions are also
forbidden, except for the last conditional instruction.

7.4 Vector Table
When it boots, i.e., when it is powered on or after a reset, the Cortex M3 starts by
reading the Vector Table, a list of 32 bit words beginning at address 016. More precisely,
the microprocessor initializes the Link Register to FFFFFFFF16, the Stack Pointer
to the value at offset 016 in this table, and the Program Counter to the interworking
address at offset 416, also called the Reset handler. It then starts executing instructions
from there.

When the boot selection bit (cf. Section 6.5.2) is 0, addresses 016 and 416 are
mapped to the ROM, and the Vector Table is thus read from ROM. The Cortex M3 then
starts executing the boot assistant program stored in ROM. When the boot selection
bit is 1, these addresses are mapped to the flash memory, and the Vector Table is
thus read from flash. In this case, the flash memory must contain valid initial values
for the Stack Pointer and the Program Counter, at addresses 8000016 and 8000416,
respectively.

The other values in the Vector Table are either reserved for future use, or contain
interworking addresses used to handle errors and external events. There is one
value for each type of error (also called exceptions) and external events (also called
interrupts). For instance, the value at offset 1416 is used to handle “bus faults”, such
as trying to access a reserved memory address. When such an error occurs, execution
jumps to the interworking address stored at this offset (this process is described in
more details in Section 11.3). Another value, at offset 8416, is used to handle events
occuring in the Universal Synchronous Asynchronous Receiver Transmitter (USART)
– such as the reception of new data. When such an interrupt occurs, execution jumps
to the interworking address stored at offset 8416. By default, however, these specific
exception and interrupt handlers are not enabled (they must be enabled explicitly).
Instead, all exceptions and interrupts are handled by a generic “hard fault” handler, at
offset C16. In other words, by default, if any exception or interrupt occurs (other than
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a reset), execution jumps to the interworking address stored at offset C16.
The Vector Table can be moved to another location in memory, for instance in

RAM. For this a new table must first be written somewhere in memory, starting at an
address which is multiple of 256. This address must then be written in the Vector
Table Offset Register, at address E000ED0816 in the “System” memory region (see
Figure 6.3).

7.5 First program
We now know enough about the Arduino to be able to write our first program. We
have already seen how to turn a LED on and off “manually”, with a wire or by writing
values in memory with the boot assistant. Lets now do the same with a program.
More precisely, lets write a program to blink the “L” LED on the Arduino. At a high
level, this program should execute the following steps:

1. initialize the PIO controller to control the LED,
2. turn the LED on with the PIO controller,
3. wait some time,
4. turn the LED off with the PIO controller,
5. wait some time,
6. go back to step 2.

We see that steps 3 and 5 are the same. To avoid duplicating the instructions doing
this, we can put them in a subroutine, called twice from the main program.

7.5.1 Subroutine
Lets start by writing the subroutine. The most basic method to wait for some time is to
count to some value, as in a hide and seek game. To do this we can use two registers,
say R0 and R1, with R0 containing the current count, and R1 the value at which the
count must be stopped. At a high level, we can thus use the following algorithm for
our subroutine:

1. set R0 to 0,
2. set R1 to the maximum counter value,
3. add 1 to R0,
4. if R0 ̸= R1 go back to step 3,
5. return to the caller.

Each step can be implemented with Cortex M3 instructions, as follows:

• Step 1 can be done with a MOV R0← 0 instruction.
• Step 2 needs to store a large value in R1, lets say 1 million (the Cortex M3 counts

fast). This can’t be done with a MOV instruction, nor with a MOVW instruction.
We could use MOVW and a MOVT, but using a LDR instruction with the PC as a
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base address is simpler and shorter. The maximum counter value can then be put at
the end of the subroutine, after the instruction for step 5.
• Step 3 is a simple ADD R0← R0 + 1 instruction.
• Step 4 must be done with a CMP R0 R1 instruction, followed by an IT instruction

to make the “go back to step 3” part conditional. This optional jump is a simple B
instruction.
• Step 5 must move the LR into the PC. This could be done with a MOV instruction,

but lets use a POP instruction instead, for illustrative purpose. For this the LR must
be pushed on the stack first. We can add a step 0 for this. This step can also push
R0 and R1 at the same time. These registers can then be restored at the end, so that
calling the subroutine has no “side effect”.

Going down to the machine code level, steps 0 and 1 give

PUSH R0 R1 LR→ stack 1100000010101101 B503 000

MOV R0← 0 0000000000000100 2000 002

where the first column is the instruction’s name and high level description, the second
one is its binary encoding (obtained from the patterns in Section 7.3), the third is the
corresponding hexadecimal value, and the fourth is the instruction’s offset from the
beginning of the program, in hexadecimal too. For step 2 we need to know where the
maximum counter value will be stored. Since we don’t know this yet, lets skip this
instruction for now. We know it will use 2 bytes, so the instruction for step 3 starts at
offset 6:

ADD R0← R0+ 1 1000000000001100 3001 006

For step 4, the optional jump must go back to step 3, i.e., at offset 6. This can
be done with a B instruction after the CMP and IT instructions, at offset 12. When
this instruction executes, the PC contains 12 + 4 = 16. Hence, this instruction must
subtract 16− 6 = 10 from the PC to jump back to step 3. Due to the encoding format
of the B instruction, we must then use c = 2043 (because 2 ∗ 2043− 4096 = −10):

CMP compare(R0,R1 ) 0001000101000010 4288 008

IT if ̸= then 0001100011111101 BF18 00A

B PC← PC + 2 ∗ 2043− 4096 1101111111100111 E7FB 00C

We finish the subroutine with a POP instruction for step 5, as discussed above,
followed by the maximum counter value (F424016=1000000):

POP R0 R1 PC ← stack 1100000010111101 BD03 00E
data (maximum counter value) 000F4240 010

We now know that this maximum value is at offset 16, and we want to load it with a
LDR instruction at offset 4. When this instruction executes, the PC contains 4+4 = 8.
Assuming that the subroutine starts at an address which is a multiple of 4, then ⌊PC⌋4
is also equal to 8. This instruction must thus add 16 − 8 = 8 = 4 ∗ 2 to the PC to
load the above value. This gives our missing LDR instruction:
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LDR R1← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000010010010 4902 004

Putting all this together, we get the following machine code for the subroutine:

000F4240 BD03E7FB BF184288 30014902 2000B503 000

where bytes are shown, in increasing address order, from right to left. Indeed, the left
to right order would show all the bytes in the reverse order, which would make it hard
to recognize the above instruction encodings. It would also make it harder to store
this program in memory with the boot assistant word by word. Indeed, we would have
to reverse each group of 4 bytes to get a value which could be entered in the boot
assistant. With the right to left order, we get these values directly.

7.5.2 Main program
We can now implement the main program. Its first step consists in initializing the PIO
controller so that the pin to which the LED is connected, PB27, is configured as an
output pin, controlled by the microprocessor. In such cases we don’t need the pull-up
resistor, so we want to disable it as well. Going back to Section 6.6, this requires to
write the value 227 in the PIO Enable Register, Output Enable Register, and Pull-up
Disable Register of the PIO B controller (i.e., at addresses 400E100016, 400E101016,
and 400E106016). For this we must load this value and the 3 addresses in registers
first7. We can then use 3 STR instructions to store the value at the 3 addresses. In
fact, since STR instructions can store a value at an address plus an offset, we just
need to load one address in a register, namely 400E100016. We can then get the other
2 addresses with the offsets 1016 and 6016. As for the subroutine, lets use 2 LDR
instructions to load the 400E100016 and 227 values, stored at the end of the program,
in registers R0 and R1 respectively. Since we don’t know the program size yet, lets
skip these two LDR instructions for now. We thus start with the 3 STR instructions
instead, at offset 24=1816 (i.e., 4 bytes after the end of the subroutine, to leave space
for the 2 LDR instructions):

STR R1→ mem32[R0 + 4 ∗ 0] 1000000000000110 6001 018

STR R1→ mem32[R0 + 4 ∗ 4] 1000000010000110 6101 01A

STR R1→ mem32[R0 + 4 ∗ 24] 1000000001100110 6601 01C

The second step of the main program is to turn the LED on. This requires writing
the value 227 in the Set Output Data Register, i.e., at address 400E103016. This can
be done with another STR instruction:

STR R1→ mem32[R0 + 4 ∗ 12] 1000000011000110 6301 01E

We now want to wait some time, by calling the subroutine. For this we need a
Branch with Link instruction. This instruction is at offset 32, and the subroutine starts
at offset 0, so we need to subtract 32 + 4 = 36 from the PC to jump there. Due to

7In the following, for brevity, we often use “we” instead of “the program” or “some instructions”. For
instance, here, this sentence means “For this the program must load . . .”.
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the encoding format of the BL instruction, this means we need to use c = 4194286
(because 2 ∗ 4194286− 8 ∗ 1024 ∗ 1024 = −36):

BL PC← PC + 2 ∗ 4194286− 8 MB 1111111111101111 F7FF 020

0111011111111111 FFEE 022

After that we want to turn the LED off and wait some time again. This requires
writing the value 227 in the Clear Output Data Register, i.e., at address 400E103416,
and calling the subroutine again. Following the same method as above, we get:

STR R1→ mem32[R0 + 4 ∗ 13] 1000001011000110 6341 024

BL PC← PC + 2 ∗ 4194283− 8 MB 1111111111101111 F7FF 026

1101011111111111 FFEB 028

The last step of the main program is go back to step 2, with a B instruction.
Following the same reasoning as we did for the subroutine, we find that we need to
use c = 2040, to jump from offset 42 to offset 30. With the two values 400E100016
and 227 just after this last instruction we obtain:

B PC← PC + 2 ∗ 2040− 4096 0001111111100111 E7F8 02A
data (Start address of PIO B registers) 400E1000 02C
data (Pin 27) 08000000 030

Knowing the location of these two values, i.e., offsets 44 and 48, we can now
implement the two LDR instructions we skipped at the beginning (for the two LDR
instructions, ⌊PC⌋4 contains 24 = 1416 + 4):

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 5 ] 1010000000010010 4805 014

LDR R1← mem32[⌊PC⌋4 + 4 ∗ 6 ] 0110000010010010 4906 016

Putting everything together, we obtain the complete machine code for the main
program and its subroutine, with the main program starting at offset 1416:

49064805 000F4240 BD03E7FB BF184288 30014902 2000B503 000
400E1000 E7F8FFEB F7FF6341 FFEEF7FF 63016601 61016001 018

08000000 030

7.5.3 Run from RAM
As mentioned in Section 6.4, the boot assistant has a Gaddress# command to run a
program. We show here how to use it to run our “blink LED” program.

The Gaddress# command seems to take as argument the start address of a “mini
Vector Table” (this is not documented in [8]). Indeed, this command does not jump to
address, but to the interworking address stored at address+ 4 (just as the Cortex
M3 starts by jumping to the interworking address stored at address 4). Presumably,
the value at address is meant to contain an initial Stack Pointer value, as in the Vector
Table. However, experiments show that this is not the case, i.e., programs run with
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this command execute on the stack used by the boot assistant itself. They can return to
the boot assistant by moving the LR to the PC, but the SP must be the same on return
as what it was on entry.

To run our program with the boot assistant, the easiest way is to store it in RAM.
Lets put it after the first 4 KB, used by the boot assistant, at address 2007100016

(a multiple of 4, as we assumed when we wrote it). To run it with the G command
we must have the interworking address of its first instruction (2007100016 + 1416

+ 1) somewhere in memory too. We can put it just after our program, at address
2007103416. We should then be able to run the program with the G20071030#
command. To verify this, connect the Arduino to your computer and open a terminal
as you did in Section 6.4.3. Then write the program into RAM with the following
commands:

user@host:~$ python3 boot_helper.py
>W20071000,2000B503#
>W20071004,30014902#
>W20071008,BF184288#
>W2007100C,BD03E7FB#
>W20071010,000F4240#
>W20071014,49064805#
>W20071018,61016001#

>W2007101C,63016601#
>W20071020,FFEEF7FF#
>W20071024,F7FF6341#
>W20071028,E7F8FFEB#
>W2007102C,400E1000#
>W20071030,08000000#
>W20071034,20071015#

And launch it with
>G20071030#
ERROR: no response from device.

If you didn’t make any typo in the above commands, you should see the LED
blinking! After 5 seconds the boot_helper.py program exits because it hasn’t
received any response from the boot assistant, but our program continues to run on
the Arduino. You can then reset the Arduino to go back to the boot assistant (at this
point our program is lost).

7.5.4 Run from flash
To avoid losing our program after it is run, we can store it in flash memory. We can even
run it directly when the Arduino boots, without going through the boot assistant. This
requires two things: storing a proper Vector Table in flash memory (cf. Section 7.4),
and setting the boot mode selection bit to boot from flash (cf. Section 6.5).

By default, only the first, second and fourth words of the Vector Table are used
(for the initial SP, initial PC, and the “hard fault” handler – the third one is “reserved”),
since the exception and interrupt handlers are disabled by default. We can thus store
our program after these 4 words, i.e., starting at offset 1016 (a multiple of 4, as needed).
The initial PC must then be set to 8000016 (the beginning of the flash memory region),
plus 1016, plus 1416 (the offset of the main program after the subroutine), plus 1
(an interworking address is required here). The initial SP can be set to almost any
address in RAM (our program pushes at most 3 words on the stack, so any value larger
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than 12 bytes after the beginning of the RAM region is fine). Lets use the end of
the contiguous RAM region, 2008800016 (see Figure 6.3). Finally, the “hard fault”
handler can be set to the same value as the initial PC, 8002516, so that, in case of
errors, our program restarts from the beginning.

The above Vector Table and our program use 17 words in total, much less than
the 64 words of a flash memory page. However, as we have seen in Section 6.5,
writing a page in flash memory requires writing 64 words in all cases. To avoid this
extra work, we provide a program called flash_helper.py. This program extends
boot_helper.py with an additional command named flash#. When it runs on the
host computer, this program does the following:

• When it receives a Waddress,value# command with an address in flash memory,
instead of sending it to the Arduino, flash_helper.py sends 64 w commands to
read the corresponding page. It stores the result in memory (on the host computer),
and writes value in this copy of the page.
• When it receives the flash# command, flash_helper.py writes the (modified)

page copies in the Arduino’s flash memory. For this, for each page, it sends 64 W
commands, followed by a W command in the Flash Controller Command Register to
write the page, followed by w commands to read the Status Register until the write
is done (cf. Section 6.5).
• When it receives any other boot assistant command, flash_helper.py sends it

directly to the Arduino.

Note that with this program, we can modify a single word in flash memory, without
modifying the 63 other words of the page, with only two commands (namely a W and a
flash# – with boot_helper.py more than 128 commands would be needed). Lets
use it to write our program:
user@host:~$ python3 flash_helper.py
>W80000,20088000#
Reading page 0... Done.
>W80004,00080025#
>W8000C,00080025#
>W80010,2000B503#
>W80014,30014902#
>W80018,BF184288#
>W8001C,BD03E7FB#
>W80020,000F4240#

>W80024,49064805#
>W80028,61016001#
>W8002C,63016601#
>W80030,FFEEF7FF#
>W80034,F7FF6341#
>W80038,E7F8FFEB#
>W8003C,400E1000#
>W80040,08000000#
>flash#
Writing page 0... Done.

At this point we could run our program with a G80000# command, and we would
no longer loose it after a reset. Instead, lets set the boot mode selection bit to boot
from flash (cf. Section 6.5):
>W400E0A04,5A00010B#

Then press the RESET button on the Arduino: if you didn’t make any typo in the
above commands, you should see the LED blinking. However, two things can be
noticed. First, the LED blinks slower than before (about 1 blink every 2 seconds).
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This is because, by default, the Arduino’s clock runs at 4MHz. But when the boot
assistant starts, it sets the clock to a larger frequency. Second, if you watch the LED at
least 30 seconds, you can see that some blinks are shorter than others. This is because
our program is reset by the Watchdog Timer (cf. Section 6.2). The boot assistant
disables it when it starts, which is why we didn’t have this issue before. We explain in
Chapter 9 how to configure the clock and how to disable the Watchdog Timer.

Our program is now persistent and runs autonomously, without needing the boot
assistant. But what if we want to modify it, for instance to make it blink faster? For
this we need to go back to the boot assistant. The only way to do this at this point is to
do a full ERASE, in order to reset the boot mode selection bit to boot from ROM.
Unfortunately, this also erases the flash memory, and thus our program too. We would
then need to flash the whole program again, even if we just need to change one word
(the one containing the maximum counter value). To avoid this issue, the solution
is to add a few instructions at the beginning of our program, in order to set the boot
mode selection to boot from ROM as soon as our program starts. In this way, when
we reset it, we will automatically run the boot assistant again, without needing to do
an ERASE.
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8
CHAPTER

Virtual Machine

As we have seen in the previous chapter, writing programs in machine code is quite
complex and error prone. The machine code instructions are complex mainly because
the machine itself (i.e., the Cortex M3 microprocessor) is complex. The machine
code instructions also have complex encodings. This complexity is manageable for
very small programs, but the basic input output system we want to write in this part is
not so small. In order to simplify its implementation, a solution is to use a simpler
instruction set, which in turn requires a simpler machine. This chapter defines such a
machine, and its set of instructions, called bytecode instructions. It is called a virtual
machine because it is not a physical chip. Instead, we provide in this chapter an
interpreter for this virtual machine. This small program simulates programs running
on the virtual machine. It does this by executing, for each bytecode instruction, an
equivalent sequence of Cortex M3 instructions.

8.1 Overview
The main source of complexity in the Cortex M3, and in most microprocessors, are
the registers. They are quite complex to use because there are only a small number of
them (16 on the Cortex M3). When they are all “full”, some of them must be copied
into memory (usually on the stack), so that they can store new values without losing
the old ones. The old values copied in memory must usually be copied back into the
registers at some point. This makes it hard to keep track of which value is stored
where at any point in time.

In order to get a simpler machine, a solution is thus to remove the registers. This
leaves only the stack and the (rest of the) memory. This also means that instructions
for this machine can only use the stack and the memory. For instance, an arithmetic
instruction can no longer read its operands in registers, nor write the result in a register.
A solution is to pop the operands from the stack, and to push the result on the stack.
This example shows another advantage of removing the registers: instructions no
longer need to encode on which registers they operate. In fact, arithmetic instructions
no longer need to have any argument. They can be encoded with a single constant
value. Moreover, since we no longer need some bits to encode the register indices, this
value can be small, only one byte. Hence the name bytecode instructions. A virtual
machine for such stack-based instructions is called a (virtual) stack machine.
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call C
stack

arg1
arg0

B

C

A
B
A

B

C

A
B
A

v0
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arg1
arg0

...

arg1
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...

result

...
... ... ... ...

return

FIGURE 8.1 Stack frames and function calls. Left: a stack with 3 stack frames,
corresponding to a function A calling a function B itself calling a function C. Each
stack frame contains the arguments passed to the function (e.g., arg0 and arg1 passed
in the call from B to C), and optionally some values pushed during the function’s
execution (e.g., v0). Right: the callee C pops its arguments (arg0, arg1) from the
caller’s stack frame (B), and pushes its result on the caller’s stack frame when it
returns.

Removing the registers also impacts subroutines. Subroutines usually take some
arguments as input, and may return a result as output. For instance, a subroutine to
draw a character could take a character and a position on the screen as input, and
could return the position where the next character should be drawn. In general, these
input and output values could be stored in registers, on the stack, or a mix of the two.
But if we remove the registers, the virtual machine subroutines, called functions, are
forced to use the stack. This means that, as arithmetic instructions, a function must
pop its arguments from the stack, and push its result on the stack.

The consequence is that the stack is organized into stack frames as shown in
Figure 8.1. A stack frame is a contiguous part of the stack, corresponding to a function
call. Its contains the function arguments pushed by the caller, optionally followed by
the intermediate values pushed by the function’s instructions executed so far. When
this function calls another one, the arguments it pushed on the stack become the
beginning of a new stack frame, corresponding to the callee (see Figure 8.1). When
the callee returns, its entire stack frame is popped and replaced with the result value.

As arithmetic and logic instructions are simplified by using the stack instead of
registers, the other instructions can be simplified by using stack frames instead of
lower level concepts (e.g., a Link Register). For instance, we can define an instruction
to get the ith argument of the top stack frame (i.e., of the currently executing function),
and to push it on the stack. Doing this with Cortex M3 instructions would require
several instructions dealing explicitly with the Stack Pointer. As another example, we
can define an instruction to return a value from a function. As explained above, this
requires popping the top stack frame, and pushing the return value. Doing this with
Cortex M3 instructions would require several instructions.

In summary, for all the reasons explained above, the virtual machine designed and
implemented in this chapter is a virtual stack machine, with instructions using the
stack, stack frames and functions instead of registers. The next section defines its

94



8.2 Bytecode instructions

sub

stack

x

y

...
x− y

...

FIGURE 8.2 The sub instruction pops two values x and y from the stack and pushes
their difference x− y.

instruction set.

8.2 Bytecode instructions
8.2.1 Arithmetic and logic instructions

cst_0 push(0) 00
cst_1 push(1) 01
cst8 push(c) 02c

cst push(c) 03c

The cst_0 instruction, encoded with the byte 0016 (also called opcode, for
operation code), pushes the value 0 on the stack. The cst_1 instruction does the
same with the value 1. The cst8 instruction pushes an 8-bit value on the stack. It is
encoded with the opcode 0216, followed by the byte value to push (bytes are shown,
in increasing address order, from right to left). Finally, the cst instruction pushes
a 32-bit value on the stack. This value is put directly after the opcode, without any
encoding (compare this with the MOVW and MOVT instructions). Note that cst_0,
cst_1 and cst8 are not strictly necessary (a cst instruction can be used instead).
They are provided to reduce the size of programs.

add y ← pop(), x← pop(), push(x+ y) 04
sub y ← pop(), x← pop(), push(x− y) 05
mul y ← pop(), x← pop(), push(x ∗ y) 06
div y ← pop(), x← pop(), push(x/y) 07
and y ← pop(), x← pop(), push(x ∧ y) 08
or y ← pop(), x← pop(), push(x ∨ y) 09
lsl y ← pop(), x← pop(), push(x≪ y) 0A
lsr y ← pop(), x← pop(), push(x≫ y) 0B

The arithmetic and logic instructions are direct analogues of the Cortex M3
instructions with the same name. As discussed above, they use the stack instead of
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registers, and can thus be encoded with only one byte each. For instance, the sub
instruction pops a value from the stack, say y, then pops another value, say x, and
then pushes x− y on stack (and not y − x – see Figure 8.2).

8.2.2 Jump instructions

iflt y ← pop(), x← pop(), jump to c if x < y 0Cc

ifeq y ← pop(), x← pop(), jump to c if x = y 0Dc

ifgt y ← pop(), x← pop(), jump to c if x > y 0Ec

ifle y ← pop(), x← pop(), jump to c if x ≤ y 0Fc

ifne y ← pop(), x← pop(), jump to c if x ̸= y 10c

ifge y ← pop(), x← pop(), jump to c if x ≥ y 11c

The “if less than” (iflt) instruction pops a value y from the stack, then pops a
value x, and finally jumps to offset c if x < y. The other instructions are similar, for
equal (eq), greater than (gt), less than or equal (le), not equal (ne), and greater than
or equal (ge) conditions. To simplify the encoding, the c offset is always interpreted
as a nonnegative value (compare this with the B instruction). In return, this offset
is defined relatively to the beginning of the currently executing function, i.e., to the
address of its first instruction.

Note that these conditional jump instructions are sufficient to make any other
instruction or sequence of instructions conditional. Indeed, for this, it suffice to use a
conditional jump instruction before the sequence, jumping after it if some condition
happens. We therefore do not use an IT-like instruction, nor a CMP-like one.

goto jump to c 12c

The goto instruction unconditionally jumps to offset c, like the B instruction.
This offset is defined as above, i.e., as a nonnegative offset from the beginning of the
current function.

8.2.3 Memory and stack instructions

load x← pop(), push(mem32[x]) 13
store v ← pop(), x← pop(),mem32[x]← v 14

The load and store instructions are direct analogues of the Cortex M3 LDR
and STR instructions, using the stack instead of registers. More precisely, the load
instruction pops an address from the stack, reads a 32-bit value at this address in
memory, and pushes it on the stack. The store instruction pops a value, then pops an
address, and finally stores the 32-bit value at this address in memory. To simplify the
interpreter, we do not define similar instructions for 16 and 8-bit values.
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FIGURE 8.3 The stack frame instructions. The ptr i instruction (left) pushes the
address of the ith value in the top stack frame (in light gray), counting from 0. The
get i instruction (middle) pushes the ith value itself. Finally, the set i instruction
(right) replaces the ith value with a new value popped from the stack.

ptr push(address of frame[i]) 15i

get push(frame[i]) 16i

set frame[i]← pop() 17i

The ptr instruction pushes a pointer on the stack, namely the address of the ith

word in the top stack frame (counting from 0). The get instruction reads the ith word
in the top stack frame, and pushes it on the stack. The set instruction pops a value
from the stack, and stores it in the ith word in the top stack frame (see Figure 8.3).
These instructions can be used to access the arguments of the currently executing
function, but also the values it has pushed on the stack during its execution.

pop pop() 18

Finally, the pop instruction simply pops a value from the stack, and discards it.

8.2.4 Function instructions

fn push_frame(n) 19n

The fn instruction starts a function withn arguments. It must be the first instruction
of any function. Its role is to define a new stack frame, using the top n values on the
stack (see Figure 8.4). This is needed for the ptr, get and set instructions presented
above to “know” where the top stack frame begins in the stack.

call call function at C000016 + c 1Ac

callr call function at a− c 1Bc

calld x← pop(), call function at x 1C

The call instruction calls a function at an offset c from the start of the Flash1
memory bank, C000016 (the instruction at this address must be a fn). This gives a
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fn 3
stack

arg1
arg0

arg2

...
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v2
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ret
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v2
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retv

FIGURE 8.4 The function instructions. The fn n instruction (left) creates a new top
stack frame (light gray) with the top n values of the previous top stack frame (gray).
The ret instruction (middle) pops the top stack frame. The retv instruction (right)
pops a value from the stack, pops the top stack frame (light gray), and then pushes
this value on the new top stack frame (gray).

very simple encoding (compare this with the BL instruction), but restricted to a fixed
64kB address range. To support more addresses, we also define callr and calld
instructions. The former calls a function at an offset−c from its own address, noted a.
The latter pops a value from the stack, interpreted as an address, and calls the function
at this address.

ret pop_frame() 1D
retv x← pop(), pop_frame(), push(x) 1E

The return (ret) instruction returns from a function without output value. It pops
the top stack frame, and resumes execution in the caller. The return value (retv)
instruction returns from a function with a result value. It pops this result from the stack,
pops the top stack frame, and finally pushes back the result value (see Figure 8.4). It
then resumes execution in the callee.

blx x← pop(),BLX x 1F

Finally, the blx instruction calls a Cortex M3 subroutine at an interworking
address popped from the stack, with a BLX instruction. It can be used to execute
Cortex M3 instructions without an equivalent bytecode instruction.

8.3 Interpreter
We can now implement an interpreter for the virtual machine and the instruction set
defined above. A bytecode interpreter executes bytecode instructions given as input,
like a microprocessor executes machine code instructions. A simple method to do
this is to read a bytecode instruction, execute an equivalent sequence of machine
code instructions, read another bytecode instruction, execute the equivalent machine
instructions, and so on. In our case, this gives the following overall algorithm:
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ALGORITHM 8.1 The overall virtual machine algorithm.
1. read the first byte of the current bytecode instruction,
2. if it is an undefined opcode (i.e., strictly larger than 32), trigger an exception,
3. if it is 0 (cst_0), execute a sequence of Cortex M3 instructions to push a 0 on the

stack, advance to the next instruction, and go back to step 1,
4. if it is 1 (cst_1), execute a sequence of Cortex M3 instructions to push a 1 on the

stack, advance to the next instruction, and go back to step 1,
5. if it is 2 (cst8), read the next byte of the current instruction, execute a sequence

of Cortex M3 instructions to push this byte on the stack, advance to the next
instruction, and go back to step 1,

6. ... and so on for the remaining 29 instructions ...

8.3.1 Registers
In order to implement this algorithm we need to use some registers. Indeed, although
the bytecode instructions do not use registers directly, their interpreter is made of
machine code instructions, which do use registers. We can deduce the registers we
need from the above algorithm and from the instruction definitions:

• For each step above we need a register holding the address of the current bytecode
instruction. We call it the Instruction Counter (IC), by analogy with the Cortex M3
Program Counter.
• For the arithmetic and logic instructions we need two registers to store the operands

and the operation result. We can use the R0 and R1 Cortex M3 registers for this.
We also need a stack pointer, to know where to pop the operands from, and where
to push the result. The simplest is to use the Cortex M3 Stack Pointer (SP) for this,
to take advantage of the PUSH and POP instructions.
• For the jump instructions we need a register containing the address of the first

instruction of the currently executing function. Indeed, the offset used by these
instructions is defined relatively to this address. We call this register the Function
Address (FA).
• For the stack frame instructions we need a register storing the address of the top

stack frame, i.e., the address of its 0th value. Indeed, this is necessary to compute
the address of an ith value. This register is usually called the Frame Pointer (FP).
• For the function instructions, in particular the ret and retv instructions, we need a

register pointing to the caller’s instruction to return to, similar to the Link Register.
We call it the Return Address (RA).

Finally, at each function call, we need to save the registers containing information
about the caller, so that we can update them with data about the callee instead. This
is the case of the Function Address, the Return Address, and the Frame Pointer. We
can save them by pushing them on some stack (see below), and pop them when the
callee returns. This requires another stack pointer, and thus one last register. We call
it the Backup Pointer (BP). In summary, besides the Stack Pointer, we need a total of
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Index Symbol Name Pointer target
R0 R0 – –
R1 R1 – –
R2 IC Instruction Counter Current instruction
R3 RA Return Address Instruction to return to
R4 FA Function Address 0th instruction of current function
R5 FP Frame Pointer 0th value of top stack frame
R6 BP Backup Pointer Last saved register value

TABLE 8.1 The registers used by our interpreter.

7 registers. We map them to the R0 to R6 registers as shown in Table 8.1

8.3.2 Stack frame layout
As discussed above, we need a stack to save and restore the RA, FA, and FP registers.
Using a custom stack requires deciding where to store it in memory, and how much
memory to reserve for it. To avoid these issues, we use the same stack as the one
used for stack frames, i.e., the one managed with the SP. The consequence is that
stack frames contain saved registers between1 the callee’s arguments, and values
pushed by the callee (see Figure 8.5). This is not ideal since bytecode programs
become dependent on implementation details of the interpreter. For instance, if the
interpreter is updated to save an additional register, the indices used in ptr, get and
set instructions must be updated as well. But we don’t plan to change the interpreter,
so this is not really an issue.

Another consequence of saving the registers on the same stack as stack frames is
that the Backup Pointer must be saved on the stack as well. This register contains the
address of the last saved register value in memory. If a separate stack was used to save
the registers, we could just increment or decrement it by 12 = 3 ∗ 4 since we would
push and pop registers by groups of 3 (RA, FA, FP). But when registers are saved
on the same stack as stack frames, the offset between each group of saved registers
varies (see Figure 8.5). By saving the BP inside each group we get in each group the
previous BP value, pointing to the previously saved group. The result is a linked list
data structure, called this way because each list element has a link (a pointer) to the
next element (see Figure 8.5).

8.3.3 Initialization
In order to facilitate its use from native programs, i.e., programs written in machine
code, the microprocessor’s native language, we propose to implement the interpreter

1We could also put the saved registers between the caller and callee stack frames, but this is more
complex to implement.
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FIGURE 8.5 The stack frame layout. Each stack frame (here for a function A calling
B, itself calling C) contains, in this order, the callee’s arguments (arg0, etc), the saved
caller’s registers (blue), and values pushed by the callee (v0, etc). The Frame Pointer
FP points to the bottom of the top stack frame. The Backup Pointer BP points to the
last saved register. Values noted +x are offsets from the Stack Pointer SP.

as a subroutine. This allows a native program P to call the interpreter with some
bytecode program Q to interpret, which returns to P when it is done. More precisely,
we define the following interface:

• P saves the registers it uses if necessary (the interpreter might override them).
• P optionally pushes some arguments on the stack, for Q.
• P stores the address of Q’s first instruction in R2, the Instruction Counter.
• P calls the interpreter subroutine with a BL or BLX instruction.
• The interpreter executes Q, and finally returns to P.

For this the interpreter must be able to detect when a bytecode program ends. To
this end, we assume that bytecode programs always start with a fn instruction2. The
end of the program is then defined as the point where this function, called the main
function, returns. We can then detect the end of the program as follows:

• Initialize the Backup Pointer to 0, an invalid stack address (the stack is restricted to
the RAM region, which does not contain this address).
• The end of the program is reached if and only if the Backup Pointer is 0 when a

function returns.

Indeed, if the BP is 0 this means that the current function was not called by another
function, i.e., is the main function. Otherwise the BP would contain a valid stack
address, pointing to saved registers.

In order to implement the above interface, we need to add an initialization step
before Algorithm 8.1. This step only needs to initialize the Backup Pointer to 0 (the
initial value of R0, R1, RA, FA, and FP is never used, and IC is set by the caller):
instruction encoding offset

MOV R6← 0 0000000001100100 2600 000

2We could add machine code to check this during the initialization step but we don’t, to simplify.
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8.3.4 Instruction dispatch
We can now implement step 1 of Algorithm 8.1. This step reads a byte at the address
stored in the Instruction Counter, and stores it in R0. It then increments the IC by 1 to
prepare reading the instruction’s arguments, or the next instruction:

LDRB R0← mem8[R2 + 0] 0000100000011110 7810 002

ADD R2← R2+ 1 1000000001001100 3201 004

Step 2 must trigger an exception if the opcode in R0 is undefined, i.e., if it is
strictly larger than 31. If this happens, execution will then jump to the Hard Fault
handler (cf. Section 7.4). If it is a blink LED subroutine for instance, as we did in
Section 7.5.4, the LED will blink when an undefined opcode is found. The Cortex
M3 has an instruction which is precisely done for this case. It is called “Permanently
Undefined” (UDF), and triggers an Undefined Instruction exception. It is encoded as

01111011 c , where c is ignored. This gives the following
instructions for step 2:

CMP compare(R0, 31 ) 1111100000010100 281F 006

IT if > then 0001000111111101 BF88 008

UDF Undefined Instruction exception 0000000001111011 DE00 00A

The rest of the interpreter’s code can be divided into 32 subprograms (i.e., 32
sequences of instructions), one for each bytecode instruction. These subprograms
can be put one after the other, in increasing order of opcodes. First the subprogram
for cst_0, then the one for cst_1, etc up to the subprogram for blx (see Figure 8.6).
The ith subprogram could test if the opcode in R0 is equal to i. If it is, it would
execute its sequence of instructions. Otherwise, it would jump to the next subprogram,
which would test if the opcode is equal to i+ 1, and so on. But doing so would be
quite inefficient. Indeed, for a blx instruction for instance, we would need to do 32
comparisons to finally find which subprogram to execute. A shorter and more efficient
method is to use a TBB instruction:

TBB PC← PC + 2 ∗mem8[R15+R0 ] 1111101100010111 E8DF 00C

0000000000001111 F000 00E

Indeed, this instruction jumps by an offset which is twice the ith byte after the
instruction itself, with i = R0. For instance, if this instruction is followed by the
bytes [42, 13, 17, 21, . . .], then it jumps by an offset 2 ∗ 42 if R0 is 0, by an offset
2 ∗ 13 if it is 1, 2 ∗ 17 if it is 2, and so on. We can thus add a table with 32 bytes
after this instruction, corresponding to the offsets between this instruction and each of
the 32 subprograms. We don’t have the subprograms yet, so we can’t compute these
offsets for now. Instead, we leave space for them (32 bytes) and start implementing
the subprograms.
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FIGURE 8.6 The interpreter code structure. After the initialization code (white) and
the code for step 1 and 2 of Algorithm 8.1 (light gray), a TBB instruction uses a table of
32 offsets (blue) to jump to the subprogram (dark gray) corresponding to the current
instruction. Each of the 32 subprograms then jumps back to step 1.

8.3.5 Arithmetic and logic instructions
cst_0 The cst_0 subprogram, at offset 3016 (32 bytes after the TBB instruction),
just needs to push 0 on the stack. This is easy to do with MOV and PUSH instructions.
It must then go back to step 1 of Algorithm 8.1, i.e., at offset 216. This can be done
with a B instruction using the negative offset 216 − (3416 + 4) = −54:

MOV R0← 0 0000000000000100 2000 030

PUSH R0→ stack 1000000000101101 B401 032

B PC← PC + 2 ∗ 2021− 4096 1010011111100111 E7E5 034

cst_1 The cst_1 subprogram is similar:

MOV R0← 1 1000000000000100 2001 036

PUSH R0→ stack 1000000000101101 B401 038

B PC← PC + 2 ∗ 2018− 4096 0100011111100111 E7E2 03A

cst8 This subprogram needs to push the 8-bit value following the instruction’s
opcode. This can be done by replacing the MOV instruction with a LDRB instruction,
to read the byte at the address given by the IC (remember that IC was incremented in
step 1, for this purpose). Finally, before going back to step 1, it must increment the IC
again, to point to the next bytecode instruction:

LDRB R0← mem8[R2 + 0] 0000100000011110 7810 03C

PUSH R0→ stack 1000000000101101 B401 03E

ADD R2← R2+ 1 1000000001001100 3201 040

B PC← PC + 2 ∗ 2014− 4096 0111101111100111 E7DE 042

cst This subprogram is similar, but reads a word instead of a byte:

LDR R0← mem32[R2 + 4 ∗ 0] 0000100000010110 6810 044

PUSH R0→ stack 1000000000101101 B401 046

ADD R2← R2+ 4 0010000001001100 3204 048
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B PC← PC + 2 ∗ 2010− 4096 0101101111100111 E7DA 04A

add This subprogram pops two values, adds them, and pushes the result:

POP R0 R1← stack 1100000000111101 BC03 04C

ADD R1← R1 +R0 1001000000011000 1809 04E

PUSH R1→ stack 0100000000101101 B402 050

B PC← PC + 2 ∗ 2006− 4096 0110101111100111 E7D6 052

sub This subprogram is similar, but the order in which the registers are subtracted is
important. If the top two stack values are x and y, as in Figure 8.2, popping them
in R0 and R1 stores y in R0 and x in R1 (cf. Section 7.3.2). Hence, R0 must be
subtracted from R1 to get the desired result x− y:

POP R0 R1← stack 1100000000111101 BC03 054

SUB R1← R1 − R0 1001000001011000 1A09 056

PUSH R1→ stack 0100000000101101 B402 058

B PC← PC + 2 ∗ 2002− 4096 0100101111100111 E7D2 05A

mul, div, and, or, lsl, lsr These subprograms are similar, with the SUB instruction
replaced with MUL, UDIV, ORR, LSL, and LSR, respectively. Here we just give the
result of their encoding:

B4024001 BC03E7C9 B402F1F0 FBB1BC03 E7CEB402 4341BC03 05C
B40240C1 BC03E7BD B4024081 BC03E7C1 B4024301 BC03E7C5 074

E7B9 08C

8.3.6 Jump instructions

iflt This subprogram must first pop two values x and y and compare them (the order
in which the registers are compared is important):

POP R0 R1← stack 1100000000111101 BC03 08E

CMP compare(R1,R0 ) 1000000101000010 4281 090

Then there are two cases. If x < y it needs to jump, i.e., to update the IC to the
Function Address (in R4), plus the 16-bit offset stored just after the instruction opcode.
This offset can be read with a LDRH instruction, and then added to the FA to get the
new IC. If x ≥ y, it just needs to increment the IC by 2 to skip the offset and go to the
next instruction. All this can be done with an IT instruction making the 3 following
instructions conditional on x < y, x < y, and x ≥ y, respectively:

IT if < then then else 0101110011111101 BF3A 092

LDRH R0← mem16[R2 + 2 ∗ 0] 0000100000010001 8810 094

ADD R2← R4 +R0 0100010000011000 1822 096
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ADD R2← R2+ 2 0100000001001100 3202 098

B PC← PC + 2 ∗ 1970− 4096 0100110111100111 E7B2 09A

ifeq, ifgt, ifle, ifne, ifge These subprograms are similar, with only the IT instruction
changing (and the offset of the B instruction). We just give the result of their encoding:

18228810 BF864281 BC03E7AB 32021822 8810BF06 4281BC03 09C
BF1A4281 BC03E79D 32021822 8810BF9A 4281BC03 E7A43202 0B4

E78F 32021822 8810BF26 4281BC03 E7963202 18228810 0CC

goto This subprogram is simpler since it does an unconditional jump:

LDRH R0← mem16[R2 + 2 ∗ 0] 0000100000010001 8810 0E2

ADD R2← R4 +R0 0100010000011000 1822 0E4

B PC← PC + 2 ∗ 1932− 4096 0011000111100111 E78C 0E6

8.3.7 Memory and stack instructions
load This subprogram pops an address, reads the memory at this address, and pushes
the value read:

POP R1← stack 0100000000111101 BC02 0E8

LDR R0← mem32[R1 + 4 ∗ 0] 0001000000010110 6808 0EA

PUSH R0→ stack 1000000000101101 B401 0EC

B PC← PC + 2 ∗ 1928− 4096 0001000111100111 E788 0EE

store This subprogram pops an address and a value, and stores the value at this
address (as above, the order in which the registers are popped is important):

POP R0 R1← stack 1100000000111101 BC03 0F0

STR R0→ mem32[R1 + 4 ∗ 0] 0001000000000110 6008 0F2

B PC← PC + 2 ∗ 1925− 4096 1010000111100111 E785 0F4

ptr This subprogram must read the byte after the instruction’s opcode, containing an
index i. It must then subtract 4 ∗ i = i≪ 2 from the Frame Pointer (in R5), to get the
address of the ith 32-bit value in the top stack frame:

LDRB R0← mem8[R2 + 0] 0000100000011110 7810 0F6

LSL R0← R0 ≪ 2 0000000100000000 0080 0F8

SUB R0← R5 − R0 0001010001011000 1A28 0FA

Finally, it must push this address a on the stack, and increment the IC to go the next
instruction:

PUSH R0→ stack 1000000000101101 B401 0FC

ADD R2← R2+ 1 1000000001001100 3201 0FE
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B PC← PC + 2 ∗ 1919− 4096 1111111011100111 E77F 100

get This subprogram starts with the exact same LDRB, LSL, and SUB instructions
(not shown), but then reads the memory at a and pushes the value read, instead of
pushing a:

LDR R1← mem32[R0 + 4 ∗ 0] 1000000000010110 6801 108

PUSH R1→ stack 0100000000101101 B402 10A

ADD R2← R2+ 1 1000000001001100 3201 10C

B PC← PC + 2 ∗ 1912− 4096 0001111011100111 E778 10E

set This subprogram also starts with the exact same LDRB, LSL, and SUB instruc-
tions (not shown), but then pops a value and stores it at address a:

POP R1← stack 0100000000111101 BC02 116

STR R1→ mem32[R0 + 4 ∗ 0] 1000000000000110 6001 118

ADD R2← R2+ 1 1000000001001100 3201 11A

B PC← PC + 2 ∗ 1905− 4096 1000111011100111 E771 11C

pop This subprogram just pops a value and discards it:

POP R0← stack 1000000000111101 BC01 11E

B PC← PC + 2 ∗ 1903− 4096 1111011011100111 E76F 120

8.3.8 Function instructions
fn This subprogram starts by saving the RA, FA, FP and BP registers. It then updates
the Backup Pointer to point to this new group of saved registers:

PUSH R3 R4 R5 R6→ stack 0001111000101101 B478 122

MOV R6← R13 0111011001100010 466E 124

The FA and FP can then be updated too. The FA must be set to the fn instruction’s
address, IC - 1 (since IC was incremented in step 1):

MOV R4← R2 0010100001100010 4614 126

SUB R4← R4− 1 1000000000111100 3C01 128

The FP must be set to the bottom of the stack frame, initially at offset 4 ∗ (n − 1)
from the SP (just copied in the BP), but now at offset 4 ∗ (n− 1) + 16 = n≪ 2+ 12
since 4 values were just pushed (where n is the byte just after the fn opcode):

LDRB R0← mem8[R2 + 0] 0000100000011110 7810 12A

LSL R0← R0 ≪ 2 0000000100000000 0080 12C

ADD R0← R0+ 12 0011000000001100 300C 12E

ADD R5← R6 +R0 1010110000011000 1835 130
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Finally, the fn subprogram increments the IC to the beginning of the next instruction,
and jumps back to step 1:

ADD R2← R2+ 1 1000000001001100 3201 132

B PC← PC + 2 ∗ 1893− 4096 1010011011100111 E765 134

call This subprogram must update the IC to the 16-bit offset after this opcode, added
to C000016 (which can be done with a MOVT). Before this, it needs to set the Return
Address (in R3) to the address of the next instruction, IC + 2:

MOV R3← R2 1100100001100010 4613 136

ADD R3← R3+ 2 0100000011001100 3302 138

LDRH R2← mem16[R2 + 2 ∗ 0] 0100100000010001 8812 13A

MOVTR2[31..16]← 12 0000001101001111 F2C0 13C

0011000001000000 020C 13E

B PC← PC + 2 ∗ 1887− 4096 1111101011100111 E75F 140

callr This subprogram is similar, with the MOVT replaced with two SUB instructions,
to update the IC to the instruction’s address (IC - 1), minus its 16-bit offset argument:

MOV R3← R2 1100100001100010 4613 142

ADD R3← R3+ 2 0100000011001100 3302 144

LDRH R0← mem16[R2 + 2 ∗ 0] 0000100000010001 8810 146

SUB R2← R2− 1 1000000001011100 3A01 148

SUB R2← R2 − R0 0100100001011000 1A12 14A

B PC← PC + 2 ∗ 1881− 4096 1001101011100111 E759 14C

calld This subprogram is simpler since the Return Address is just the IC, and the
new IC value is just popped from the stack:

MOV R3← R2 1100100001100010 4613 14E

POP R2← stack 0010000000111101 BC04 150

B PC← PC + 2 ∗ 1878− 4096 0110101011100111 E756 152

ret This subprogram must pop the top stack frame, i.e., set the SP to FP + 4. It must
also restore the saved registers by popping them, after FP + 4 has been computed
(otherwise the caller’s FP would be used to update the SP, which is incorrect). To this
end, the subprogram first computes FP + 4 in R0, then pops the saved registers (which
requires setting the SP to the BP first), and finally sets the SP to R0:

MOV R0← R5 0001010001100010 4628 154

ADD R0← R0+ 4 0010000000001100 3004 156

MOV R13← R6 1010110101100010 46B5 158

POP R2 R4 R5 R6← stack 0010111000111101 BC74 15A
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MOV R13← R0 1010000101100010 4685 15C

Note that the POP instruction pops the saved Return Address in the Instruction Counter
(in R2). Everything is thus ready at this point to back to step 1. Before this, however,
the subprogram tests if the BP is 0 and, if so, returns from the interpreter (as explained
in Section 8.3.3), by moving the LR into the PC:

CMP compare(R6, 0 ) 0000000001110100 2E00 15E

IT if = then 0001000011111101 BF08 160

BX PC← R14− 1 0000111011100010 4770 162

B PC← PC + 2 ∗ 1869− 4096 1011001011100111 E74D 164

retv This subprogram is similar, but pops the return value (in R1) and pushes it
again before and after doing the same 5 instructions as the retv subprogram. The
next chapters don’t need a main function returning a value from the interpreter. This
subprogram thus goes back to step 1 without checking if BP is 03:

POP R1← stack 0100000000111101 BC02 166

MOV R0← R5 0001010001100010 4628 168

ADD R0← R0+ 4 0010000000001100 3004 16A

MOV R13← R6 1010110101100010 46B5 16C

POP R2 R4 R5 R6← stack 0010111000111101 BC74 16E

MOV R13← R0 1010000101100010 4685 170

PUSH R1→ stack 0100000000101101 B402 172

B PC← PC + 2 ∗ 1861− 4096 1010001011100111 E745 174

blx Finally, the last subprogram does a Branch with Link and Exchange to an address
popped from the stack. Since the BLX instruction updates the LR, which we need
to return from the interpreter, we save it first and restore it upon return (the callee is
responsible for saving and restoring the interpreter registers):

POP R0← stack 1000000000111101 BC01 176

MOV R1← R14 1000111001100010 4671 178

BLX PC← R0− 1,LR← a+ 3 0000000111100010 4780 17A

MOV R14← R1 0111000101100010 468E 17C

B PC← PC + 2 ∗ 1856− 4096 0000001011100111 E740 17E

8.3.9 Final code
The last step to finish the interpreter is to compute the 32 values for the TBB table.
Each value is half the difference between the address of the first instruction of a

3This could be done without additional instructions, by jumping to ret’s CMP instruction instead.
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subprogram and the start of the table, 1016. For instance, for the blx subprogram
starting at 17616, we get B316. By doing this for the 31 other subprograms we get:

80797370 6C69625B 544D463F 3B37332F 2A26221E 1A161310 010
B3ABA29F 99938987 028

By putting everything together, we finally get the full interpreter code:

2A26221E 1A161310 F000E8DF DE00BF88 281F3201 78102600 000
B3ABA29F 99938987 80797370 6C69625B 544D463F 3B37332F 018
B4016810 E7DE3201 B4017810 E7E2B401 2001E7E5 B4012000 030
4341BC03 E7D2B402 1A09BC03 E7D6B402 1809BC03 E7DA3204 048
BC03E7C5 B4024001 BC03E7C9 B402F1F0 FBB1BC03 E7CEB402 060
BC03E7B9 B40240C1 BC03E7BD B4024081 BC03E7C1 B4024301 078
32021822 8810BF06 4281BC03 E7B23202 18228810 BF3A4281 090
8810BF9A 4281BC03 E7A43202 18228810 BF864281 BC03E7AB 0A8
4281BC03 E7963202 18228810 BF1A4281 BC03E79D 32021822 0C0
E788B401 6808BC02 E78C1822 8810E78F 32021822 8810BF26 0D8
1A280080 7810E77F 3201B401 1A280080 7810E785 6008BC03 0F0
BC01E771 32016001 BC021A28 00807810 E7783201 B4026801 108
4613E765 32011835 300C0080 78103C01 4614466E B478E76F 120
4613E759 1A123A01 88103302 4613E75F 020CF2C0 88123302 138
BC02E74D 4770BF08 2E004685 BC7446B5 30044628 E756BC04 150
E740468E 47804671 BC01E745 B4024685 BC7446B5 30044628 168

Lets store it in the 2nd flash memory bank, at address C000016. For this we
can use the flash_helper.py program and its flash# command, presented in
Section 7.5.4. To avoid typing the 96 necessary W commands, we provide them
in part2/interpreter.txt (you should have this file in the same directory as the
flash_helper.py program if you downloaded https://ebruneton.github.io/toypc/scri
pts.zip). Connect the Arduino to your computer and open a terminal. Then run the
commands in this file as follows (the < operator makes flash_helper.py read and
execute all the commands in the specified file; in this mode these commands are not
printed):
user@host:~$ python3 flash_helper.py < part2/interpreter.txt
>Reading page 1024... Done.
Reading page 1025... Done.
Writing page 1024... Done.
Writing page 1025... Done.
>Done.

8.4 Example program
We can now program the Arduino with bytecode instructions, which should be easier
than with Cortex M3 machine code. To verify this, we can reimplement the program
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to blink a LED from Section 7.5, but in bytecode. We can use the same structure, with
a function to wait for some time, and a main function calling it. Lets start with the
waiting function, which just counts to some large value. Here it is a bit easier to count
down to 0, as follows:

1. push a large value on the stack,
2. subtract 1 from the top stack value,
3. if it is not 0, go back to step 2,
4. return to the caller.

This translates directly to bytecode instructions. We start the function with a fn 0
instruction (this function does not have any argument), and then push 100000=186A016
with a cst instruction (the right column is the offset from the current function’s start
or, for fn instructions, from the program’s start):
instruction encoding (right to left) offset

fn 0 00 19 00000
cst 186A0 000186A0 03 +002

Step 2 can done by pushing 1 on the stack and then subtracting the top two stack
values (which at this point are the counter and 1):

cst_1 01 +007
sub 05 +008

For step 3, to compare the counter with 0 and optionally jump back to step 2 (i.e.,
at offset 7), we could push a 0 and use an ifne instruction. But this would pop our
counter from the stack, which would then be lost. To avoid this we need to push a
copy of it before pushing 0. The counter is the 4th value on the function’s stack frame,
counting from 0 (because there are no function arguments but 4 saved registers below
it). We can thus push a copy of it with a get 4 instruction:

get 4 04 16 +009
cst_0 00 +00B
ifne 7 0007 10 +00C

Finally, the last step is trivial:

ret 1D +00F

This function should probably look simpler to you compared with the equivalent
machine code in Section 7.5. In particular for the encoding of instructions. The main
function is even simpler. Recall that it must first write the value 227 in the PIO B
Enable Register (400E100016), Output Enable Register (400E101016), and Pull-up
Disable Register (400E106016). This is trivial to do with cst and store instructions:

fn 0 00 19 00010
cst 400E1000 400E1000 03 +002
cst 8000000 08000000 03 +007
store 14 +00C
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cst 400E1010 400E1010 03 +00D
cst 8000000 08000000 03 +012
store 14 +017
cst 400E1060 400E1060 03 +018
cst 8000000 08000000 03 +01D
store 14 +022

After that the main function must turn the LED on by writing the same value in the
Set Output Data Register (400E103016), call the waiting function, turn the LED off by
writing 227 in the Clear Output Data Register 400E103416, call the waiting function
again, and finally go back to the beginning. Again, this translates directly to bytecode
instructions which are easy to encode (we assume that the waiting function is stored
at address 2007100016):

cst 400E1030 400E1030 03 +023
cst 8000000 08000000 03 +028
store 14 +02D
cst 20071000 20071000 03 +02E
calld 1C +033
cst 400E1034 400E1034 03 +034
cst 8000000 08000000 03 +039
store 14 +03E
cst 20071000 20071000 03 +03F
calld 1C +044
goto 23 0023 12 +045

This gives the final bytecode of our new LED blinking program:

03400E10 00030019 1D000710 00041605 01000186 A0030019 000
00000340 0E106003 14080000 0003400E 10100314 08000000 018
0E103403 1C200710 00031408 00000003 400E1030 03140800 030

0023121C 20071000 03140800 00000340 048

Lets store it in RAM in order to test it with the boot assistant. The commands to
do this are provided in part2/interpreter_blink_led.txt. Run them as follows:
user@host:~$ python3 flash_helper.py < part2/interpreter_blink_led.txt
>Done.

To run our program we need to write a bit more machine code. Indeed, we need
to load the address of the main function’s first instruction (2007100016+ 1016) in the
Instruction Counter (R2), and then call the interpreter subroutine. The former can
be done with a LDR instruction. The latter can be done with a LDR instruction to
load the interpreter’s interworking address (C000016+1) in R0, followed by a BX R0.
Assuming these instructions start at an address which is a multiple of 4, we get:

LDR R2← mem32[⌊PC⌋4 + 4 ∗ 1 ] 1000000001010010 4A01 000

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000000010010 4802 002
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BX PC← R0− 1 0000000011100010 4700 004
data (padding, unused) 0000 006
data (address of main function’s 1st instruction) 20071010 008
data (interworking address of interpreter) 000C0001 00C

We can store these instructions at 2007110016 and finally call them with a Ga#
command (recall that Ga# jumps to the interworking address stored at a+ 4):
user@host:~$ python3 boot_helper.py
>W20071100,48024A01#
>W20071104,00004700#
>W20071108,20071010#
>W2007110C,000C0001#
>W20071204,20071101#
>G20071200#
ERROR: no response from device.

At this point you should normally see the LED blinking! Note that it blinks at
about the same speed as the machine code version running from the boot assistant.
Yet it counts to 100000 instead of counting to 1 million between each step. This shows
that our bytecode program is about 10 times slower than the equivalent machine code
version! This is not an issue here because our interpreter is only a temporary program,
similar to a scaffolding, to help us build our toy computer. Indeed, we discard it at the
end of Chapter 25.
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9
CHAPTER

Clock Driver

Thanks to the virtual machine implemented in the previous chapter we can now start
to implement our basic input output system, in a much simpler way than with machine
code. Recall that our goal is to make the Arduino completely autonomous, with its
own keyboard and screen to write programs and run them (instead of needing a host
computer and a USB cable). For this we need small programs to interact with the
keyboard and the screen, called drivers. Before writing them, however, it is useful to
have a clock driver1. That is, some functions to configure the Arduino’s clock and to
wait for some time in a more precise way than with a software counter.

This chapter presents the SAM3X8E components which are needed for this, namely
the Power Management Controller and the System Timer. We give an overview of these
components, and explain how programs can use them. We then use this knowledge to
implement the above clock driver functions. Finally, we test these functions with a
third version of our LED blinking program.

9.1 Power Management Controller
The Power Management Controller (PMC) component generates clock signals for
the other components of the microcontroller, including the microprocessor and the
peripheral controllers (see Figure 6.2). It can turn these clock signals on and off,
and can change their frequency. The higher the clock frequency, the more power is
consumed, but components whose clock signal is off do not consume power. The
Power Management Controller thus indirectly controls how much power is consumed,
hence its name.

The clock signals are generated by an oscillator circuit at a fixed frequency, but
can optionally go through other circuits which can multiply this frequency by a
configurable factor. The PMC has several such circuits. The ones used in this book
are represented in Figure 9.1:

• The Resistor Capacitor (RC) is an oscillator circuit providing a 4MHz clock signal
by default (it can be configured to output 4, 8 or 12MHz). It is integrated in the
SAM3X8E chip.

1This is not strictly necessary. The clock driver could be written only once the Arduino is autonomous,
with the Arduino’s keyboard and screen, but this would be a bit more complex.
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FIGURE 9.1 A simplified representation of the Power Management Controller (PMC)
circuit and registers (in gray). The PMC provides clock signals (in green) to the other
components, generated from a selectable oscillator (left) at a frequency optionally
multiplied by a configurable factor (middle). See Figures 28-1 and 28-2 in [8].

• The Crystal Oscillator uses an external crystal on the Arduino board to generate a
12MHz clock signal. This signal is much more stable than the one provided by the
Resistor Capacitor oscillator.
• The Phase Lock Loop (PLL) circuit can multiply the frequency output by the RC

or by the Crystal oscillator by a configurable factor, up to 2048. Note however
that the SAM3X8E components only support frequencies up to 84MHz. Higher
frequencies can damage them permanently.

These circuits are controlled by several registers. Some of them are shown in
Figure 9.1. The ones used in this book are presented below and in Table 9.1. The full
list of the PMC registers and its full diagram can be found in Chapter 28 of [8].

9.1.1 Main Oscillator Register
This register enables or disables the oscillator circuits, and selects which oscillator to
use. It has the following binary format (we present only the bits that we use):

0000000000000 rcstartuppasswords

• r enables the RC oscillator if it is 1, and disables it otherwise.
• c enables the Crystal Oscillator if it is 1, and disables it otherwise.
• startup specifies the Crystal Oscillator start-up time, in quarters of milliseconds.
• password must be 3716, otherwise writing into this register has no effect.
• s selects the Crystal oscillator if it is 1, or the RC oscillator otherwise.
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Name Type Address
Peripheral Clock Enable Register Write-Only 400E061016

Peripheral Clock Disable Register Write-Only 400E061416

Peripheral Clock Status Register Read-Only 400E061816

Main Oscillator Register Read-Write 400E062016

Phase Lock Loop Register Read-Write 400E062816

Master Clock Register Read-Write 400E063016

Status Register Read-Only 400E066816

TABLE 9.1 The Power Management Controller registers used in this book.

9.1.2 Phase Lock Loop Register
This register defines the frequency multiplication factor to use in the Phase Lock Loop
circuit. It has the following binary format:

0000100 dividerstartupmultiplier

• multiplier and divider configure the frequency multiplication factor. The PLL
circuit multiplies the clock frequency by the fraction (multiplier + 1)/divider.
To use the PLL output as a clock signal, divider must not be 0.
• startup specifies the PLL circuit start-up time, in quarters of milliseconds.

9.1.3 Master Clock Register
This register defines which signal to use for the Master Clock, used by the micro-
processor and optionally by the peripheral controllers (see Figure 9.1). It has the
following binary format (we present only the bits that we use):

000000000000000000000000000000 css

The clock source selection (css) field can take four possible values, but we use only
two. If it is equal to 1, then the Master Clock is the signal from the oscillator selected
by the Main Oscillator Register. If it is 2 then the Master Clock is the output of the
PLL circuit.

9.1.4 Peripheral Clock Status Register
This register gives the clock signal status of each peripheral component. Peripherals
are numbered, for instance the USART controller has number 17, the SPI controller
has number 24, etc (see Figure 6.2). Bit number i of this register indicates if the clock
signal is enabled for peripheral number i. If enabled, the same signal as the Master
Clock is used (see Figure 9.1). As the PIO Status Register, this register can only be
read. Writing to it has no effect. Instead, one must write in the Peripheral Clock
Enable Register (resp. the Peripheral Clock Disable Register) to set (resp. clear) its
bits.
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9.1.5 Status Register
This read-only register indicates if the various clock signals inside the Power Man-
agement Controller are ready to use or not. It has the following binary format (we
present only the bits that we use):

0000000000000000000000000000 cpms

• c is 1 if the Crystal Oscillator is ready, or 0 otherwise. After the Crystal Oscillator
is enabled with the Main Crystal Oscillator Register, one must wait until this bit is
1 before using the PMC again.
• p is 1 if the PLL circuit output is ready, or 0 otherwise. After the frequency

multiplier is changed with the Phase Lock Loop Register, one must wait until this
bit is 1 before using the PMC again.
• m is 1 if the Master Clock is ready, or 0 otherwise. After the clock source selection

is changed with the Master Clock Register, one must wait until this bit is 1 before
using the PMC again.
• s is 1 if the oscillator selection is ready, or 0 otherwise. After the selected oscillator

is changed (to the crystal or the RC oscillator), one must wait until this bit is 1
before using the PMC again.

9.1.6 Configuration procedure
After a reset the PMC is configured to use the RC oscillator directly, without going
through the PLL circuit, and all the peripheral clocks are disabled. The Master Clock
thus runs at 4MHz by default. To use the maximum 84MHz frequency instead, the
following procedure can be used:

1. enable the 12MHz Crystal Oscillator and wait for it to be ready,
2. select the Crystal Oscillator and wait for this selection to be ready,
3. set the PLL multiplier to 6 and its divider to 1, and wait for it to be ready,
4. select the PLL output as the Master Clock source, and wait for it to be ready.

Before doing this, however, the flash controllers must be configured as well. Indeed
the flash memory is slow. When the microprocessor sends a request to read a value
from it, it has to wait some time before it receives this value. And the higher the
clock frequency, the more it has to wait. This waiting time is configured with the
flash controller Mode Register (see Table 6.1). It has the following binary format (we
present only the bits that we use):

0000000000000000000000000000 wait

The wait field controls the above waiting time. According to Table 45-62 in [8], it
must be at least 4 to use a 84MHz clock. And it must be at least 6 when writing flash
memory pages (see Section 49.1.1.1 in [8]).
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Name Type Address
Control and Status Register Read-Write E000E01016

Reload Value Register Read-Write E000E01416

Current Value Register Read-Write E000E01816

TABLE 9.2 The System Timer registers used in this book.

9.2 System Timer
The System Timer (SysTick) is a 24-bit counter inside the Cortex M3 microprocessor
(see Figure 6.2). This counter is decremented by 1 every 8 cycles of the Master
Clock, if it is enabled and not 0. If it is enabled and equal to 0, it is instead reset to a
configurable value called the reload value.

This timer can be used to wait for a calibrated amount of time. For instance, if the
Master Clock is set to 84MHz, one can wait for 1 millisecond by resetting the counter
to 10500 and by waiting until it is 0 (10500∗8 cycles last 10500∗8/84.106 = 10−3 s).
The System Timer is controlled with 3 registers, presented in Table 9.2:

• The Control and Status Register enables or disables the timer, and indicates if it
counted from 1 to 0 since the last time this register was read. It has the following
binary format (we present only the bits that we use):

000000000000000000000000000000 ez

The e field enables the timer if it is 1, and disables it otherwise. The read-only z
field indicates if the timer counted to 0 since the last read of this register.
• The Reload Value Register specifies the reload value. Only its 24 least significant

bits are used.
• The Current Value Register contains the counter’s current value. Writing any value

into this register resets this current value to 0 and also clears the z field in the
Control and Status Register. The counter is then reset to its reload value, if it is
enabled, during one of the next 8 clock cycles.

9.3 Watchdog Timer
Another microcontroller component which is related to time is the Watchdog Timer.
Its goal is to detect when the user application is stuck, for instance because of a bug,
and to reset the microcontroller if this happens. It does so with a countdown until
reset. In order to avoid being reset when the countdown expires, the application must
reinitialize it periodically, before it reaches 0. If the application crashes or enters an
infinite loop, it cannot do this and will thus eventually be reset. To avoid having to
periodically reinitialize the Watchdog Timer, we can simply disable it (it is enabled
by default). This can be done by setting to 1 bit 15 of the Watchdog Timer Mode
Register, at address 400E1A5416 (see Chapter 15 in [8]).
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9.4 Clock initializer
We can now use the above information to implement our clock driver, in the next flash
memory page after the interpreter, i.e., at address C020016. The first goal is to provide
a function to set the clock frequency to 84MHz.

clock_init()
As explained in Section 9.1.6, this func-

tion must configure the flash wait time first.
To be conservative, we set the wait field to
6 in both EEFC Mode Registers (cf. Table
6.1). We can then implement the 4 steps of
the procedure presented in Section 9.1.6.

Step 1 Enable the Crystal Oscillator
(while leaving the RC oscillator enabled).
For this we must set c = 1 and r = 1 in the
Main Oscillator Register. We don’t know
the Crystal Oscillator start-up time and thus
set startup to its maximum value, FF16.
With password set to 3716, this means
that we must write 37FF0916 at address
400E062016.

We then need to wait until the Crystal
Oscillator is ready, i.e., until the c bit in
the Status Register is 1. For this we read
this register, extract its c bit with a bitwise
and with 116, and repeat these steps while
the result is 0.

Step 2 Select the Crystal Oscillator.
For this we need to set the same value as
above in the Main Oscillator Register, with
the s field additionally set to 1. That is we
must write 137FF0916. We then need to
wait until the s field in the Status Register
is 1. This is done as above with a bitwise
and with 1000016.

Step 3 Set the PPL multiplier to 6
and its divider to 1. We don’t know the
PLL start-up time and thus set startup to
its maximum value, 3F16. We then wait

fn 00 19 C0200
cst 400E0A00 03 +002
cst 00000600 03 +007
store 14 +00C
cst 400E0C00 03 +00D
cst 00000600 03 +012
store 14 +017

cst 400E0620 03 +018
cst 0037FF09 03 +01D
store 14 +022

cst 400E0668 03 +023
load 13 +028
cst_1 01 +029
and 08 +02A
cst_0 00 +02B
ifeq 0023 0D +02C

cst 400E0620 03 +02F
cst 0137FF09 03 +034
store 14 +039
cst 400E0668 03 +03A
load 13 +03F
cst 00010000 03 +040
and 08 +045
cst_0 00 +046
ifeq 003A 0D +047

cst 400E0628 03 +04A
cst 20063F01 03 +04F
store 14 +054
cst 400E0668 03 +055
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9.5 Delay function

until the Status Register’s p bit is 1.

Step 4 Select the PPL output as the
Master Clock source. For this we set css
to 2 in the Master Clock Register. We then
wait until the Status Register’s m bit is 1.

At this stage the Master Clock runs
at 84MHz. To finish this function we
can enable the System Timer, disable the
Watchdog Timer, and return.

load 13 +05A
cst8 02 02 +05B
and 08 +05D
cst_0 00 +05E
ifeq 0055 0D +05F

cst 400E0630 03 +062
cst8 02 02 +067
store 14 +069
cst 400E0668 03 +06A
load 13 +06F
cst8 08 02 +070
and 08 +072
cst_0 00 +073
ifeq 006A 0D +074

cst E000E010 03 +077
cst8 01 02 +07C
store 14 +07E
cst 400E1A54 03 +07F
cst 00008000 03 +084
store 14 +089
ret 1D +08A

9.5 Delay function
The second goal of our clock driver is to provide a function to wait for a calibrated
amount of time. For this we can pass a number n > 0 of milliseconds to wait for as
an argument to this function. Which can then be implemented by using the System
Timer, as follows.

delay(n)
Set the System Timer reload value to

10500 times n (10500 = 290416 and n is
the stack frame’s 0th value).

Reset the System Timer current value.

Wait until the System Timer counts

fn 01 19 C028B
cst E000E014 03 +002
cst 00002904 03 +007
get 00 n 16 +00C
mul 06 +00E
store 14 +00F

cst E000E018 03 +010
cst_0 00 +015
store 14 +016

cst E000E010 03 +017
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from 1 to 0, i.e., until the Control and
Status Register’s z bit is 1.

load 13 +01C
cst 00010000 03 +01D
and 08 +022
cst_0 00 +023
ifeq 0017 0D +024
ret 1D +027

Note that since the System Timer is a 24-bit counter, n is limited to (224 −
1)/10500 = 1597. Therefore, a single call to this function can’t wait for more than
∼ 1.5s. By putting together the encoding of the two above functions we get the final
bytecode of our clock driver:

14000006 0003400E 0C000314 00000600 03400E0A 00030019 C0200
0300230D 00080113 400E0668 03140037 FF090340 0E062003 C0218
0D000800 01000003 13400E06 68031401 37FF0903 400E0620 C0230
0D000802 0213400E 06680314 20063F01 03400E06 2803003A C0248
03006A0D 00080802 13400E06 68031402 02400E06 30030055 C0260
E0140301 191D1400 00800003 400E1A54 03140102 E000E010 C0278
13E000E0 10031400 E000E018 03140600 16000029 0403E000 C0290

1D0017 0D000800 01000003 C02A8

Lets store it in flash memory. To avoid you some typing we provide the necessary
boot assistant commands in part2/clock_driver.txt. Run them with:
user@host:~$ python3 flash_helper.py < part2/clock_driver.txt
>Reading page 1026... Done.
Writing page 1026... Done.
>Done.

9.6 Basic input output system foundations
We now have the first elements of our basic input output system stored in flash memory,
namely an interpreter and a clock driver. In order to make the Arduino completely
autonomous, we must be able to run them automatically after a reset, without the boot
assistant. For this we need to setup a Vector Table (cf. Section 7.4).

9.6.1 Vector Table
After a reset we want to initialize the Master Clock with the clock driver and, later on,
initialize the screen and keyboard drivers, and start the memory editor. We can do
this with a main bytecode function, called upon reset via the Reset handler. In order
to leave space for the future drivers, after the clock driver code at C020016, we can
put this main function at address C200016 (see Figure 9.2). The Reset handler should
thus call the interpreter with C200016 as initial Instruction Counter. We have already
seen how to do that, with 2 LDR and a BX instruction, at the end of the previous
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FIGURE 9.2 The initial layout of our basic input output system in flash memory.
Execution starts with the Reset handler, which calls the interpreter to execute the
Main function. This function then calls other functions, e.g., in the clock driver.
Red, blue and gray areas represent machine code, bytecode and unused memory,
respectively (not to scale).

chapter. We put the corresponding machine code
000C0001 000C2000 00004700 48024A01

at address C018016, just after the bytecode interpreter.
To handle potential errors, we should also define a Hard Fault handler. The easiest

solution is to make the LED blink in case of error, since we already have a program
doing this. The machine code given at the end of Section 7.5.2 can then be directly
reused, and put just after the above code, i.e., at offset C019016 (see Figure 9.2).

We also need to define an initial Stack Pointer, in the Vector Table’s first entry.
Since the stack grows in decreasing address order we initialize it to the end of the
contiguous RAM region, 2008800016 (see Figure 6.3).

In summary, the above choices lead to the following Vector Table (only the first
4 entries are used; the Hard Fault handler’s main function starts at offset 1416 after
C019016, i.e., at C01A416):

000C01A5 00000000 000C0181 20088000

9.6.2 Boot mode selection
In the following we would like to test the clock driver, then implement the screen
driver and test it, then implement the keyboard driver and test it, etc. For this we
need to alternatively boot from flash (to test our system) and from ROM (to store new
drivers in flash memory with the boot assistant). However, when the Arduino runs
from flash, the only way to boot from ROM again is to do a full erase. This means that,
after each test, we would have to flash everything again. To avoid this, as discussed at
the end of Section 7.5.4, our main function should set the boot mode selection to boot
from ROM. To this end, we provide a function doing this below.

As explained in Section 6.5.2, setting the boot mode to boot from ROM can be
done by writing the value 5A00010C16 in the EEFC0 Command Register at address
400E0A0416 (and then waiting until the Status Register is 1). After that the ROM is
mapped in the “Boot” region, which means that our Vector Table is no longer mapped
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Function Address
boot_mode_select_rom() C02B4 (C000016+692)
clock_init() C0200 (C000016+512)
delay(n) C028B (C000016+651)

TABLE 9.3 The basic input output system functions defined in this chapter.

there. In case of error, the ROM Vector Table would thus be used instead of ours. To
avoid this, a solution is to first change the location where the Vector Table is read from,
with the Vector Table Offset Register (at address E000ED0816 – see Section 7.4).
More precisely, a solution is to store in this register the “real” address of our Vector
Table, 8000016. This leads to the following bytecode function, stored just after the
clock driver, at address C02B416 (see Table 9.3):

fn 00 19 C02B4
cst E000ED08 03 +002
cst 00080000 03 +007
store 14 +00C
cst 400E0A04 03 +00D
cst 5A00010C 03 +012

store 14 +017
cst 400E0A08 03 +018
load 13 +01D
cst_1 01 +01E
ifne 0018 10 +01F
ret 1D +022

To avoid you some typing, we provide the boot assistant commands necessary to
write this function, the above Vector Table, and its Reset and Hard Fault handlers in
flash memory. Run them with:
user@host:~$ python3 flash_helper.py < part2/foundations.txt
>Reading page 0... Done.
Reading page 1025... Done.
Reading page 1026... Done.
Writing page 0... Done.
Writing page 1025... Done.
Writing page 1026... Done.
>Done.

9.7 Experiments
In order to test the above functions we can implement a third version of our LED
blinking program where:

• calls to the boot mode selection and clock initializer functions are added at the
beginning,
• calls to the waiting function are replaced with calls to the delay function (and the

waiting function is deleted).
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And to use it as a main function we can put it in flash memory at address C200016.
With 500ms delays, we get the following function, based on the version in Section 8.4
(500 = 1F416):

fn 00 19 C2000
call 02B4 ...select_rom 1A +002
call 0200 clock_init 1A +005
cst 400E1000 03 +008
cst 08000000 03 +00D
store 14 +012
cst 400E1010 03 +013
cst 08000000 03 +018
store 14 +01D
cst 400E1060 03 +01E
cst 08000000 03 +023
store 14 +028

cst 400E1030 03 +029
cst 08000000 03 +02E
store 14 +033
cst 000001F4 03 +034
call 028B delay 1A +039
cst 400E1034 03 +03C
cst 08000000 03 +041
store 14 +046
cst 000001F4 03 +047
call 028B delay 1A +04C
goto 0029 12 +04F

Write it in flash memory with:
user@host:~$ python3 flash_helper.py < part2/clock_driver_test.txt
>Reading page 1056... Done.
Writing page 1056... Done.
>Done.

To run it we need to change the boot mode selection to boot from flash, and to reset
the Arduino. The former can be done by writing 5A00010B16 at address 400E0A0416
(cf. Section 6.5.2). And the latter with the RESET button or, with the Reset Controller
(see Figure 6.2), by writing A500000D16 at address 400E1A0016 (see Section 12.5.1
in [8]). For convenience, flash_helper.py provides a reset# command doing these
two steps. We can thus run our program with:
user@host:~$ python3 flash_helper.py
>reset#

At this point you should see the LED blinking once per second2, without begin
reset by the Watchdog timer. Then press the RESET button on the Arduino: the LED
should no longer blink, because the Arduino booted from ROM. Finally, lets test our
Hard Fault handler by introducing a voluntary error in our LED blinking program.
We can do this by replacing the last goto insn with an invalid FF16 opcode:
user@host:~$ python3 flash_helper.py
>WC204C,FF028B1A#
Reading page 1056... Done.
>flash#
Writing page 1056... Done.
>reset#

2Almost: each cycle lasts 1s plus a few µs due to the instructions between the delay function calls.
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You should see the LED blinking once as before (as the beginning of the program
executes normally), then blink very fast. Indeed, when the unknown opcode is found,
the interpreter triggers an Undefined Instruction exception, which triggers the Hard
Fault handler. This calls our machine code LED blinking function, which counts to 1
million between each step. At 84MHz, this yields very fast blinks. You can finally
reset and unplug the Arduino.
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CHAPTER

Graphics Card Driver

So far we have only been able to blink a LED, using various methods. Hopefully,
thanks to the work done in the previous chapters, we now have everything we need
to go beyond that. This is what we do in this chapter, by connecting a screen to the
Arduino, and by writing a program to use it. The screen cannot be connected directly
to the Arduino, in particular because their connectors don’t match. We therefore use an
intermediate component between the two, that we call the graphics card. This chapter
presents these two components, explain briefly how they work, how they communicate,
how to connect them, and how programs can use them. We then write such a program,
called the graphics card driver. Finally, we test it with a small application displaying
the traditional “Hello, World!" message.

10.1 Liquid Crystal Display
The screen used in this book is a 7′′ Liquid Crystal Display (LCD) with 800×480
pixels (see Table A.1). Each pixel is made of 3 cells with red, green and blue
color filters. Each cell is made of a liquid crystal between two electrodes and two
perpendicularly oriented light polarizers (see Figure 10.1). The whole screen is lit
from behind with LEDs producing a uniform white light with a constant intensity. By
default, however, due to the polarizers, light is blocked and the screen appears black.
To turn a red, green or blue cell on one must charge the capacitor made by the two
electrodes around it. This creates an electric field in the liquid crystal, which has the
property of rotating the light’s polarization direction in such conditions. Increasing
the capacitor charge increases the electric field and the polarization rotation. When
the rotation angle is 90◦, no light is blocked and the cell has 100% luminosity. Smaller
angles lead to partially blocked light thus lower luminosity levels.

In order to charge the capacitors independently from each other, one electrode
of each cell is connected to a grid of horizontal and vertical wires via a transistor
(see Figure 10.1) – the other electrode is shared between all cells. These transistors
are organized in a transparent thin film, hence the Thin Film Transistor (TFT) name.
To charge a cell at column x and row y, one must set row y’s wire to VCC and then
apply a voltage V on column’s x red, green or blue wire for a short duration – with V
depending on the desired luminosity. This process is done by the row and column
driver circuits (see Figure 10.1). For each frame, the row driver sets each row wire to
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VCC, one after the other, from top to bottom. While a row is active, the column driver
applies the desired voltage on each column wire, one after the other, from left to right.

These circuits use as input 40 pins, providing 40 signals in parallel. The most
important ones are 3×8 signals providing the red, green and blue intensity of each
pixel, using one byte per color (from 0 = black to 255 = 100% luminosity). There
are also vertical, horizontal, and clock synchronization signals indicating when a
new frame, a new row of pixels, and a new pixel start, respectively. Finally, other
pins provide GND and VCC, a driver circuit on/off signal, a backlight on/off signal,
etc. The pixel and synchronization signals must have the form shown in Figure 10.2,
subject to the constraints in Table 10.1:

• Each frame must start with a pulse of the vertical synchronization (Vsync) signal.
• Each row must start with a pulse of the horizontal synchronization (Hsync) signal.
• Each frame must start and end with blank rows containing no data, called the

vertical back porch and front porch, respectively.
• Each row must start and end with blank pixels containing no data, called the

horizontal back porch and front porch, respectively.
• The Data Enable signal must indicate when the Data pins contain actual data.
• The 24 Data pins must send one pixel at each clock cycle where Data Enable is 1.

10.2 Graphics card
The LCD cannot be connected directly to the Arduino, since its does not have a 40-pin
connector. An adapter could theoretically be used, since the Arduino has enough pins
controllable with the PIO controllers A, B, C and D (see Figure 6.2). Using these
controllers, we could in principle write a program driving these pins as output, and
producing signals of the above form. However, even if this program could run fast
enough, it would require a lot of memory to store the image to display. Even with
only one bit per pixel, 800 ∗ 480 = 384000 bits would be needed, i.e., almost half of
the 96 KB of the Arduino’s RAM.

For all these reasons we use an intermediate component to connect the screen to
the Arduino, namely an AdaFruit RA8875 driver board (see Table A.1). This board
provides a RAiO RA8875 chip [13], with a 40-pin connector on one side and slots for
15 header pins on the other (see Figure 10.3). The chip contains 768 KB of RAM,
which is enough to store a 800×480 image with 16 bits per pixel. It can be roughly
divided in two parts:

• the backend part reads the image stored in RAM and generates corresponding
signals on the 40-pin connector, to display it on the screen.
• the frontend part updates the image stored in RAM based on drawing commands

received on the header pins.

The frontend can draw text, basic shapes such as lines, rectangles or ellipses,
images, and individual pixels. It is based on 8-bit registers. For instance, to draw
a line, one must first write the x, y coordinates of its endpoints in specific registers
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FIGURE 10.1 A schematic view of the Thin Film Transistor (TFT) Liquiq Crystal Display
(LCD) used in this book. Each pixel is made of 3 liquid crystal cells between two
transparent electrodes and two polarizers, with red, green and blue color filters.
Each cell is connected to a grid of wires with its own transistor, and lit from behind.
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FIGURE 10.2 The input signals needed by the LCD [19]. Each frame starts with a
Vsync pulse, and each row with an Hsync pulse. 24 bits of pixel data are required
at each clock cycle where “Data Enable” is 1. The bottom part zooms on one row of
pixels.

Parameter Minimum Typical Maximum Unit
Vertical pulse width 1 – 20 Hsync cycle
Vertical back porch 23 23 23 Hsync cycle
Vertical front porch 7 22 147 Hsync cycle
Horizontal pulse width 1 – 40 Clock cycle
Horizontal back porch 46 46 46 Clock cycle
Horizontal front porch 16 210 354 Clock cycle
Clock frequency – 33.3 50 MHz

TABLE 10.1 The timing constraints of the LCD input signals [19].
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FIGURE 10.3 The AdaFruit RA8875 Driver Board used to connect the LCD to the
Arduino.

called “Draw Line/Square Horizontal Start Coordinate”, “Draw Line/Square Vertical
Start Coordinate”, “Draw Line/Square Horizontal End Coordinate”, etc. Then, setting
a specific bit to 1 in another register called “Draw Line/Circle/Square Control Register”
starts drawing a line between the two previous points. The RA8875 has about 170
different registers but we use only a small subset of them, mostly those needed to
configure the RA8875, and to draw text. They are presented below.

10.2.1 Configuration registers
The RA8875 chip, hereafter called the graphics card, can be used with a variety of
screens with different resolutions and signals timing constraints. Before using it to
display images on a given screen, it must be configured for this specific screen.

The first step is to configure the frequency fs of the internal clock, called the
system clock, and the frequency fp of the clock signal sent to the screen, called the
pixel clock. As the Arduino, the graphics card uses an external crystal, here at fc = 20
MHz, and a Phase Lock Loop (PLL) circuit. This circuit can be configured with 3
registers, whose ID, name and binary format are the following:

R8816 PLL Control 1 00m n

R8916 PLL Control 2 00000 k

R0416 Pixel Clock Setting 00000i p

These registers set fs to fc ∗ (n+1)/[2k(m+1)] and fp to fs/2
p. In order to get

fp ∈ [33.3, 50] MHz (see Table 10.1), we can use n = 6, m = 0, k = 6, and p = 1,
yielding fs = 70 MHz and fp = 35 MHz. In addition, i indicates if pixel data should
be sent when the pixel clock signal is rising (i = 0) or falling (i = 1). According to
[19] the former case applies, but in practice only i = 1 works. In summary, in our
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case, we can set R88, R89 and R04 to 6, 1 and 8116, respectively, with a delay of at
least 0.1ms between each step (see Section 5-9 in [19]).

The second step is to configure the LCD signal parameters (see Table 10.1), with
the following registers (we show only the bits that we use):

R1416 LCD Horizontal Display Width 0 w

R1516 LCD Horizontal Non-Display Period Fine Tuning 0000 hndft

R1616 LCD Horizontal Non-Display Period 000 hnd

R1716 HSYNC Start Position 000 hsp

R1816 HSYNC Pulse Width 000 hpw

R1916 LCD Vertical Display Height 0 h0

R1A16 LCD Vertical Display Height 1 0000000 h1

R1B16 LCD Vertical Non-Display Period 0 vnd

R1D16 VSYNC Start Position 0 vsp

R1F16 VSYNC Pulse Width 0 vpw

Based on these register values, the graphics card generates LCD signals with the
following parameters (see Section 5-3 and Figure 6-29 in [19]):

• Screen width in pixels: 8(w + 1)
• Horizontal pulse width: 8(hpw + 1)
• Horizontal back porch: 8(hpw + 1) + 8(hnd+ 1) + hndft+ 2
• Horizontal front porch: 8(hst+ 1)
• Screen height in pixels: 256.h1 + h0 + 1
• Vertical pulse width: vpw + 1
• Vertical back porch: (vpw + 1) + (vnd+ 1)
• Vertical front porch: vst+ 1

In our case, in order to meet the constraints from Table 10.1, we can use w = 99,
hpw = 0, hndft = 4, hnd = 3, hst = 25, h0 = 223, h1 = 1, vpw = 0, vnd = 21,
and vst = 21. In other words, we can set R14, R15, R16, R17, R19, R1A, R1B, and
R1D to 6316, 4, 3, 1916, DF16, 1, 1516, and 1516, respectively (and leave R18 and
R1F to their default value 0).

After this the graphics card memory can be cleared, to start with a black screen,
the LCD signals can be enabled, and the screen itself can be turned on. This can be
done with the following registers (we show only the bits that we use):

R8E16 Memory Clear Control 000000s a

R0116 Power and Display Control 0000000d

RC716 Extra General Purpose IO 0000000 x

R8A16 PWM1 Control 0000000 l
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Indeed, setting s, d, x, and l to 1 clears the memory, enables the LCD signal outputs,
turns on the LCD’s driver circuit, and turns on the LCD’s backlight, respectively1. In
summary we can set R8E, R01, RC7 and R8A to 8016, 8016, 1, and 4016, respectively.
Note that clearing the memory takes some time. When it is done, s is reset to 0. One
could thus wait for this after setting R8E, or just wait long enough, e.g., 100ms.

After the above steps the graphics card is ready to draw text or images. Drawing
text (resp. images) requires switching the card to text mode (resp. graphics mode)
first. In both cases the active window, which restricts where text or graphics can be
drawn, must also be configured (it is empty by default). This can be done with the
following registers (we show only the bits that we use):

R3416 Horizontal End Point of Active Window 0 X0

R3516 Horizontal End Point of Active Window 1 000000 X1

R3616 Vertical End Point of Active Window 0 Y0

R3716 Vertical End Point of Active Window 1 0000000 Y1

R4016 Memory Write Control 0 00000t c b

R4416 Blink Time Control blink

The first 4 registers set the active window’s bottom-right corner to (256.X1 +
X0, 256.Y1 + Y0) – its top-left corner is (0, 0) by default (coordinates are measured
as shown in Figure 10.1). t = 1 enables text mode, while t = 0 enables graphics
mode. In text mode, c = 1 displays a cursor where the next character will be drawn,
and b = 1 makes it blink every blink + 1 frame. In this book we use only text mode
in full screen, so we can use X0 = 31, X1 = 3, Y0 = 223, Y1 = 1, t = c = b = 1,
and, for instance, blink = 30. In summary we can set R34, R35, R36, R37, R40, and
R44 to 1F16, 3, DF16, 1, E016 and 1E16, respectively.

The active window can be cleared by setting s = 1 and a = 1 in the Memory
Clear Control register. Using s = 1 and a = 0 clears the full screen, whatever the
size of the active window.

10.2.2 Text drawing registers
Drawing text on the screen must be done one character at a time, by writing each
character’s ASCII code (see Appendix B) in the R02 register. Doing this draws the
corresponding character at the current cursor position on the screen, with the current
background and foreground colors. All characters use 8× 16 pixels. The cursor then
automatically moves to the right to draw the next character (at the 100th character of
a line it goes to the beginning of the next, and at the bottom-right corner it goes back
to the top-left corner). Initially the cursor is at the top-left corner, and the foreground
and background colors are black. This can be changed with the following registers:

1RC7 and R8A control output pins of the RA8875 chip which are connected to the “driver circuit on/off”
and “backlight on/off” pins in the 40-pin connector [1].
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R2A16 Font Write Cursor Horizontal Position 0 x0

R2B16 Font Write Cursor Horizontal Position 1 000000 x1

R2C16 Font Write Cursor Vertical Position 0 y0

R2D16 Font Write Cursor Vertical Position 1 0000000 y1

R6316 Foreground Color 0 00000 fcr

R6416 Foreground Color 1 00000 fcg

R6516 Foreground Color 2 000000 fcb

These registers set the cursor position to (256.x1 + x0, 256.y1 + y0) pixels, and
the foreground color’s red, green and blue components to fcr, fcg, fcb, respectively.
The maximum value of each component corresponds to full intensity. For instance
(fcr, fcg, fcb) = (7, 7, 3) corresponds to white.

10.2.3 Communication protocol
In order to read and write values in the above registers, the graphics card accepts 3
types of commands as input: Select Register, Read Data and Write Data. The Select
Register command takes as argument a byte containing a register ID (e.g., 2A16 to
select R2A). The Read Data command returns the current value of the last selected
register. It does not have any argument. Finally, the Write Data command writes its
8-bit argument in the last selected register. These commands are encoded on 16 bits,
with the two most significant containing the command type, and the 8 least significant
its argument. The command type is 102 for Select Register, 012 for Read Data and
002 for Write Data. For instance, in order to set R14 to 6316, one must use a Select
Register 1416 command, followed by a Write Data 6316 command (whose encodings
are 801416 and 006316, respectively).

These commands can be sent to the graphics card with the Chip Select (CS),
Clock (SCK), and Master Out Slave In (MOSI) pins (see Figure 10.3), as follows (see
Figure 10.4):

• set the CS pin to 0 to start a new command (the 3 pins must be 1 by default).
• send the 16 command bits on the MOSI pin, starting with the most significant and

ending with the least significant. One bit must be sent each time the SCK pin is
rising, i.e., goes from 0 to 1. The SCK frequency must be lower than the graphics
card system clock frequency.
• set the CS pin back to 1.

Conversely, the graphics card sends the 8-bit result of Read Data commands on the
Master In Slave Out (MISO) pin. It sends these bits during the last 8 clock cycles,
from the most to the least significant (see Figure 10.4).

Before sending any command, however, the board must be powered on and reset.
It is powered with the VIN and GND pins (see Figure 10.3 – VIN can be connected to
3.3V or 5V). And it can be reset with the Reset (RST) pin. This pin should be 1 by
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FIGURE 10.4 The signals used between the RA8875 driver board and the Arduino.
The Arduino must send 16-bit commands on the MOSI pin while setting the CS pin
to 0, one bit at each rising edge of the SCK clock signal. It can optionally receive an
8-bit result on the MISO pin while sending the 8 least significant command bits.

default. Setting it to 0 during at least 1ms starts resetting the graphics card, which
takes less than 1ms after RST is set back to 1 (for safety 10ms delays are better).

10.3 Serial Peripheral Interface component
At this stage, “all we have left to do” is to generate appropriate signals on the graphics
card pins, in order to set appropriate values in its registers, in turn to configure the card
and display text on the screen. In theory, the Arduino could generate these signals
with a similar method as our LED blinking programs. Indeed, the signal we generated
to blink a LED is in fact a clock signal. With more effort, we could also generate the
CS and MOSI signals too. But there is a simpler method. Indeed, the signals shown
in Figure 10.4 are a special case of a more general communication protocol called the
Serial Peripheral Interface (SPI). And the Arduino microcontroller has a dedicated
SPI component to interact with devices using this protocol. This section gives an
overview of this component and explains how to use it. A complete description can
be found in Chapter 32 of [8].

The SPI component is a hardware circuit which can output CS, SCK, and MOSI
signals, and read input MISO signals, using the PA28, 27, 26 and 25 pins, respectively
(see Figures 6.2 and 10.5). It does so with 3 main registers (see Table 10.2):

• The Transmit Data Register. Writing a value (up to 16 bits) in this register sends it
on the MOSI pin as described above, while setting the CS pin to 0.
• The Receive Data Register. The value received on the MISO pin while sending a

value on the MOSI pin is stored in this register.
• The Status Register. This read-only register has the following binary format (we

show only the bits that we use):
000000000000000000000000000000 rt

where t is 0 while a value is being sent (and 1 when this is done), and r is 1 iff a
new value has been received since the last read of the Receive Data register.
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FIGURE 10.5 A simplified representation of the Serial Peripheral Interface (SPI)
circuit and registers (in gray). A shift register is used to transmit data in most to least
significant bit order on MOSI, while storing bits received in the same order on MISO.
It is left shifted after each transmitted / received bit. See Figure 32-5 in [8].

Name Type Address
Control Register Write-Only 4000800016

Mode Register Read-Write 4000800416

Receive Data Register Read-Only 4000800816

Transmit Data Register Write-Only 4000800C16

Status Register Read-Only 4000801016

Chip Select Register Read-Write 4000803016

TABLE 10.2 The Serial Peripheral Interface controller registers used in this book.

The SPI protocol has many variants. For instance, the number of bits transmitted
at a time can vary between 8 and 16. These bits can be transmitted when SCK is rising
from 0 to 1, or when it is falling from 1 to 0. The clock frequency can vary, etc. The
SPI component supports many such variants in order to support many SPI devices. It
can also be used either in master mode, to control a SPI device with the Arduino, or in
slave mode, to control the Arduino with such as device. The drawback is that it needs
to be configured before being used. This can be done with the following registers (we
show only the bits that we use):

• The Mode Register. Its binary format is
0000000000000000000000000000000 m

where m = 1 selects the master mode, and m = 0 the slave mode.
• The Chip Select Register. Its binary format is
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0000000000000000000 cbitsdivider

where c = 1 means that data is sent when SCK is rising, bits means that bits+ 8
bits are sent at a time, and divider sets the SCK frequency to the Peripheral Clock
frequency divided by divider.

In our case we need m = 1, c = 1, and bits = 8. The SCK frequency can be set
to 4MHz, which is not too large (after reset the graphics card runs at 20MHz). We
can thus use divider = 21 = 1516 (84/21 = 4). In summary, we can set these two
registers to 1 and 158216, respectively.

Finally, in order to be used, the SPI component must be enabled, which is done by
writing the value 1 in the Control Register. Its input clock signal, the Peripheral Clock
24, must also be enabled (see Figure 10.5). This can be done by writing the value 224
in the PMC Peripheral Clock Enable Register (see Section 9.1). Last but not least, the
PIO controller must be configured to give control of the PA25, 26, 27, and 28 pins to
the SPI component. This can be done by writing the value 225 + 226 + 227 + 228 in
the PIO A Disable Register (see Section 6.6).

10.4 Graphics card driver
We now have everything we need to write functions to reset and configure the graphics
card (or GPU, for Graphics Processing Unit), and to draw text on the screen. We can
store them just after the clock driver functions, i.e., at address C02D816.

10.4.1 Low-level functions
Lets start with a gpu_reset() function, by using the RST pin. We assume here that
RST is connected to Arduino’s pin 20, corresponding PB12 (see Figure 6.1). Then, as
explained above, the reset function should set PB12 to 0, wait for 10ms, set it to 1,
and wait 10ms again. This is very similar to the LED blinking function, with PB27
replaced with PB12 and no loop (see Section 9.7):

gpu_reset()
fn 00 19 C02D8
cst 400E1000 03 +002
cst 00001000 03 +007
store 14 +00C
cst 400E1010 03 +00D
cst 00001000 03 +012
store 14 +017
cst 400E1060 03 +018
cst 00001000 03 +01D
store 14 +022

cst 400E1034 03 +023
cst 00001000 03 +028
store 14 +02D
cst8 0A 02 +02E
call 028B delay 1A +030
cst 400E1030 03 +033
cst 00001000 03 +038
store 14 +03D
cst8 0A 02 +03E
call 028B delay 1A +040
ret 1D +043
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We then need a function to configure and enable the SPI component:

spi_init()
Give control of the PA25, 26, 27, and

28 pins to the SPI component with the PIO
A Disable Register.

Enable the SPI component clock with
the PMC Peripheral Clock Enable Register.

Set the SPI component in master mode
with the SPI Mode Register.

Enable the SPI component with the SPI
Control Register.

Configure the SPI with a 4MHz clock
and 16 bits per transfer, sent when SCK is
rising (with the SPI Chip Select Register).

fn 00 19 C031C
cst 400E0E04 03 +002
cst 1E000000 03 +007
store 14 +00C
cst 400E0610 03 +00D
cst 01000000 03 +012
store 14 +017
cst 40008004 03 +018
cst_1 01 +01D
store 14 +01E
cst 40008000 03 +01F
cst_1 01 +024
store 14 +025
cst 40008030 03 +026
cst 00001582 03 +02B
store 14 +030
ret 1D +031

After that we can provide a spi_transfer function to send an arbitrary 16-bit
value on MOSI, passed as argument, and returning the received value on MISO:

spi_transfer(value)→ response
Wait until the current transmission, if

any, is done, i.e., wait until the t bit of
the SPI Status Register value x is 1 (⇔
x ∧ 2 ̸= 0).

Send the data in the function’s 0th ar-
gument by writing it in the SPI Transmit
Data Register.

Wait until the response is received on
MISO, i.e., wait until the r bit of the SPI
Status Register value x is 1 (⇔ x∧ 1 ̸= 0).

Read the response in the SPI Receive
Data Register and return it.

fn 01 19 C034E
cst 40008010 03 +002
load 13 +007
cst8 02 02 +008
and 08 +00A
cst_0 00 +00B
ifeq 0002 0D +00C
cst 4000800C 03 +00F
get 00 value 16 +014
store 14 +016
cst 40008010 03 +017
load 13 +01C
cst_1 01 +01D
and 08 +01E
cst_0 00 +01F
ifeq 0017 0D +020
cst 40008008 03 +023
load 13 +028
retv 1E +029

With this we can provide a function to write a value in a graphics card register.
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This function takes as arguments the register ID and the value to write into it:

gpu_set_register(id , value)
Call the spi_transfer function with

a Select Register command (bitwise OR of
the command type 800016 and the register
ID).

Call the spi_transfer function with
a Write Data command, whose type is
0016 (for safety, we keep only the 8 least
significant bits of the value), and return.

fn 02 19 C0378
cst 00008000 03 +002
get 00 id 16 +007
or 09 +009
call 034E spi_transfer 1A +00A
get 01 value 16 +00D
cst8 FF 02 +00F
and 08 +011
call 034E spi_transfer 1A +012
ret 1D +015

We can now use this function to configure the graphics card by writing the values
described in Section 10.2.1 in its registers, in order (R88← 6, R89← 1, R04← 8116,
etc). To reduce code size, we can store these bytes one after the other in memory (88,
06, 89, 01, 04, 81, etc). A function can then read them 2 by 2 and, for each pair, write
the register value with the previous function. Note however that we need to wait at
least 0.1ms after setting R88 and R89, and 100ms after writing in the Memory Clear
Control register. For this we can use pairs 00, x to mean “wait xms” (there is no R00
register). Our list thus becomes 88, 06, 00, 01, 89, 01, 00, 01, 04, 81, etc. By doing
this for all the register values computed in Section 10.2.1 we get the following list,
stored just after the previous function, i.e., in [C039016, C03C016[:

151B011A DF191917 03160415 63148104 01000189 01000688 C0390
1E44E040 0137DF36 03351F34 408A01C7 80016400 808E151D C03A8

In order to read this list we first need a function to read a single byte in memory:

load_byte(address)→ value
Load the word x at the given address

and return its 8 least significant bits x ∧
FF 16.

fn 01 19 C03C0
get 00 address 16 +002
load 13 +004
cst8 FF 02 +005
and 08 +007
retv 1E +008

A function to write a value in a graphics card register, or to wait for some time if
the register ID is 0, is also useful:

gpu_set_register_or_wait(id , value)
If the register ID is equal to 0, jump to

the last 3 instructions. Otherwise continue
to the next instructions.

The register ID is not 0: write value in
register id with gpu_set_register and

fn 02 19 C03C9
get 00 id 16 +002
cst_0 00 +004
ifeq 0010 0D +005
get 00 id 16 +008
get 01 value 16 +00A
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return.

The register ID is 0: wait for value ms
with delay and return.

call 0378 ...set_register 1A +00C
ret 1D +00F
get 01 value 16 +010
call 028B delay 1A +012
ret 1D +015

We can now implement a gpu_init function to reset and configure the graphics
card, by reading and setting all the register values in the above list. For this we use a
pointer p to the next pair to read in the list, stored in the 4th stack frame slot:

gpu_init()
Reset the graphic card. Configure the

SPI component to communicate with it.
Initialize p to the beginning of the list.
Call load_byte to push the byte at

address p on the stack (a register ID).
Call it again to push the byte at address

p+1 on the stack (the value to write in the
register).

Callgpu_set_register_or_waitwith
the above values as arguments.

Increment p by 2 to prepare reading
the next pair of values.

If p is not the end of the list, go back
to offset D16. Otherwise return.

fn 00 19 C03DF
call 02D8 gpu_reset 1A +002
call 031C spi_init 1A +005
cst 000C0390→ p 03 +008
get 04 p 16 +00D
call 03C0 load_byte 1A +00F
get 04 p 16 +012
cst_1 01 +014
add 04 +015
call 03C0 load_byte 1A +016
call 03C9 ...or_wait 1A +019

cst8 02 02 +01C
add 04 +01E
get 04 p 16 +01F
cst 000C03C0 03 +021
iflt 000D 0C +026
ret 1D +029

10.4.2 Drawing functions
To finish the graphics card driver we provide a function to clear the screen, and 3
functions for drawing text. The gpu_clear_screen function sets the s and a bits of
the Memory Clear Control register to 1 to start clearing the active window. It then
reads s back repeatedly, with Read Data commands (400016), until it is 0 (which
indicates that the operation is done):

gpu_clear_screen()
fn 00 19 C0409
cst8 8E 02 +002
cst8 C0 02 +004
call 0378 ...set_register 1A +006
cst 00004000 03 +009

call 034E spi_transfer 1A +00E
cst8 80 02 +011
and 08 +013
cst_0 00 +014
ifne 0009 10 +015
ret 1D +018
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The gpu_set_cursor function takes a column c and a row r as arguments,
expressed in number of characters, and writes 8c and 16r in the Font Write Cursor
registers (see Section 10.2.2 – recall that each character is 8×16 pixels). More precisely,
it writes 8c = c≪ 3 and 16r = r ≪ 4 in R2A and R2B, and 8c≫ 8 = c≫ 5 and
16r ≫ 8 = r ≫ 4 in R2C and R2D (recall that gpu_set_register keeps only the 8
least significant bits of its argument):

gpu_set_cursor(c, r )
fn 02 19 C0422
cst8 2A 02 +002
get 00 c 16 +004
cst8 03 02 +006
lsl 0A +008
call 0378 ...set_register 1A +009
cst8 2B 02 +00C
get 00 c 16 +00E
cst8 05 02 +010
lsr 0B +012
call 0378 ...set_register 1A +013

cst8 2C 02 +016
get 01 r 16 +018
cst8 04 02 +01A
lsl 0A +01C
call 0378 ...set_register 1A +01D
cst8 2D 02 +020
get 01 r 16 +022
cst8 04 02 +024
lsr 0B +026
call 0378 ...set_register 1A +027
ret 1D +02A

The gpu_set_color function takes 3 arguments r, g and b, and writes them in
the respective Foreground Color registers:

gpu_set_color(r , g , b)
fn 03 19 C044D
cst8 63 02 +002
get 00 r 16 +004
call 0378 ...set_register 1A +006
cst8 64 02 +009

get 01 g 16 +00B
call 0378 ...set_register 1A +00D
cst8 65 02 +010
get 02 b 16 +012
call 0378 ...set_register 1A +014
ret 1D +017

Finally, the gpu_draw_char function draws the character given as argument by
writing it in the R02 register with gpu_set_register:

gpu_draw_char(c)
fn 01 19 C0465
cst8 02 02 +002

get 00 c 16 +004
call 0378 ...set_register 1A +006
ret 1D +009

10.4.3 Summary
In summary, our graphics card driver provides the functions shown in Table 10.3 and
its full code is:

14000010 0003400E 10100314 00001000 03400E10 00030019 C02D8
0A021400 00100003 400E1034 03140000 10000340 0E106003 C02F0
04030019 1D028B1A 0A021400 00100003 400E1030 03028B1A C0308
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Function Address
gpu_clear_screen() C0409 (C000016+1033)
gpu_draw_char(c) C0465 (C000016+1125)
gpu_init() C03DF (C000016+991)
gpu_set_color(r , g , b) C044D (C000016+1101)
gpu_set_cursor(c, r ) C0422 (C000016+1058)
gpu_set_register(id , value) C0378 (C000016+888)
load_byte(address) → value C03C0 (C000016+960)
spi_transfer(value) → response C034E (C000016+846)

TABLE 10.3 The most important graphics card driver functions.

00800403 14010000 0003400E 06100314 1E000000 03400E0E C0320
01191D14 00001582 03400080 30031401 40008000 03140140 C0338
80100314 00164000 800C0300 020D0008 02021340 00801003 C0350
16000080 00030219 1E134000 80080300 170D0008 01134000 C0368
01000189 01000688 00001D03 4E1A08FF 02011603 4E1A0900 C0380
80016400 808E151D 151B011A DF191917 03160415 63148104 C0398
08FF0213 00160119 1E44E040 0137DF36 03351F34 408A01C7 C03B0
191D028B 1A01161D 03781A01 16001600 100D0000 1602191E C03C8
03C01A04 01041603 C01A0416 000C0390 03031C1A 02D81A00 C03E0
1AC0028E 0200191D 000D0C00 0C03C003 04160402 0203C91A C03F8
00162A02 02191D00 09100008 8002034E 1A000040 00030378 C0410
1A0A0402 01162C02 03781A0B 05020016 2B020378 1A0A0302 C0428
64020378 1A001663 0203191D 03781A0B 04020116 2D020378 C0440

1D0378 1A001602 0201191D 03781A02 16650203 781A0116 C0458

Lets store it in flash memory. To avoid you some typing we provide the necessary
boot assistant commands in part2/graphics_card_driver.txt. Run them with:
user@host:~$ python3 flash_helper.py < part2/graphics_card_driver.txt
>Reading page 1026... Done.
Reading page 1027... Done.
Reading page 1028... Done.
Writing page 1026... Done.
Writing page 1027... Done.
Writing page 1028... Done.
>Done.

10.5 Experiments
In order to test our driver we can try to display the traditional “Hello, World!" message
on the screen. First of all, we need to connect together the Arduino, the graphics card
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and the LCD. For this the easiest way is to use a breadboard (see Table A.1). Still,
this requires soldering header pins on the Adafruit RA8875 driver board. For this the
easiest is to plug the header pins on the breadboard as shown in Figure 10.6, place
the board on top of them, and solder the pins in place (see more detailed instructions
at https://ebruneton.github.io/toypc/assembly.html). Then connect the LCD 40-pin
flat cable to the board: slide out the black “ears” on each side of the board connector,
insert the flat cable with the pins oriented as shown in Figure 10.6, and slide the ears
back in. Finally, using jumper wires, connect:

• the VIN and GND pins to the Arduino’s 3.3V and GND pins,
• the RST pin to the Arduino pin 20 (as assumed in the gpu_reset function),
• the MISO, MOSI and SCK pins to the Arduino’s PA25, PA26 and PA27 pins,

respectively (near the SAM3X8E chip, see Figure 6.1),
• the CS pin to the Arduino’s PA28 pin, corresponding to pin 10 (see Figure 6.1).

We can then write a main function, at its expected address C200016 (see Figure 9.2),
to display “Hello, World!” on the screen. For this we need the ASCII code of these
characters: 4816 for “H”, 6516 for “e”, etc (see Appendix B). We can store them in a
list, starting a bit after the main function, for instance C208016:

21 646C726F 57202C6F 6C6C6548 C2080

We start the main function with calls to boot_mode_select_rom, clock_init,
and gpu_init (see Tables 9.3 and 10.3).

fn 00 19 C2000
call 02B4 ...select_rom 1A +002

call 0200 clock_init 1A +005
call 03DF gpu_init 1A +008

We then set the foreground color to green and the cursor position to (20, 3):

cst_0 00 +00B
cst8 07 02 +00C
cst_0 00 +00E
call 044D gpu_set_color 1A +00F

cst8 14 02 +012
cst8 03 02 +014
call 0422 ...set_cursor 1A +016

Finally, we draw the characters by using a loop, with a pointer p to the next
character to draw stored in the 4th stack frame slot:

Initialize p to point to the 1st character.
Load the byte at address p and draw it

with gpu_draw_char.

Increment p by 1 to prepare drawing
the next character.

If p is not the end of the list of char-

cst 000C2080→ p 03 +019
get 04 p 16 +01E
call 03C0 load_byte 1A +020
call 0465 gpu_draw_char 1A +023
cst_1 01 +026
add 04 +027
get 04 p 16 +028
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FIGURE 10.6 How to connect the Arduino Due, the Adafruit RA8875 driver board and
the LCD with a breadboard.
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acters, go back to offset 1E16. Otherwise
loop forever doing nothing.

cst 000C208D 03 +02A
iflt 001E 0C +02F
goto 0032 12 +032

To run this main function we need to store it in flash memory and to restart the
Arduino with the boot mode selection set to boot from flash. We provide the necessary
boot assistant commands in part2/graphics_card_driver_test.txt. Run them
with:
user@host:~$ python3 flash_helper.py < part2/graphics_card_driver_test.txt
>Reading page 1056... Done.
Writing page 1056... Done.
>Done.

If all goes well, you should see a green “Hello, World!” message on the screen,
followed by a blinking cursor! Note that if you press the RESET button on the
Arduino, the message does not disappear, although the Arduino is now running the
boot assistant. Indeed, the graphics card is running independently, and is not reset
when the Arduino is. This is why we reset it explicitly with the gpu_reset function.
You can now turn off the Arduino, which also turns off the graphics card and the LCD.
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CHAPTER

Keyboard Driver

In this chapter we continue to assemble our toy computer by connecting a keyboard
to the Arduino, and by writing a program to use it. We first present how keyboards
work, how they communicate with computers, and how programs can use them. We
then write such a program, called the keyboard driver. Finally, we test it with a small
application displaying on the screen all the keys typed on the keyboard.

11.1 Keyboard
A computer needs to know which keys of a keyboard are pressed at any given time
(several keys can be pressed simultaneously). If the keyboard had only one key, this
would be very easy to do. Indeed, one could then use a push button switch connected
on one end to VCC and on the other to an input pin of the microprocessor. A program
running on the microprocessor could then read the value v of this input pin to know
whether the key is pressed (v = 1) or not (v = 0). However, keyboards usually have
about 100 keys. With this simple method, one would need about 100 input pins on the
microprocessor to know which keys are pressed or not.

A solution to this problem is to still use one push button switch per key, but to
connect them to a grid of wires as shown in Figure 11.1. In this design, each column
wire is connected to an output pin, and each row wire is connected to an input pin. To
know which keys are pressed, one can set each output pin to 1, one by one, and then
read the values of the input pins. Indeed, the key at row y and column x is pressed if
and only if row y is 1 when column x is 1. With this method, only 20 pins are needed
for 100 keys (10 column output pins and 10 row input pins). The drawback is that
columns must be scanned one by one. This scan could be done by the computer, but
this would require a keyboard plug with at least 20 pins. To avoid this, the following
method can be used:

• Continuously scan the grid as described above with a small chip inside the keyboard.
This requires about 20 pins but this is fine, since they are internal.
• When the state of a key has changed since the last scan, send some data to the

computer indicating which key is concerned, and whether it became pressed or
released. This data can be sent one bit at a time over a single pin.

In fact this is what PS/2 (for Personal System/2) keyboards do. Since this method is
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xColumn x+ 1 x+ 2

Y6-pin cable
Row y

Row y + 1

U I

H J K

FIGURE 11.1 A schematic view of a possible keyboard circuit. Each key is a push
button switch connected to a grid of wires. Setting exactly one column to VCC (in red)
sets the rows of the pressed keys (in gray) in this column to VCC too. Diodes prevent
ghosting: without them, if “I” was pressed too, “J” would incorrectly be considered
as pressed because row y + 1 would be at VCC too (via the dotted path).

much simpler than the one used by USB keyboards, we use such a keyboard for our
toy computer, namely a MCSaite model (see Table A.1). Any other keyboard might
not work with our driver1.

11.1.1 Scancodes
When a key is pressed or released, a PS/2 keyboard sends to the computer one or
more bytes, called scancodes. There are several standardized sets of scancodes. The
one used by the MCSaite keyboard is IBM PC “set 2” (see Appendix C). With this
standard, most keys emit a single scancode when pressed. For instance, pressing the
“A” key emits the scancode 1C16. These keys emit the same scancode when they are
released, preceded by F016. For instance, releasing the “A” key emits F016, 1C16.

A few other keys emit two scancodes when pressed, with the first one always
equal to E016. For instance, pressing the “PageUp” key emits E016, 7D16. When
released, these keys emit the same last scancode, preceded by E016, F016. For instance,
releasing the “PageUp” key emits E016, F016, 7D16.

Finally, two keys are exceptions to these rules. “PrintScreen” emits 4 scancodes
when pressed (E016, 1216, E016, 7C16), and 6 when released (E016, F016, 7C16, E016,
F016, 1216). “Pause” emits 8 scancodes when pressed (E116, 1416, 7716, E116, F016,
1416, F016, 7716), and no scancodes when released.

Note that scancodes are different from ASCII codes. One reason is that some keys
do not have any equivalent ASCII code, such as the “PageUp” key. Another reason is
that some keys have two corresponding ASCII codes, such as the “A” key (one for “a”,
and one for “A”). However, most programs need ASCII codes instead of scancodes.
For instance, an ASCII code is needed to draw a character on the screen. A small
program is thus needed to convert scancodes to ASCII codes.

1Especially USB-only keyboards, even with the USB to PS/2 plug adapter provided with the MCSaite.
This adapter works with the MCSaite because this keyboard supports both protocols.
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FIGURE 11.2 The signals output by a PS/2 keyboard. Each scancode is sent on the
DATA pin, one bit per CLOCK cycle, starting with the least significant. It is preceded
by a “start” bit (always 0) and followed by a “parity” bit and a “stop” bit (always 1).

11.1.2 Communication protocol
A PS/2 keyboard uses a 6-pin mini-DIN connector to send the above scancodes to the
computer. Two pins are unused. Two other pins, GND and VCC, are inputs provided
by the computer to power the keyboard. One pin, named CLOCK, is a clock signal
generated by the keyboard. Finally, the last pin, named DATA, is used to actually
send data. Each scancode is sent separately, one bit bi at each clock cycle, as shown
in Figure 11.2. These 8 bits are preceded by a “start” bit and followed by a “parity”
bit and a “stop” bit. The parity bit p is computed so that b0 + b1 + . . .+ b7 + p is odd
(this is called odd parity). It is used to detect transmission errors (if the previous sum,
computed by the receiver, is even, then at least one received bit is incorrect).

This communication protocol is qualified as serial and synchronous. Serial means
that one bit is transmitted at a time. The opposite, i.e., transmitting several bits at a
time, like a 40-pin LCD connector does, is called parallel transmission. Synchronous
means that a separate clock signal is used, indicating when the data signal can be
read (depending on the protocol, this can be when the clock signal is 0, when it is
rising, when it is falling, etc). The opposite, i.e., not using any clock signal, is called
asynchronous transmission. In this case the receiver and the transmitter must agree
on a bit rate beforehand.

11.2 Universal Synchronous Asynchronous
Receiver Transmitter

At this stage, “all we have left to do” is to write a program to read the above signals,
recover the corresponding scancodes, and then the corresponding ASCII codes. This
could be done with the PIO controller, but there is a much simpler method. Indeed,
the Arduino microcontroller has a dedicated component to interact with almost any
device using a serial communication method, be it synchronous or asynchronous. It
is called the Universal Synchronous Asynchronous Receiver Transmitter (USART)
component. This section gives an overview of this component and explains how to
use it. A complete description can be found in Chapter 35 of [8].

The core part of the USART component is similar to the SPI component (see
Section 10.3). Indeed, this component is a hardware circuit which can receive serial
data on an input pin called RXD, and transmit data on an output pin called TXD,

145



CHAPTER 11 Keyboard Driver

TXD

RXD

SCK

PA10

PA11

PA17

Mode

PI
O

Co
nt

ro
lle

r

Po
w

er
M

an
ag

em
en

tC
on

tr
ol

le
r

Peripheral Clock 17

St
at

us

US
AR

T_
IN

T Ch
an

ne
l

Transmit Holding

Receive Holding

0 0
07

...

0 0
45

... ...

0 0
07

...

Clock Generator

0
0

FIGURE 11.3 A simplified representation of the Universal Synchronous Asynchronous
Receiver Transmitter (USART) circuit and registers (in gray).

Name Type Address
Control Register Write-Only 4009800016

Mode Register Read-Write 4009800416

Interrupt Enable Register Write-Only 4009800816

Channel Status Register Read-Only 4009801416

Receiver Holding Register Read-Only 4009801816

TABLE 11.1 The Universal Synchronous Asynchronous Receiver Transmitter registers
used in this book.

synchronously or not with a clock signal on a SCK pin (see Figure 11.3). This is
similar to the MISO, MOSI, and SCK pins of the SPI component, respectively. This
component is also based on 3 main registers, similar to the SPI Transmit Data, SPI
Receive Data, and SPI Channel Registers (see Table 11.1):

• The Transmit Holding Register. Writing a value in this register sends it on the TXD
pin.
• The Receive Holding Register. Values received on the RXD pin are stored in this

register.
• The Channel Status Register. This read-only register has the following binary

format (we show only the bits that we use):
000000000000000000000000000000 srst

where st is 0 while a value is being sent (and 1 when this is done), and sr is 1 iff a
new value has been received since the last read of the Receive Holding register.

The USART component must also be configured before being used, as the SPI
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component. The main register which can be used to do this is the Mode Register,
similar to the SPI Channel Select Register. Indeed this register has the following
binary format (we show only the bits that we use):

000000000000000000000 clkbitssparitystopo

• The clk field indicates which clock signal to use for SCK. One option is to use the
Peripheral Clock provided by the PMC. Another option, corresponding to clk = 3,
is to use the signal provided by the external device (in our case the beyboard).
• The bits field indicates that bits+ 5 bits are sent or received at a time.
• The s field indicates if the component should operate in synchronous mode (s = 1)

or in asynchronous mode (s = 0).
• The parity field indicates how the parity bit p is computed (see Section 11.1.2).

Odd parity corresponds to parity = 1.
• The stop field indicates how many stop bits are used. stop = 0 corresponds to one

stop bit, while stop = 2 corresponds to two stop bits.
• The o field indicates if least significant bit is sent first (o = 0), or if the most

significant bit is sent first (o = 1).

In our case we need clk = 3, bits = 3, s = 1, parity = 1, stop = 0 and
o = 0 (see Figure 11.3). We thus need to set the Mode Register to 3F016. Another
configuration register is the Interrupt Enable Register. This register has the following
binary format (we show only the bits that we use):

000000000000000000000000000000 irit

Setting ir = 1 (resp. it = 1) means that an interrupt (see Sections 7.1 and 7.4) should
be triggered when the Channel Status sr bit (resp. st bit) is 1 (setting ir or it to 0 has
no effect). This process is explained in more details in the next section.

Finally, in order to be used, the USART component must be enabled. This can be
done with the Control Register, which has the following binary format (we show only
the bits that we use):

000000000000000000000000000000 eret

Setting er = 1 enables the receiver part, while setting et = 1 enables the transmitter
part (in our case we just need the receiver part). The USART internal clock, the
Peripheral Clock 17 (see Figure 11.3), must also be enabled (even if an external SCK
is used). This can be done by writing the value 217 in the PMC Peripheral Clock
Enable Register (see Section Section 9.1). Last but not least, the RXD and SCK pins
must be configured as input pins (we don’t need to configure the TXD pin since we
don’t use it). This can be done by setting the corresponding bits to 1 in the PIO Status
Register and to 0 in the PIO Output Status Register (see Section 6.6). In fact the
default value of the PIO Output Status Register is 0, so we just need to configure the
PIO Status Register. Since the RXD and SCK pins correspond to PA10 and PA17 (see
Figure 11.3), this can be done by writing the value 210 + 217 in the PIO A Enable
Register.
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11.3 Nested Vector Interrupt Controller
Thanks to the USART component, a program could periodically read the Channel
Status register to check if a new scancode has been received from the keyboard. If so,
it could then read it in the Receive Holding register. However, this method has an
important drawback: if two or more scancodes are received since the last check, only
the last one is available in the Receive Holding register (new values override previous
ones). Some keys typed during this time could thus be missed. Even worse, some
keys could be interpreted incorrectly. For instance, if the “PageUp” key is pressed,
which emits E016, 7D16, and if E016 is missed, the above program would just get
7D16, which is the scancode emitted by the “9” key on the numeric pad. It would thus
consider that this key was pressed, which is wrong.

In order to solve this problem we must make sure to not miss any scancode. This
can be done with an interrupt, triggered each time a new value is received by the
USART component. Recall that when an interrupt is triggered, execution jumps
to an interrupt handler, at an address given by the Vector Table (see Sections 7.1
and 7.4). In our case, this handler could read the scancode, store it in an unused
memory location, and return to the main program. This takes much less time than the
reception of a scancode (the CLOCK frequency is at most 16.7kHz). Thus, provided
there is enough unused memory to store received scancodes that have not yet been
read by the main program, no scancode would be missed.

11.3.1 Interrupt status
In order to use interrupts, one must enable them first. The USART component can
trigger an interrupt when a new value is received, when a value has been transmitted,
etc. The first step is to choose which event(s) should trigger an interrupt. This is done
with the USART Interrupt Enable Register presented in the previous section. The
second step is to enable these interrupts in the Nested Vector Interrupt Controller
(NVIC). This component provides two main registers to enable or disable the interrupts
triggered by each peripheral (see Table 11.2):

• The Interrupt Set-Enable Register. Setting the bit i of this register to 1 enables the
interrupts from peripheral number i (recall that peripherals are numbered, e.g., 17
for USART, 24 for SPI, etc – see Figure 6.2). Setting a bit to 0 has no effect.
• The Interrupt Clear-Enable Register. Setting the bit i of this register to 1 disables

the interrupts from peripheral number i. Setting a bit to 0 has no effect.

Note that if a scancode is received while the USART interrupt is disabled in the
NVIC (but not at the USART level), its handler is not executed, but the interrupt
becomes pending. When a pending interrupt is enabled, it becomes active, i.e., its
handler is executed. It is thus possible to temporarily disable the USART interrupt,
without loosing any scancode, provided that the interrupt is not disabled for too long
(i.e., such that at most one scancode can be received during this time).
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Name Type Address
Interrupt Set-Enable Register Read-Write E000E10016

Interrupt Clear-Enable Register Read-Write E000E18016

TABLE 11.2 The Nested Vector Interrupt Controller registers used in this chapter.

11.3.2 Interrupt handler entry and return
When an interrupt from peripheral number i becomes active, execution jumps to the
interworking address stored in the (16 + i)th entry of the Vector Table, i.e., at offset
4(16 + i) from the beginning of this table. Thus, for instance, when the USART
interrupt becomes active, execution jumps to the interworking address at offset 8416.

Before this, however, the microprocessor pushes on the stack the address of the
instruction to return to when the handler terminates. It also pushes on the stack the
current value of some registers, including R0, R1, R2, R3, and the Link Register (LR).
Finally, the microprocessor sets the LR to a special value, called EXC_RETURN,
and starts executing the interrupt handler by moving its interworking address into the
Program Counter (Chapter 23 gives more details about this).

The interrupt handler can return and resume execution in the interrupted program by
copying this EXC_RETURN value into the PC. When this happens, the microprocessor
pops the values pushed above to restore the register values as they were before the
interrupt. An interrupt handler can thus simply push the LR on the stack when it
starts, and finally pop it into the PC to resume execution of the interrupted program.

11.4 Keyboard driver
We now have everything we need to write our keyboard driver. We start with a
presentation of its goal and of the method used to achieve it. We then provide the
corresponding implementation.

11.4.1 Design
The main goal of the keyboard, for our basic input output system, is to input data
without needing an external computer. Any data can be represented with 0s and 1s
and thus, in theory, we just need two keys, or even just one. But this would not be very
practical. On the other hand, we don’t need to handle all keys, nor all combinations
of keys (such as Ctrl+C, Ctrl+V, etc). In order to get a practical but simple driver
we thus make the following choices. First, the driver should not output anything
when a key is released. Second, when a key is pressed, the driver should output the
corresponding ASCII code if there is one. If there are two, it should output one or
the other, depending on whether the Shift key is pressed or not. If there are none, it
should output some code between 128 and 255 (ASCII codes are between 0 and 127
included).
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Finite State Machine
In the following we call character a byte value which is either an ASCII code or,
if larger than 128, some value representing a key without ASCII code. The main
goal of our driver is thus to transform the sequence of scancodes into a sequence of
characters. As explained in Section 11.1.1, besides two exceptions, this sequence is
made of subsequences of the form (x), (F016, x), (E016, x), or (E016, F016, x). The
driver should thus react differently when a scancode xt is received, depending on the
previous scancode xt−1 (we ignore the exceptions and the Shift key for now):

• if xt−1 = F016, do nothing since (. . . , F016, xt) corresponds to a key release,
• if xt−1 = E016 and xt ̸= F016, output the character corresponding to (E016, xt),
• if xt−1 = E016 and xt = F016, do nothing,
• otherwise, if xt /∈ {F016, E016}, output the character corresponding to (xt).

Said otherwise, at any time t, the driver can be in 3 different states St, which can
be noted 1 for xt−1 = F016, 2 for xt−1 = E016, and 0 for all other cases. Each input
xt triggers an action A (output a character or do nothing) which depends on St and
xt. It also makes the driver transition to a new state St+1, depending on xt. This can
be summarized in a transition table, or represented in a diagram, as follows:

other
c(x)

0

1

2

F0
∅

F0
∅

other
∅

other
e(x)E0

∅

xt = F016 xt = E016 otherwise
St+1 A St+1 A St+1 A St

1 ∅ 2 ∅ 0 c(xt) 0
– – – – 0 ∅ 1
1 ∅ – – 0 e(xt) 2

where ∅means “do nothing”, c(x) and e(x) mean “output the character corresponding
to (x) and (E016, x)”, respectively, and “–” are cases which cannot happen. Such a
system is called a finite state automaton or finite state machine.

To handle the Shift key2 we can use a bit s set to 1 when this key is pressed (which
emits 1216) and reset to 0 when it is released (which emits F016, 1216). This adds a
new column and two actions in the transition table (an alternative is to duplicate each
state, but this gives a larger transition table):

xt = 1216 xt = F016 xt = E016 otherwise
0 s← 1 1 ∅ 2 ∅ 0 c(xt, s) St = 0

0 s← 0 – – – – 0 ∅ St = 1

– – 1 ∅ – – 0 e(xt, s) St = 2

where c(xt, s) and e(xt, s) are now extended to output one character or another,
depending on the Shift key state s.

2The MCSaite keyboard has only a left Shift key. We thus ignore the right Shift key (which emits 5916).
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The exception sequence (E116, 1416, 7716, E116, F016, 1416, F016, 7716) for the
“Pause” key can be seen as 3 sequences (E116, 1416, 7716), (E116, F016, 1416), and
(F016, 7716). The last one is already handled. The first two can be managed with a
new state S = 3, a transition from S = 0 to S = 3 when xt = E116, and from S = 3
to S = 1 for any scancode. Indeed, with the next transition from S = 1 to S = 0, this
reads 3 scancodes. To simplify we use empty actions for these transitions, i.e., we do
nothing when “Pause” is pressed.

Finally, the exception sequence (E016, 1216, E016, 7C16) emitted by “PrintScreen”
can be seen as two normal sequences. We can then do nothing for the first, and
associate the second with “PrintScreen”. One issue is that releasing this key emits
(. . . , E016, F016, 1216). With the above transition table, this is interpreted as releasing
the Shift key, which is wrong. To detect this case we introduce a fifth state, S = 4.
This leads to our final transition table:

xt = 1216 xt = F016 xt = E016 xt = E116 otherwise
0 s← 1 1 ∅ 2 ∅ 3 ∅ 0 c(xt, s) St = 0

0 s← 0 – – – – – – 0 ∅ St = 1

0 ∅ 4 ∅ – – – – 0 e(xt, s) St = 2

– – 1 ∅ – – – – 1 ∅ St = 3

0 ∅ – – – – – – 0 ∅ St = 4

Character queue
Some actions of the above finite state machine “output a character”, but what does
this mean exactly? For the reasons explained in Section 11.3, we want to implement
this machine in an interrupt handler. The output characters should thus be stored
somewhere in memory, where the main program can later read them. To simplify, we
use a single byte storage b, at a fixed memory address, and use b = 0 to represent an
empty storage (this value cannot be output by any key). The action “output a character
c” can then be specified as follows:

put_char(c): if b = 0 store c in b, otherwise do nothing (i.e., drop c).

The main program could then read a character with the following function, which
returns a character c if there is one in storage, or 0 otherwise:

get_char(): copy b in c, then store 0 in b, then return c.

In fact this function has a bug. Indeed, it can be interrupted at any time. The
put_char function might therefore be called at any time, for instance between the first
and second steps of get_char. The following scenario could then happen: b is currently
0, the first step stores 0 into c, put_char(d) runs and stores d in b, get_char resumes,
stores 0 in b and returns 0. The end result is that d is lost! To avoid this, a solution is
to disable the USART interrupt at the beginning of get_char, and to re-enable it at the
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end (before the return). This ensures a mutual exclusion of the instructions using the
shared storage b, via their atomicity (i.e., the fact that they can’t be interrupted).

Note that characters could still be dropped, in put_char, if they are typed faster
than they are read. To avoid this more memory could be used to store them in a queue,
until they are read. A queue is a “First In, First Out” (FIFO) data structure. It is a bit
more complex to implement than a stack – a “Last In, First Out” (LIFO) data structure,
which is why we use a single byte storage instead.

Character tables
To complete our design we need to specify the above c(x, s) and e(x, s) functions.
The latter corresponds to keys which don’t have ASCII codes (except the numeric pad
“/” and “Enter” keys). We can thus choose e(x, s) as we want in [128, 255]. Note also
that x < 128 in (E016,x) sequences (see Appendix C). Hence, and since Shift has no
effect on these keys, we can simply use e(x, s) = x+ 128.

The c(x, s) function can be obtained by combining the tables in Appendices B
and C. For instance, c(1C16, s) is obtained by looking up the key corresponding to
(1C16), namely “a / A”, and then by looking up the ASCII codes for “a” and “A”,
namely 6116 and 4116. This gives c(1C16, 0) = 6116 and c(1C16, 1) = 4116. Some
(x) sequences do not have any associated ASCII code, such as 0116. In such cases
we can set c(x, s) to any value in [128, 255] not already used. Finally, we can use
c(x, s) = 0 for cases which cannot happen, such as x = 0016. By doing this for all
scancodes, and with the choices listed in Table 11.3, we get the following character
tables for s = 0 and s = 1, each with 132 elements (listed from right to left):

00 31 71 8C 00 00 8D 00 00 60 09 83 85 87 89 00 8B 81 80 82 84 00 88 00
00 35 72 74 66 76 20 00 00 33 34 65 64 78 63 00 00 32 77 61 73 7A 00 00
00 39 30 6F 69 6B 2C 00 00 38 37 75 6A 6D 00 00 00 36 79 67 68 62 6E 00
00 00 5C 00 5D 0A 00 8F 00 00 3D 5B 00 27 00 00 00 2D 70 3B 6C 2F 2E 00
8E 1B 38 36 35 32 2E 30 00 00 00 37 34 00 31 00 00 08 00 00 00 00 00 00

86 00 00 00 00 90 39 2A 2D 33 2B 8A
00 21 51 8C 00 00 8D 00 00 7E 09 83 85 87 89 00 8B 81 80 82 84 00 88 00
00 25 52 54 46 56 20 00 00 23 24 45 44 58 43 00 00 40 57 41 53 5A 00 00
00 28 29 4F 49 4B 3C 00 00 2A 26 55 4A 4D 00 00 00 5E 59 47 48 42 4E 00
00 00 7C 00 7D 0A 00 8F 00 00 2B 7B 00 22 00 00 00 5F 50 3A 4C 3F 3E 00
8E 1B 38 36 35 32 2E 30 00 00 00 37 34 00 31 00 00 08 00 00 00 00 00 00

86 00 00 00 00 90 39 2A 2D 33 2B 8A

11.4.2 Implementation
We can finally implement our keyboard driver. We start by storing the above tables
just after the graphics card driver, i.e., at address C047016. The value c(x, s) is then
given by the byte at offset x+ 132s from this address. We continue with a function to
initialize the driver state (S, s, and b) and the USART component:
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Key Char Key Char Key Char Key Char
F1 80 F6 85 F11 8A CapsLock 8F
F2 81 F7 86 F12 8B ScrollLock 90
F3 82 F8 87 Ctrl (left) 8C
F4 83 F9 88 Alt (left) 8D
F5 84 F10 89 NumLock 8E

TABLE 11.3 The characters chosen for keys without ASCII code.

keyboard_init()
InitializeS, s, and b to 0. Each could be

stored in one byte but, in order to simplify
the code, we use one word for each, at
addresses 400E1A9016, 400E1A9416, and
400E1A9816, respectively. These are some
“General Purpose Backup Registers” in the
“Controllers” memory region (see Figure
6.3 and Chapter 17 in [8]).

Configure the PA10 and PA17 pins as
inputs with the PIO A Enable Register.

Enable the USART component clock
(Peripheral clock 17) with the Peripheral
Clock Enable Register.

Configure the USART component for
the PS/2 signals with the USART Mode
Register (see Section 11.2).

Configure the USART component to
trigger an interrupt when a scancode is
received, with the USART Interrupt Enable
Register.

Enable the USART interrupt with the
NVIC Interrupt Set-Enable Register.

Enable the USART receiver with the
USART Control Register and return.

fn 00 19 C0578
cst 400E1A90 03 +002
cst_0 00 +007
store 14 +008
cst 400E1A94 03 +009
cst_0 00 +00E
store 14 +00F
cst 400E1A98 03 +010
cst_0 00 +015
store 14 +016
cst 400E0E00 03 +017
cst 00020400 03 +01C
store 14 +021
cst 400E0610 03 +022
cst 00020000 03 +027
store 14 +02C
cst 40098004 03 +02D
cst 000003F0 03 +032
store 14 +037
cst 40098008 03 +038
cst_1 01 +03D
store 14 +03E

cst E000E100 03 +03F
cst 00020000 03 +044
store 14 +049
cst 40098000 03 +04A
cst8 10 02 +04F
store 14 +051
ret 1D +052

We then implement the put_char and get_char functions, as well as a wait_char
function which repeatedly calls get_char until it returns a non-zero value:
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keyboard_put_char(c)
If b ̸= 0 go to the end of the function

(the character queue is full, drop c).

Store c (the function’s 0th argument)
in b.

Return.

keyboard_get_char()→ c
Disable the USART interrupt with the

NVIC Interrupt Clear-Enable Register.

Push b on the stack. This is the value
returned by the retv instruction below.

Store 0 in b.

Re-enable the USART interrupt with
the NVIC Interrupt Set-Enable Register.

Return the top stack value.

keyboard_wait_char()→ c
Initialize c to 0.
Call keyboard_get_char and store

the result in c.
If c is 0 go back above to try again.

Otherwise return c, the top stack value.

fn 01 19 C05CB
cst 400E1A98 03 +002
load 13 +007
cst_0 00 +008
ifne 0014 10 +009
cst 400E1A98 03 +00C
get 00 c 16 +011
store 14 +013
ret 1D +014

fn 00 19 C05E0
cst E000E180 03 +002
cst 00020000 03 +007
store 14 +00C
cst 400E1A98 03 +00D
load 13 +012
cst 400E1A98 03 +013
cst_0 00 +018
store 14 +019
cst E000E100 03 +01A
cst 00020000 03 +01F
store 14 +024
retv 1E +025

fn 00 19 C0606
cst_0 → c 00 +002
call 05E0 ...get_char 1A +003
set 04 c 17 +006
get 04 c 16 +008
cst_0 00 +00A
ifeq 0003 0D +00B
retv 1E +00E

The put_char function allows us to implement the actions of our Finite State
Machine. We use one function per action, for the “do nothing”, “s← 0”, “s← 1”,
“output e(x, s)” and “output c(x, s)” actions, respectively:

keyboard_skip_code(scancode)
Do nothing.

keyboard_release_shift(scancode)
Set s to 0.

fn 01 19 C0615
ret 1D +002
fn 01 19 C0618
cst 400E1A94 03 +002
cst_0 00 +007
store 14 +008
ret 1D +009
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keyboard_press_shift(scancode)
Set s to 132. We premultiply s by

132 to simplify the keyboard_put_code
function below.

keyboard_put_extended_code(scancode)
Output e(scancode, s) = scancode+

128 with the keyboard_put_char func-
tion.

keyboard_put_code(scancode)
Compute the address of the byte con-

taining c(scancode, s), namely C047016

+ scancode + s (s is premultiplied by 132,
see above).

Call load_byte to load the byte at this
address, output it withkeyboard_put_char.

fn 01 19 C0622
cst 400E1A94 03 +002
cst8 84 02 +007
store 14 +009
ret 1D +00A
fn 01 19 C062D
get 00 scancode 16 +002
cst8 80 02 +004
add 04 +006
call 05CB ...put_char 1A +007
ret 1D +00A
fn 01 19 C0638
cst 000C0470 03 +002
get 00 scancode 16 +007
add 04 +009
cst 400E1A94 03 +00A
load 13 +00F
add 04 +010
call 03C0 load_byte 1A +011
call 05CB ...put_char 1A +014
ret 1D +017

In turn, these functions allow us to implement the transition table of the Finite
State Machine. We represent it with one byte per cell, from right to left and top to
bottom. We store in each “action” cell the address of the corresponding function
(minus the address of keyboard_skip_code so that the result fits in one byte). We
also premultiply the “next state” cell values by 10, the number of columns, so that a
state value directly gives the offset of the beginning of its row in the transition table.
The end result, with 0s for the “cannot happen” cases, is the following data, stored
just after the above functions:

00000018 00030000 00000000 0000000D 0A001400 1E000023 C0650
00000000 00000000 00000A00 00000000 0A000000 28000000 C0668

0000 C0680

In order to read the action and next state corresponding to a scancode in this table,
it is useful to have a function returning its “action column” index (numbered from
right to left):

keyboard_action_column(scancode)→
c

If scancode ̸= 1216, skip the next two
instructions.

Otherwise (scancode = 1216) return
8.

fn 01 19 C0682
get 00 scancode 16 +002
cst8 12 02 +004
ifne 000C 10 +006
cst8 08 02 +009
retv 1E +00B
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If scancode ≥ 132, skip the next two
instructions.

Otherwise (scancode < 132) return 0.

If scancode ̸= E016, skip the next two
instructions.

Otherwise (scancode = E016) return
4.

If scancode ̸= F016, skip the next two
instructions.

Otherwise (scancode = F016) return
6.

In any other case return 2 (scancode
is necessarily equal to E116).

get 00 scancode 16 +00C
cst8 84 02 +00E
ifge 0015 11 +010
cst_0 00 +013
retv 1E +014
get 00 scancode 16 +015
cst8 E0 02 +017
ifne 001F 10 +019
cst8 04 02 +01C
retv 1E +01E
get 00 scancode 16 +01F
cst8 F0 02 +021
ifne 0029 10 +023
cst8 06 02 +026
retv 1E +028
cst8 02 02 +029
retv 1E +02B

With this we can finally implement the interrupt handler. This function reads a
scancode and executes the corresponding Finite State Machine transition:

keyboard_handler()
Read the newly received scancode x in

the USART Receive Holding Register.
Compute the address a of the transi-

tion table row corresponding to the current
state (C065016 + S, since state values are
premultiplied by 10).

Add the action column index ofx (avail-
able in the 4th stack frame slot) to a, with
the help of keyboard_action_column.

Push x on the stack.
Compute the address of the action func-

tion C061516 + load_byte(a) (a is in the
5th stack frame slot).

Call this function on x (pushed above).
Update S to the next state value, given

by load_byte(a+ 1), and return.

fn 00 19 C06AE
cst 40098018 03 +002
load → x 13 +007
cst 000C0650 03 +008
cst 400E1A90 03 +00D
load 13 +012
add → a 04 +013
get 04 x 16 +014
call 0682 ...action_column 1A +016
add 04 +019
get 04 x 16 +01A
cst 000C0615 03 +01C
get 05 a 16 +021
call 03C0 load_byte 1A +023
add 04 +026
calld 1C +027
cst 400E1A90 03 +028
get 05 a 16 +02D
cst_1 01 +02F
add 04 +030
call 03C0 load_byte 1A +031
store 14 +034
ret 1D +035

156



11.4 Keyboard driver

Function Address
keyboard_get_char() → c C05E0 (C000016+1504)
keyboard_handler() C06AE (C000016+1710)
keyboard_init() C0578 (C000016+1400)
keyboard_wait_char() → c C0606 (C000016+1542)

TABLE 11.4 The most important keyboard driver functions.

In summary, the most important functions provided by our keyboard driver are
those in Table 11.4 and its full code and data (besides the two 132 characters tables) is:

03140040 0E1A9803 1400400E 1A940314 00400E1A 90030019 C0578
80040314 00020000 03400E06 10031400 02040003 400E0E00 C0590
02000003 E000E100 03140140 09800803 14000003 F0034009 C05A8
03001410 0013400E 1A980301 191D1410 02400980 00031400 C05C0
1A980314 00020000 03E000E1 80030019 1D140016 400E1A98 C05D8
00191E14 00020000 03E000E1 00031400 400E1A98 0313400E C05F0
00400E1A 94030119 1D01191E 00030D00 04160417 05E01A00 C0608
1D05CB1A 04800200 1601191D 14840240 0E1A9403 01191D14 C0620
1D05CB1A 03C01A04 13400E1A 94030400 16000C04 70030119 C0638
00000018 00030000 00000000 0000000D 0A001400 1E000023 C0650
00000000 00000000 00000A00 00000000 0A000000 28000000 C0668
161E0000 15118402 00161E08 02000C10 12020016 01190000 C0680
00191E02 021E0602 002910F0 0200161E 0402001F 10E00200 C0698
0406821A 04160413 400E1A90 03000C06 50031340 09801803 C06B0
1A040105 16400E1A 90031C04 03C01A05 16000C06 15030416 C06C8

1D1403C0 C06E0

The last piece that we need is to configure the Vector Table entry for the USART
interrupt to call our keyboard_handler. Since this handler is using bytecode instruc-
tions, we actually need to call our bytecode interpreter, with the keyboard_handler
address as initial Instruction Counter. We also need to save and restore the [R0-R6]
registers, used by the interpreter, before and after this call. In fact we can save only
[R4-R6] since the microprocessor already saves and restores [R0-R3] on interrupt
entry and return. This gives the following Cortex M3 instructions, which we put after
the Hard Fault handler (i.e., starting at C01C416):

LDR R2← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000001010010 4A02 000

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 3 ] 1100000000010010 4803 002

PUSH R4 R5 R6 LR→ stack 0000111010101101 B570 004

BLX PC← R0− 1,LR← a+ 3 0000000111100010 4780 006

POP R4 R5 R6 PC ← stack 0000111010111101 BD70 008
data (padding, unused) 0000 00A
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data (address of keyboard_handler function) 000C06AE 00C
data (interworking address of interpreter) 000C0001 010

where POP moves the LR saved by PUSH into the PC, in order to resume the execution
of the interrupted program. Finally, we need to store the interworking address of this
USART handler at offset 8416 in the Vector Table. The boot assistant commands to
do this, and to flash the keyboard driver and the above instructions are provided in
part2/keyboard_driver.txt. Run them with:
user@host:~$ python3 flash_helper.py < part2/keyboard_driver.txt
>Reading page 1028... Done.
Reading page 1029... Done.
Reading page 1030... Done.
Reading page 1025... Done.
Reading page 0... Done.
Writing page 0... Done.
Writing page 1025... Done.
Writing page 1028... Done.
Writing page 1029... Done.
Writing page 1030... Done.
>Done.

11.5 Experiments
In order to test our driver we can try to display on the screen each key typed on
the keyboard. First of all, we need to connect the keyboard to the Arduino. PS/2
keyboards need a 5V power source and generate 5V CLOCK and DATA signals.
The Arduino Due has a 5V output pin, but only supports 3.3V inputs. To connect
the two we thus need an adapter, called a level converter. This component is
essentially a switch on a 3.3V circuit, controlled by a 5V input (see Figure 11.5).
The 4 channel Logic Level Converter listed in Table A.1 provides 4 such switches.
To use this small board you need to solder header pins on it. For this the easiest
is to plug the header pins on the breadboard as shown in Figure 11.4, place the
board on top of them, and solder the pins in place (see more detailed instructions at
https://ebruneton.github.io/toypc/assembly.html). Then, using jumper wires, connect:

• the GND, LV, and HV pins to the Arduino’s GND, 3.3V, and 5V pins,
• the GND and HV pins to the GND and VCC pins of the mini-DIN connector,
• the CLOCK pin of the mini-DIN connector to the Arduino pin SDA1 (corresponding

to PA17, see Figure 6.1), via the LV4 / HV4 pins of the Level Converter,
• the DATA pin of the mini-DIN connector to the Arduino pin 19 (corresponding to

PA10, see Figure 6.1), via the LV3 / HV3 pins of the Level Converter.

We can then write a main function, at its expected address C200016 (see Figure 9.2),
to display on the screen each key typed on the keyboard. We start the main function
with calls to boot_mode_select_rom, clock_init, gpu_init, and keyboard_init

158

https://ebruneton.github.io/toypc/assembly.html


11.5 Experiments

13
GND

GND

121110987654321014

ERASE

SPI

RESET

L

ON

TX

RX

15161718192021

AREF
SDA1
SCL1

3.3V
5V

Atmel
ATSAM3X8E

ARDUINO

DUE

ARM

LV1

LV2

LVGND

LV3

LV4

HV1

HV2

HV

HV3

HV4

140

VIN
GND
3Vo
LITE
SCK
M

ISO
M

OSI
CSRST
W

AIT
INT
Y+Y-X-X+

RA8875
SPI->40pTFT

withTouch
800x480max

RA8875L3N
RAiO

40-pin flat cable to LCD Male PS/2 connector

5-CLCK

3-GND

1-DATA

FIGURE 11.4 How to connect the Arduino Due and the keyboard, via a level converter.

159



CHAPTER 11 Keyboard Driver
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FIGURE 11.5 A schematic diagram of the level converter between the keyboard and
the Arduino (actually built with transistors instead of relays).

(see Tables 9.3, 10.3 and 11.4). We then set the foreground color to green (0, 7, 0):

fn 00 19 C2000
call 02B4 ...select_rom 1A +002
call 0200 clock_init 1A +005
call 03DF gpu_init 1A +008
call 0578 keyboard_init 1A +00B

cst_0 00 +00E
cst8 07 02 +00F
cst_0 00 +011
call 044D gpu_set_color 1A +012

Finally, we draw each character read from the keyboard, in an endless loop:

Read a character.
Draw it on the screen.
Repeat.

call 0606 ...wait_char 1A +015
call 0465 gpu_draw_char 1A +018
goto 0015 12 +01B

To run this main function we need to store it in flash memory and to restart the
Arduino with the boot mode selection set to boot from flash. We provide the necessary
boot assistant commands in part2/keyboard_driver_test.txt. Run them with:
user@host:~$ python3 flash_helper.py < part2/keyboard_driver_test.txt
>Reading page 1056... Done.
Writing page 1056... Done.
>Done.

If all goes well, you should see a black screen with a blinking cursor on the top
left corner. More importantly, if you type something on the keyboard, you should see
it on the screen. You can test that the Shift key works as expected, that “Pause” does
nothing, etc. Note that non character keys, such as the arrow keys, F1, F2, etc, still
draw characters on the screen. This is because the graphics card font has characters
for all values in [0-255], including those of the Latin-1 character set (ISO 8859-1).
Thus, for instance, pressing the “Delete” key, which emits the scancodes (E016,7116),
draws ñ because F116 = 7116 + 128 corresponds to ñ in Latin-1. When you are done
testing the keyboard, turn off the Arduino.
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12
CHAPTER

Memory Editor

Our toy computer is now fully assembled, and we have drivers to input and output
data with its own keyboard and screen. The last remaining step to make it completely
autonomous is to provide a way to enter programs and to run them, with the keyboard.
The most basic way to do this is to write a program similar to the boot assistant, but
using the keyboard instead of an external computer. This chapter implements such
a program, hereafter called the “memory editor”. We test it at the end to read the
memory, control a LED with the keyboard, and run other programs.

12.1 User interface
A possible user interface for our memory editor would be to use the same interface as the
boot assistant. We would thus type commands such as “wC0000,#”, “WC0000,1234#”,
or “GC0000#”, to read words, write words, or call functions. And the screen would
display the commands and their results. This could lead to a very small program, but
would not be very practical. Instead, we propose to make better use of the screen,
by displaying a “memory page” at a time (256 bytes). In this way, we can read the
memory like a book, instead of one word at a time. We also get more context when
editing it, or before calling a function. More precisely, we propose the following user
interface:

00000003 00000002 00000001 00000000 20000100
00000007 00000006 12345678 00000004 20000110
. . . 13 other rows . . .
000000FF 000000FE 000000FD 000000FC 200001F0

2345678A 20000114

• A page view shows 16 rows of 4 words each, followed by the row’s start address.
As we did so far in this book, addresses increase from right to left and from top to
bottom (because this is more adapted to little-endian order than left to right).
• Two fields below the page view show a value V and an address A, that the user can

edit. When editing V , the current value at address A is highlighted in the page
view. This value is not changed until Enter is pressed. When this happens V is
written at address A and A is incremented by 4 to edit the next word.
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• When editing A nothing else changes until Enter is pressed. When this happens, V
is updated to show the value at this address. The page view is updated as well to
show the page containing this address.

To simplify the implementation, editing a field can only be done by typing an
hexadecimal digit ([0-9] or [a-f] in lowercase). Doing so shifts the current value to
the left by one hex digit, and inserts the new hex digit on the right. For instance, if the
current value is 12345678, typing A gives 2345678A.

Only one field can be edited at a time. The currently “selected” field is indicated
with a blinking cursor under its least significant digit. Typing “w” selects the address
field. Typing Enter when editing the address selects the value field.

Pressing “r” calls the function at the highlighted address. This is the address
which is highlighted in the page view. It might differ from the value in the address
field (if this value has been edited and Enter has not been pressed yet).

Finally, for convenience – this is not strictly necessary – the arrow keys can be
used to go to the next or previous word or row. The left (resp. right) arrow increases
(resp. decreases) the highlighted address by 4. The up (resp. down) arrow decreases
(resp. increases) the highlighted address by 16.

12.2 State variables
The state of the above user interface can be described with only 3 variables:

• address: the address of the highlighted word in the page view. This variable is
sufficient to determine which page contains the highlighted word, and thus to draw
the page view (see the next section).
• mode: which field is currently being edited. We use mode = 0 if it is the value

field, and mode = 1 if it is the address field.
• input: the current value input with the keyboard. This value is shown either in

the value field (if mode = 0), or in the address field (if mode = 1). When Enter
is pressed, it is either written in memory at address (if mode = 0), or replaces
address (if mode = 1).

To simplify the implementation we use 3 more of the 8 General Purpose Backup
Registers in the “Controllers” memory region to store these variables (we already
used 3 of them for the keyboard driver, see Section 11.4.2). More precisely we use
the registers at addresses 400E1A9C16, 400E1AA016, and 400E1AA416, respectively
(see Figure 6.3 and in Chapter 17 in [8]). For convenience, we provide the following
functions to get and set their values, called getters and setters. We store them after the
keyboard driver, at address C06E416:

med_get_address()→ address
fn 00 19 C06E4
cst 400E1A9C 03 +002

load 13 +007
retv 1E +008
med_set_address(address)
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fn 01 19 C06ED
cst 400E1A9C 03 +002
get 00 address 16 +007
store 14 +009
ret 1D +00A
med_get_mode()→ mode
fn 00 19 C06F8
cst 400E1AA0 03 +002
load 13 +007
retv 1E +008
med_set_mode(mode)
fn 01 19 C0701
cst 400E1AA0 03 +002
get 00 mode 16 +007

store 14 +009
ret 1D +00A
med_get_input()→ input
fn 00 19 C070C
cst 400E1AA4 03 +002
load 13 +007
retv 1E +008
med_set_input(input)
fn 01 19 C0715
cst 400E1AA4 03 +002
get 00 input 16 +007
store 14 +009
ret 1D +00A

12.3 Drawing functions
12.3.1 Page view
To draw the page view we first need a function to draw its most basic element, an
hexadecimal digit. The following function draws the hexadecimal digit d corresponding
to the 4 least significant bits of its argument x (d = x∧F16). If d ≤ 10 it should draw
a character between “0” and “9”, which have contiguous ASCII codes in [3016,3916].
It thus draws the character d+ 3016. Otherwise, if d ≥ 10, it should draw a character
between “A” and “F”, which have contiguous ASCII codes in [4116,4616]. It thus
draws the character d− 10 + 4116 = y + 3716:

gpu_draw_hex_digit(x )
Compute d = x∧F16. The result is in

the 5th stack frame slot, after the function
argument and 4 saved registers.

If d ≥ 10, skip the next two instruc-
tions.

Otherwise, push 3016 on the stack and
skip the next instruction.

Push 3716 on the stack.
Add d to the last pushed value (either

3016 or 3716) and draw the resulting char-
acter with gpu_draw_char.

fn 01 19 C0720
get 00 x 16 +002
cst8 0F 02 +004
and → d 08 +006
get 05 d 16 +007
cst8 0A 02 +009
ifge 0013 11 +00B
cst8 30 02 +00E
goto 0015 12 +010
cst8 37 02 +013
get 05 d 16 +015
add 04 +017
call 0465 gpu_draw_char 1A +018
ret 1D +01B

With this we can write a function to draw the two digits of a byte b (b≫ 4 and b):

163



CHAPTER 12 Memory Editor

gpu_draw_hex_byte(b)
fn 01 19 C073C
get 00 b 16 +002
cst8 04 02 +004
lsr 0B +006

call 0720 ...hex_digit 1A +007
get 00 b 16 +00A
call 0720 ...hex_digit 1A +00C
ret 1D +00F

which can itself be used to write a function drawing the 4 bytes of a word w (w ≫ 24,
w ≫ 16, w ≫ 8, and w):

gpu_draw_hex_word(w )
fn 01 19 C074C
get 00 w 16 +002
cst8 18 02 +004
lsr 0B +006
call 073C ...draw_hex_byte 1A +007
get 00 w 16 +00A
cst8 10 02 +00C
lsr 0B +00E

call 073C ...draw_hex_byte 1A +00F
get 00 w 16 +012
cst8 08 02 +014
lsr 0B +016
call 073C ...draw_hex_byte 1A +017
get 00 w 16 +01A
call 073C ...draw_hex_byte 1A +01C
ret 1D +01F

We continue with a function to draw the word at a given address, followed by a
space (whose ASCII code is 2016, rendered with gpu_draw_char):

med_draw_page_word_at(address)
fn 01 19 C076C
get 00 address 16 +002
load 13 +004

call 074C ...draw_hex_word 1A +005
cst8 20 02 +008
call 0465 gpu_draw_char 1A +00A
ret 1D +00D

In turn, this can be used to write a function drawing a line of the page view, given
its start address. This function sets the color to green (0, 7, 0), draws the 4 words at
addresses address+ 12, address+ 8, address+ 4, and address, sets the color to
white (7, 7, 3), and finally draws the start address of the row:

med_draw_page_row(address)
fn 01 19 C077A
cst_0 00 +002
cst8 07 02 +003
cst_0 00 +005
call 044D gpu_set_color 1A +006
get 00 address 16 +009
cst8 0C 02 +00B
add 04 +00D
call 076C ...page_word_at 1A +00E
get 00 address 16 +011
cst8 08 02 +013

add 04 +015
call 076C ...page_word_at 1A +016
get 00 address 16 +019
cst8 04 02 +01B
add 04 +01D
call 076C ...page_word_at 1A +01E
get 00 address 16 +021
call 076C ...page_word_at 1A +023
cst8 07 02 +026
cst8 07 02 +028
cst8 03 02 +02A
call 044D gpu_set_color 1A +02C
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get 00 address 16 +02F
call 074C ...draw_hex_word 1A +031

ret 1D +034

We can finally implement a function to draw the page view. This function takes
an address and draws the page containing it, with the word at address highlighted
in yellow. The ith page corresponds to addresses in [256i, 256(i + 1)[. The page
containing address is thus such that i = ⌊address/256⌋ = address ≫ 8, and
starts at 256i = i ≪ 8 = address ∧ FFFFFF0016. In fact, to simplify the
highlighting, and to make sure that the word at address is fully contained in the
page, we actually use 256i+(addressmod 4) as the page’s base address. This gives
base = 256i+ (address ∧ 3) = address ∧ FFFFFF0316. Note that since each row
contains 16 bytes, the jth row in a page starts at address base+ 16j.

The word to highlight is h words after base, with h = (address− base)/4. This
corresponds to the kth word in the lth row (starting from the right), with k = hmod 4
and l = ⌊h/4⌋. This, in turn, corresponds to column ch = 9(3− k) and row rh = l,
since each word uses 9 characters (counting the space). Substituting k and l with their
values finally gives (ch, rh) = (27− 9(h ∧ 3), h≫ 2).

The med_draw_page function follows from the above computations. It first
computes base, then uses a loop to draw the 16 rows, and finally draws the highlighted
word on top, at the above coordinates:

med_draw_page(address)
Compute base. The result is in the 5th

stack frame slot.

Initialize j to 0 (in the 6th slot).
Set the cursor to (0, j), the top-left

corner of the next row to draw.

Draw the next row, starting at base +
16j = base+ (j ≪ 4).

Increment j by 1 to prepare drawing
the next row.

If j < 16, go back above to draw the
next row.

Compute h = (address − base)/4.
The result is in the 7th stack frame slot.

fn 01 19 C07AF
get 00 address 16 +002
cst FFFFFF03 03 +004
and → base 08 +009
cst_0 → j 00 +00A
cst_0 00 +00B
get 06 j 16 +00C
call 0422 ...set_cursor 1A +00E
get 05 base 16 +011
get 06 j 16 +013
cst8 04 02 +015
lsl 0A +017
add 04 +018
call 077A ...draw_page_row 1A +019
cst_1 01 +01C
add 04 +01D
get 06 j 16 +01E
cst8 10 02 +020
iflt 000B 0C +022
get 00 address 16 +025
get 05 base 16 +027
sub 05 +029
cst8 02 02 +02A
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Compute ch = 27− 9(h ∧ 3).

Compute rh = ⌊h/4⌋ = h≫ 2.

Set the cursor to these coordinates.
Set the color to yellow (7, 7, 0).

Draw the word at address and return.

lsr → h 0B +02C
cst8 1B 02 +02D
cst8 09 02 +02F
get 07 h 16 +031
cst8 03 02 +033
and 08 +035
mul 06 +036
sub 05 +037
get 07 h 16 +038
cst8 02 02 +03A
lsr 0B +03C
call 0422 ...set_cursor 1A +03D
cst8 07 02 +040
cst8 07 02 +042
cst_0 00 +044
call 044D gpu_set_color 1A +045
get 00 address 16 +048
call 076C ...page_word_at 1A +04A
ret 1D +04D

12.3.2 Fields
To draw the fields we first provide two functions to draw arbitrary values in each field.
These functions just draw their argument x at the correct column and row coordinates
– namely (27, 18) and (36, 18) – and with the correct color (green and white):

med_draw_value(x )
fn 01 19 C07FD
cst8 1B 02 +002
cst8 12 02 +004
call 0422 ...set_cursor 1A +006
cst_0 00 +009
cst8 07 02 +00A
cst_0 00 +00C
call 044D gpu_set_color 1A +00D
get 00 x 16 +010
call 074C ...draw_hex_word 1A +012
ret 1D +015

med_draw_address(x )
fn 01 19 C0813
cst8 24 02 +002
cst8 12 02 +004
call 0422 ...set_cursor 1A +006
cst8 07 02 +009
cst8 07 02 +00B
cst8 03 02 +00D
call 044D gpu_set_color 1A +00F
get 00 x 16 +012
call 074C ...draw_hex_word 1A +014
ret 1D +017

We use them in the following function to draw the two fields, depending on the
current mode. If mode = 0, the first half of the function draws address in the address
field, and input in the value field. It then sets the cursor under the least significant
digit of the value field. Otherwise, if mode ̸= 0, the second half draws the value
stored in memory at address in the value field, and draws input in the address field.
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It finally sets the cursor under the least significant digit of the address field:

med_draw_fields()
fn 00 19 C082B
call 06F8 ...get_mode 1A +002
cst_0 00 +005
ifne 001D 10 +006
call 06E4 ...get_address 1A +009
call 0813 ...draw_address 1A +00C
call 070C ...get_input 1A +00F
call 07FD ...draw_value 1A +012
cst8 22 02 +015
cst8 12 02 +017

call 0422 ...set_cursor 1A +019
ret 1D +01C
call 06E4 ...get_address 1A +01D
load 13 +020
call 07FD ...draw_value 1A +021
call 070C ...get_input 1A +024
call 0813 ...draw_address 1A +027
cst8 2B 02 +02A
cst8 12 02 +02C
call 0422 ...set_cursor 1A +02E
ret 1D +031

12.4 Editing functions
We can now implement functions to react to keyboard inputs. These functions update
the state variables and redraw the page view and/or the fields, depending on the key
typed. We start with a function to enter a new hexadecimal digit x. As specified above,
this should shift input to the left by one hex digit, and insert x on the right. This can
be done with input← (input≪ 4) + x. After that the fields must be redrawn (but
not the page view). Characters have an opaque black background, so we don’t need to
erase the previous values before drawing new ones:

med_new_digit(x )
fn 01 19 C085D
call 070C ...get_input 1A +002
cst8 04 02 +005
lsl 0A +007

get 00 x 16 +008
add 04 +00A
call 0715 ...set_input 1A +00B
call 082B ...draw_fields 1A +00E
ret 1D +011

A function to enter a new highlighted address x is also useful, since several keys
can change this address (the Enter key and the arrow keys). The following function
sets address to x, sets input to the current value at this address, and finally redraws
the page view and the fields:

med_new_address(x )
fn 01 19 C086F
get 00 x 16 +002
call 06ED ...set_address 1A +004
get 00 x 16 +007
load 13 +009

call 0715 ...set_input 1A +00A
get 00 x 16 +00D
call 07AF ...draw_page 1A +00F
call 082B ...draw_fields 1A +012
ret 1D +015

With this we can write a function to handle the Enter key. Pressing this key has
two different effects, depending on the current mode. If mode = 0 the value field
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is being edited. In this case we want to store input in memory at address, and set
address+4 as the new highlighted address. This is what the first part of the function
does, after a test of the mode value. The second part, after the first ret, handles the
case mode ̸= 0: it sets mode to 0 and the new address to input:

med_handle_enter()
fn 00 19 C0885
call 06F8 ...get_mode 1A +002
cst_0 00 +005
ifne 001A 10 +006
call 06E4 ...get_address 1A +009
call 070C ...get_input 1A +00C
store 14 +00F
call 06E4 ...get_address 1A +010

cst8 04 02 +013
add 04 +015
call 086F ...new_address 1A +016
ret 1D +019
cst_0 00 +01A
call 0701 ...set_mode 1A +01B
call 070C ...get_input 1A +01E
call 086F ...new_address 1A +021
ret 1D +024

We finally provide a function to handle any character c typed on the keyboard.
This function is quite long because there are “many” characters to support. But its
overall structure is regular. It is made of several sequences of instructions Si, one for
each supported character (e.g., “w” or “r”) or range of characters (e.g., [“0”-“9”] or
[“a”-“f”]). Each sequence Si starts with one or two conditional jumps to go to the
next sequence Si+1, if c is not a character handled by Si. The sequence continues
with instructions to handle this character, and ends with a ret:

med_handle_char(c)
S0: decimal digits [0-9]. If c < “0”

(ASCII code 3016), go to S1.

If c > “9” (ASCII code 3916), go to S1.

Otherwise, enter the new hex digit d =
c− 3016 and return.

S1: hexadecimal digits [a-f]. If c < “a”
(ASCII code 6116), go to S2.

If c > “f” (ASCII code 6616), go to S2.

Otherwise, enter the new hex digit d =
c− 6116 + 10 = c− 5716 and return.

fn 01 19 C08AA
get 00 c 16 +002
cst8 30 02 +004
iflt 0019 0C +006
get 00 c 16 +009
cst8 39 02 +00B
ifgt 0019 0E +00D
get 00 c 16 +010
cst8 30 02 +012
sub 05 +014
call 085D ...new_digit 1A +015
ret 1D +018
get 00 c 16 +019
cst8 61 02 +01B
iflt 0030 0C +01D
get 00 c 16 +020
cst8 66 02 +022
ifgt 0030 0E +024
get 00 c 16 +027
cst8 57 02 +029
sub 05 +02B
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S2: Enter key. If c is not Enter (ASCII
code 0A16), go to S3.

Otherwise, handle this key and return.

S3: “w” character. If c is not “w”
(ASCII code 7716), go to S4.

Otherwise, handle this key: setaddress
as the new input, set mode to 1, redraw
the fields, and return.

S4: “r” character. If c is not “r” (ASCII
code 7216), go to S5.

Otherwise, call the function ataddress,
clear and redraw the screen (the called func-
tion might have changed it), and return.

S5: ArrowLeft character. If c is not Ar-
rowLeft (character 6B16+128=EB16), go
to S6.

Otherwise, set address+4 as the new
address and return.

S5: ArrowRight character. If c is not
ArrowRight (character 7416+128=F416),
go to S6.

Otherwise, set address− 4 as the new
address and return.

S6: ArrowUp character. If c is not
ArrowUp (character 7516+128=F516), go
to S7.

call 085D ...new_digit 1A +02C
ret 1D +02F
get 00 c 16 +030
cst8 0A 02 +032
ifne 003B 10 +034
call 0885 ...handle_enter 1A +037
ret 1D +03A
get 00 c 16 +03B
cst8 77 02 +03D
ifne 0050 10 +03F
call 06E4 ...get_address 1A +042
call 0715 ...set_input 1A +045
cst_1 01 +048
call 0701 ...set_mode 1A +049
call 082B ...draw_fields 1A +04C
ret 1D +04F
get 00 c 16 +050
cst8 72 02 +052
ifne 0065 10 +054
call 06E4 ...get_address 1A +057
calld 1C +05A
call 0409 ...clear_screen 1A +05B
call 06E4 ...get_address 1A +05E
call 086F ...new_address 1A +061
ret 1D +064
get 00 c 16 +065
cst8 EB 02 +067
ifne 0076 10 +069
call 06E4 ...get_address 1A +06C
cst8 04 02 +06F
add 04 +071
call 086F ...new_address 1A +072
ret 1D +075
get 00 c 16 +076
cst8 F4 02 +078
ifne 0087 10 +07A
call 06E4 ...get_address 1A +07D
cst8 04 02 +080
sub 05 +082
call 086F ...new_address 1A +083
ret 1D +086
get 00 c 16 +087
cst8 F5 02 +089
ifne 0098 10 +08B
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Otherwise, set address − 16 as the
new address and return.

S7: ArrowDown character. If c is not
ArrowDown (character 7216+128=F216),
go to S8.

Otherwise, set address + 16 as the
new address and return.

S8: any other character. Return.

call 06E4 ...get_address 1A +08E
cst8 10 02 +091
sub 05 +093
call 086F ...new_address 1A +094
ret 1D +097
get 00 c 16 +098
cst8 F2 02 +09A
ifne 00A8 10 +09C
call 06E4 ...get_address 1A +09F
cst8 10 02 +0A2
add 04 +0A4
call 086F ...new_address 1A +0A5
ret 1D +0A8

12.5 Main function
We can finally implement the last function of the memory editor, and of our basic
input output system! This function initializes the drivers, sets the initial mode and
address to 0, and finally calls the previous function for each new character typed on
the keyboard, in an endless loop:

memory_editor()
fn 00 19 C0953
call 0200 clock_init 1A +002
call 03DF gpu_init 1A +005
call 0578 keyboard_init 1A +008
cst_0 00 +00B

call 0701 ...set_mode 1A +00C
cst_0 00 +00F
call 086F ...new_address 1A +010
call 0606 ...wait_char 1A +013
call 08AA ...handle_char 1A +016
goto 0013 12 +019

Note that this function does not change the boot mode selection to boot from ROM
at the next reset. Indeed, with the memory editor, our toy computer is now completely
autonomous, and we no longer need the boot assistant nor an external computer to use
it. By putting together the code of all the functions defined in this chapter we get the
memory editor’s full code:

A0030019 1D140016 400E1A9C 0301191E 13400E1A 9C030019 C06E4
13400E1A A4030019 1D140016 400E1AA0 0301191E 13400E1A C06FC
110A0205 16080F02 00160119 1D140016 400E1AA4 0301191E C0714
1A0B0402 00160119 1D04651A 04051637 02001512 30020013 C072C
1A0B1002 0016073C 1A0B1802 00160119 1D07201A 00160720 C0744
074C1A13 00160119 1D073C1A 0016073C 1A0B0802 0016073C C075C
16076C1A 040C0200 16044D1A 00070200 01191D04 651A2002 C0774
07020702 076C1A00 16076C1A 04040200 16076C1A 04080200 C078C
16000008 FFFFFF03 03001601 191D074C 1A001604 4D1A0302 C07A4
000B0C10 02061604 01077A1A 040A0402 06160516 04221A06 C07BC
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0B020207 16050608 03020716 09021B02 0B020205 05160016 C07D4
1A12021B 0201191D 076C1A00 16044D1A 00070207 0204221A C07EC
04221A12 02240201 191D074C 1A001604 4D1A0007 02000422 C0804
001D1000 06F81A00 191D074C 1A001604 4D1A0302 07020702 C081C
1306E41A 1D04221A 12022202 07FD1A07 0C1A0813 1A06E41A C0834
0402070C 1A01191D 04221A12 022B0208 131A070C 1A07FD1A C084C
07151A13 001606ED 1A001601 191D082B 1A07151A 0400160A C0864
070C1A06 E41A001A 100006F8 1A00191D 082B1A07 AF1A0016 C087C
01191D08 6F1A070C 1A07011A 001D086F 1A040402 06E41A14 C0894
161D085D 1A053002 00160019 0E390200 1600190C 30020016 C08AC
00161D08 5D1A0557 02001600 300E6602 00160030 0C610200 C08C4
1A010715 1A06E41A 00501077 0200161D 08851A00 3B100A02 C08DC
1A06E41A 04091A1C 06E41A00 65107202 00161D08 2B1A0701 C08F4
F4020016 1D086F1A 04040206 E41A0076 10EB0200 161D086F C090C
0206E41A 009810F5 0200161D 086F1A05 040206E4 1A008710 C0924
191D086F 1A041002 06E41A00 A810F202 00161D08 6F1A0510 C093C
08AA1A06 061A086F 1A000701 1A000578 1A03DF1A 02001A00 C0954

001312 C096C

Lets store it in flash memory. The boot assistant commands to do this are provided
in part2/memory_editor.txt. Run them with:
user@host:~$ python3 flash_helper.py < part2/memory_editor.txt
>Reading page 1030... Done.
Reading page 1031... Done.
Reading page 1032... Done.
Reading page 1033... Done.
Writing page 1030... Done.
Writing page 1031... Done.
Writing page 1032... Done.
Writing page 1033... Done.
>Done.

Note that the memory_editor function is not stored at the C200016 address used
so far for main functions (see Figure 9.2). To run it on reset we need to change the
C200016 value, at address C018816 in the Reset handler (see Section 9.6.1), to the
memory_editor function address, namely C095316. Do this as follows:
user@host:~$ python3 flash_helper.py
>WC0188,C0953#
Reading page 1025... Done.
>flash#
Writing page 1025... Done.

The final layout of our basic input output system is shown in Figure 12.1, and its
most important functions are listed in Table 12.1. In total, this system consists of 669
bytecode instructions, plus 364 bytes of data, for a total size of 1900 bytes. To which
we must add 199 Cortex M3 instructions for the virtual machine interpreter and the
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FIGURE 12.1 The final layout of our basic input output system in flash memory.
Red, blue and gray areas represent machine code, bytecode and unused memory,
respectively (not to scale).

Reset, Hard Fault and USART handlers, plus 64 bytes of data, for a total of 472 bytes.

12.6 Experiments
You can now set the Arduino to boot from flash and restart it:
>reset#

If all goes well, you should see the memory editor’s user interface on the screen,
showing the first memory page, starting at address 0. Since we removed the function
call to change the boot mode selection, this memory page is mapped to flash memory.
More precisely, it is mapped to the page starting 8000016, which contains the Vector
Table. You should recognize, on the first line, the Vector Table entries given at the
end of Section 9.6.1:

000C01A5 00000000 000C0181 20088000 00000000

They are followed by empty entries (FFFFFF16), except the one for the USART handler.
Lets try another memory location. On the Arduino’s keyboard, type “w000c0000”
followed by Enter. You should now see a new memory page, starting with

F000E8DF DE00BF88 281F3201 78102600 000C0000

This corresponds to the beginning of our virtual machine interpreter, which is indeed
stored at this address (see Section 8.3.9). Similarly, you can type “w000c0200”
followed by Enter to look at the clock driver code. You should see a new memory
page starting with the code shown at the end of Section 9.5. In the same way, you can
display the graphics card and keyboard driver code, and even the memory editor code.

Lets now try to store some values in memory. Type “w20070000”+Enter to go the
RAM region. Then type “12345678”+Enter to store this value at this address. You
should see the new value in the page view. We can use this method to control the
Arduino’s LED, as we did in Section 6.6.2, but with our memory editor instead of the
boot assistant. Type “w400e1000”+Enter to show the PIO B registers. You should
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Function Address
boot_mode_select_rom() C02B4 (C000016+692)
clock_init() C0200 (C000016+512)
delay(n) C028B (C000016+651)
gpu_clear_screen() C0409 (C000016+1033)
gpu_draw_char(c) C0465 (C000016+1125)
gpu_draw_hex_byte(b) C073C (C000016+1852)
gpu_draw_hex_digit(x ) C0720 (C000016+1824)
gpu_draw_hex_word(w ) C074C (C000016+1868)
gpu_init() C03DF (C000016+991)
gpu_set_color(r , g , b) C044D (C000016+1101)
gpu_set_cursor(c, r ) C0422 (C000016+1058)
gpu_set_register(id , value) C0378 (C000016+888)
keyboard_get_char() → c C05E0 (C000016+1504)
keyboard_handler() C06AE (C000016+1710)
keyboard_init() C0578 (C000016+1400)
keyboard_wait_char() → c C0606 (C000016+1542)
load_byte(address) → value C03C0 (C000016+960)
memory_editor() C0953 (C000016+2387)
spi_transfer(value) → response C034E (C000016+846)

TABLE 12.1 The most important functions of the basic input output system.

note that all registers are 0, except the PIO Status Register (400E100816), as well as
the Status, Output Status, Output Data Status, and Pull-up Status Registers. The bit 12
of these registers is 1, indicating that the PB12 pin is an output pin, controlled by the
microprocessor, currently set to 1, and with its pull-up resistor disabled. Indeed, this
is the pin used to reset the graphics card, configured in gpu_reset (see Section 10.4).
We can now redo the experiments of Section 6.6.2: press the ArrowDown key to
select the 400E101016 address and then type “08000000”+Enter: you should see
the LED turning off. Using the arrow keys, select the 400E103016 address and type
“08000000”+Enter: you should see the LED turning on again.

We can also try to display a reserved memory region. Reading the memory in
these regions causes an exception which should be handled by our Hard Fault handler,
which blinks the LED very fast. To test this type “w00200000”+Enter (see Figure 6.3).
You should see the LED blinking. Moreover, typing any key should have no effect,
since the memory editor effectively crashed. We could restart it by pressing the
RESET button. Instead, to check that our toy computer is completely autonomous,
unplug it from your computer and plug it to a power outlet with a phone charger. The
memory editor should be running again.

As a last experiment, lets try to run a function. We can use boot_mode_select_rom
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for this. Type “w000c02b4”+Enter to go to this function (see Table 12.1). Then
type “r”. Nothing changes on the screen, but the Arduino is now configured to boot
from ROM, i.e., to run the boot assistant, at the next reset. To verify this, unplug the
Arduino from the power outlet and plug it again to your computer. The screen should
stay off. We can verify that the boot assistant is running as follows:
user@host:~$ python3 flash_helper.py
>V#
v1.1 Dec 15 2010 19:25:04

We can then change again the boot mode selection to run from flash, and reset the
Arduino, with:
>reset#

At this point the memory editor should be running again. The above method can
be used to temporarily connect our toy computer to an external computer. This can be
useful, for instance, to do a backup of its flash memory. Such a backup can be done
by reading all the flash memory with boot assistant “w” commands, and storing the
result in a file on the host computer. This file can then be used to restore the flash
memory, with boot assistant “W” commands.
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Conclusion

A microcontroller contains in a single chip a microprocessor, various memories, and
specialized circuits to communicate and interact with the external world. In this part
we connected an Arduino Due, based on an Atmel microcontroller, to a Liquid Crystal
Display (LCD), and to a keyboard. We used its boot program in read-only memory,
via an external computer, to store in its flash memory a basic memory editor program.
Like the Atmel’s boot program, this editor allows us to input programs and to run
them. However, it does this by using the keyboard and the LCD connected to the
Arduino, i.e., without needing any external computer. Our toy computer is thus fully
autonomous. The rest of this book illustrates this by progressively improving it, to
make it more and more usable, without using any external computer.

Further readings
This part barely scratched the surface of what microcontrollers can do. And it only
presented a very low level method to program them (because the goal of this book it to
program one from scratch). To know more about what microcontrollers can do, how
they work, and how to use them in more convenient ways, you can read the following
books:

• “Arduino Workshop, 2nd Edition: A Hands-on Introduction with 65 Projects” [4].
This book gives a very practical introduction to the Arduino microcontrollers. It
explains how they can be programmed with the Arduino Integrated Development
Environment, and shows how they can be used with many external components
(including 7-segments displays, micro-SD cards, keypads, touchpads, motors,
infrared sensors, GPS modules, external memories, etc).
• “Embedded System Design with ARM Cortex-M Microcontrollers: Applications

with C, C++ and MicroPython” [22]. This book explains how microcontrollers work
in general, and gives practical examples illustrating each aspect. For instance, it
presents digital and analog signals, conversions between digital and analog signals,
interrupts, clocks and timers, communication protocols, etc.
• “Embedded Systems Fundamentals with Arm Cortex-M Based Microcontrollers:

A Practical Approach” [9]. This book also gives “theoretical” and practical
information about microcontrollers, with an emphasis on how to use them “properly”
(i.e., to get efficient and responsive programs with low power requirements).

These books use programs written in textual form, which is much more practical
than hexadecimal numbers representing machine code or bytecode instructions. Some
of the above books introduce the programming language that they use for this, at the
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same time as they present microcontrollers. But none of them explains in detail how a
program written in textual form can run on a microprocessor, which can only execute
machine code instructions. This process is introduced in the next part, based on a toy
programming language for our toy computer.
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PART

A Toy Compiler





Introduction

Our toy computer is now fully assembled and autonomous. However, it is still very
hard to use. Indeed, even if our virtual machine instructions are much simpler than
ARM instructions, they remain difficult to use. The goal of this part is thus to provide
an easier way to program our toy computer.

To illustrate how this can be done, consider the task of writing a program to
compute the factorial of a number n, defined by factorial(n) = 1 ∗ 2 ∗ . . . ∗ n if
n > 0, and 1 otherwise. One way to write such a program is to use the property
that, for n > 0, factorial(n) = factorial(n− 1) ∗ n. This leads to the following
bytecode instructions:

factorial(n)
fn 01 19 C1000
get 00 n 16 +002
cst_0 00 +004
ifne 000A 10 +005
cst_1 01 +008
retv 1E +009

get 00 n 16 +00A
cst_1 01 +00C
sub 05 +00D
call 1000 factorial 1A +00E
get 00 n 16 +011
mul 06 +013
retv 1E +014

The first part, in the left column, compares n, the 0th word in the function’s stack
frame, with 0. If it is not equal to 0, it jumps to the second part, in the right column.
Otherwise it returns 1. The second part, in the right column, subtracts 1 from n, calls
the factorial function with this argument (we assume here that it is stored at C100016),
and returns the result multiplied by n. In order to write this program we need to type
on the keyboard the following numbers:

1E 06001610 001A0501 00161E01 000A1000 00160119 C1000

Typing numbers is error prone, and understanding their meaning requires a lot of
effort. It would be much easier if we could type the following text instead:

fn 1
get 0 cst_0 ifne 10 cst_1 retv
get 0 cst_1 sub call 4096 get 0 mul retv

In fact this text still contains some numbers, such as 0, 10=A16 and 4096=100016.
The last two are quite tedious to compute. For instance, one must sum the size of all
the instructions up to the first retv (included) to get the value 10. Function addresses
such as 4096 also require to compute the bytecode size of each function to keep track
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of their addresses. To avoid having to do this, it would be simpler if we could use
labels to designate instructions, and identifiers to designate functions:

fn factorial 1
get 0 cst_0 ifne not_zero cst_1 retv
:not_zero get 0 cst_1 sub call factorial get 0 mul retv

Similarly, to get rid of the last numbers, it would be useful to be able to give names
to the function parameters. We could then replace 1, the number of parameters of the
factorial function, with a list of parameter names. And we could replace 0 with n:

fn factorial(n)
get n cst_0 ifne not_zero cst_1 retv
:not_zero get n cst_1 sub call factorial get n mul retv

This text would already be much easier to type and to understand than the above
numbers. However, it still contains long sequences of bytecode instructions which
are more complex than the mathematical expressions they compute. For instance,
get n cst_1 sub call factorial get n mul computes factorial(n − 1) ∗ n.
It would be much easier if we could use these expressions directly (this example also
adds some “punctuation” signs, namely curly braces, commas, and semi-colons):

fn factorial(n) {
n, 0 ifne not_zero; 1 retv;
:not_zero factorial(n - 1) * n retv;

}

It would also be more natural if we could write the last remaining bytecode
instructions in a different order, closer to the order of words in English. And instead of
writing “if n is not 0, jump to :not_zero to not return 1”, it would be simpler to write
“if n is 0, return 1”. We could even get rid of the label by putting the instructions to
execute when n is 0 inside curly braces:

fn factorial(n) {
if n == 0 { return 1; }
return factorial(n - 1) * n;

}

Finally, to make it clear that this function returns a value (some do not), and takes
a number as parameter, it would be practical to have some type declarations, such as
the following (where u32 means an “unsigned 32 bit” value):

fn factorial(n: u32) -> u32 {
if n == 0 { return 1; }
return factorial(n - 1) * n;

}
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In fact the goal of this part is to be able to type programs in this form (inspired
from Rust [15]), and to automatically get the corresponding bytecode instructions,
in numerical form (also called binary form). For this we write a program, called a
compiler, which transforms the program text, called the source code, into compiled
code, i.e., bytecode instructions in binary form. This compiler is a large program, and
we can’t write it in source code because we don’t have a compiler yet! On the other
hand, writing it in binary form would be very hard. To solve this problem we write
the compiler in several steps:

1. Write a small compiler to compile textual bytecode instructions (e.g., fn 1 get 0
. . .). Write this opcodes compiler in binary form.

2. Write a compiler for programs using textual bytecode instructions with function
names and instruction labels. Write this labels compiler, also called an assembler,
with pure textual bytecode instructions. Compile it with the opcodes compiler.

3. Rewrite the labels compiler with function names and labels, and improve it so
that it can compile programs using expressions such as factorial(n - 1) * n.
Compile this expressions compiler with the labels compiler.

4. Rewrite the expressions compiler with expressions, and improve it in order to
support programs using statements such as if and return. Compile this statements
compiler with the expressions compiler.

5. Rewrite the statements compiler with statements, and improve it to accept programs
with type declarations such as factorial(n: u32) -> u32 { ... }. Compile
this types compiler with the statements compiler.

With this method, only the first compiler needs to be written in binary form. And
this compiler is small because its task is quite simple. Moreover, each step is easier
to do than the previous one because it can use simplifying features introduced in the
previous steps. However, in order to implement this method, we need a way to type
text, i.e., a text editor. Indeed, all we have for now is the memory editor, and entering
text in memory with it would require typing the ASCII code numbers corresponding
to each character of the text! Obviously, this would be even worse than entering
programs directly in binary form, since a program in text form is usually longer than
in binary form. Unfortunately, we can’t write a text editor program in any textual
form, since we don’t have a text editor yet! We thus start by writing a simple text
editor, directly in binary form.

Before all this, however, we also need a way to store programs in source or binary
form in flash memory. Otherwise, we would loose everything we typed if we ever do
a mistake causing a crash. For this we implement one more driver, called the flash
memory driver (we didn’t need this in the previous part because flashing programs
was done from the external computer). This driver also needs to be implemented in
binary form. The rest of this part presents the above steps in detail. It is organized as
follows:

• Chapter 13 presents the flash memory driver, used to read and write data in flash
memory. We use it at the end to save itself in flash memory.
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• Chapter 14 explains how our text editor works, and presents its implementation in
binary form.
• Chapter 15 explains how the opcodes compiler works, and presents its implementa-

tion in binary form.
• Chapter 16 explains how the labels compiler works, and presents its implementation

in textual form.
• Chapter 17 explains what expressions are, how they can be compiled, and presents the

ones supported by our toy compiler. It then gives the corresponding implementation.
• Chapter 18 does the same with statements.
• Chapter 19 does the same with type declarations.
• Chapter 20 finally provides a new version of our toy compiler which produces ARM

instructions instead of bytecode instructions. We use it in the next part to eventually
get rid of our virtual machine.
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CHAPTER

Flash Memory Driver

Before writing our toy compiler, as described in introduction, we need a way to save it
in flash memory. In theory, our memory editor provides everything we need to do
this. Indeed, as we have seen in the previous part, we can save a 64 words page in
flash memory by writing these words at their final address, and then by writing an
appropriate value in the Enhanced Embedded Flash Controller (EEFC) Command
Register (which has a well defined address in memory). All these steps can be done
manually with the memory editor, but doing so would not be very practical. To make
this is easier we provide in this chapter a few helper functions, called the flash memory
driver. We use them at the end to store themselves in flash memory.

13.1 Overview
Due to the flash memory usage constraints, it is not practical to directly edit data here.
Instead, what we can do is edit data in RAM, and then save it in flash memory. The
latter step can be done automatically (see Figure 13.1):

• copy the first 64 words of data from RAM to flash memory (we assume in this
chapter that data is always saved at the beginning of a flash memory page),
• save them by writing the appropriate command in the EEFC Command Register,
• ...
• copy the last n words of data from RAM to flash memory, and the 64−n remaining

words from flash memory to itself (recall that we cannot save a page without writing
all its 64 words first),
• save them by writing the appropriate command in the EEFC Command Register.

Conversely, to edit data which is already in flash memory, we can copy it in RAM,
edit it here, and then save it back. Note that these algorithms use two kinds of steps:
copying memory from one address to another, and saving a page of flash memory.
The rest of this section presents them in more detail.

13.1.1 Memory copy
As explained above, our flash memory driver needs a function to copy some data
from one address to another. Our text editor, presented in the next chapter, also needs
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RAMFlash

1 page

FIGURE 13.1 Saving data (in dark blue) from RAM into flash memory must be done
page by page. Each 64 words page must be copied (dashed arrows) and then saved.
The unused words of the last page (light blue) must be copied in place so that all
the page words are written before it is saved (as required by the EEFC component).

ALGORITHM 13.1 Copying n bytes from src to dst.
1. if dst < src
2. initialize i to 0
3. while i+ 4 ≤ n, copy the word at src+ i to dst+ i and then increment i by 4
4. while i < n, copy the byte at src+ i to dst+ i and then increment i by 1
5. otherwise
6. initialize i to n
7. while i ≥ 4, decrement i by 4 and then copy the word at src+ i to dst+ i
8. while i > 0, decrement i by 1 and then copy the byte at src+ i to dst+ i

such a function. The former only needs to copy words, between two distinct memory
regions. But the latter needs to copy bytes, between two regions which can overlap.
To support both use cases, we present here a general memory copy algorithm.

The basic algorithm to copy n bytes starting at address src to address dst is very
simple. We just need to store the byte loaded from address src+ i to address dst+ i,
for all i ∈ [0, n[. However, the order in which these operations are done is important if
the source and destination regions overlap. Consider for instance the task of copying
n = 10 bytes from src = 4 to dst = 7 (see Figure 13.2). Starting by copying the
byte at src+ 0 to dst+ 0 would override the byte at src+ 3, leading to an incorrect
result. The solution is to copy the bytes in decreasing order, from i = n − 1 to
i = 0. Conversely, copying n = 10 bytes from src = 7 to dst = 4 must be done in
increasing order (starting by copying the byte at src+ 9 to dst+ 9 would override
the byte src+6). In summary, bytes must be copied in decreasing order if dst ≥ src,
and in increasing order otherwise. Note also that we can start by copying words, and
use byte copies only for the last 1 to 3 remaining bytes, leading to Algorithm 13.1.

13.1.2 Page flash
Once the 64 words of a page have been copied from RAM to flash memory, they can
be saved by writing the appropriate value in the EEFC Command Register. One must
then wait until the EEFC Status Register value is 1, indicating that the operation is
done. During this time, the flash memory bank must not be used (see Section 6.5).
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1 2

Before

After (if copy in increasing order)

3 8 13 21 34 55 895

1 2 3 2 3 1 2 3 11

After (if copy in decreasing order)

1 2 3

...

1 2 3 8 13 21 34 55 89

2 3 1

5

43210 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

FIGURE 13.2 Copying 10 bytes (dark blue) from address 4 to address 7 in increasing
order (i.e., from byte 4 to byte 13) leads to incorrect results (in red). Copying them in
decreasing order, from byte 13 to byte 4, solves the problem.

Unfortunately, our virtual machine is in flash memory. Therefore, we can’t use a
bytecode function to read the EEFC Status Register (running it would require the
microprocessor to read the ARM instructions of the virtual machine, i.e., would use
the flash memory). A solution is to use a small subroutine made of ARM instructions,
stored in RAM, to save a page in flash memory without using it. This subroutine can
be implemented as follows:

PUSH R0 R1 LR→ stack 1100000010101101 B503 000

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 4 ] 0010000000010010 4804 002

LDR R1← mem32[⌊PC⌋4 + 4 ∗ 4 ] 0010000010010010 4904 004

STR R1→ mem32[R0 + 4 ∗ 0] 1000000000000110 6001 006

LDR R1← mem32[R0 + 4 ∗ 1] 1000001000010110 6841 008

CMP compare(R1, 1 ) 1000000010010100 2901 00A

IT if ̸= then 0001100011111101 BF18 00C

B PC← PC + 2 ∗ 2043− 4096 1101111111100111 E7FB 00E

POP R0 R1 PC ← stack 1100000010111101 BD03 010
data (padding, unused) 0000 012
data (EEFC1 Command Register) 400E0C04 014
data (EEFC1 Command) 5A000003 018

It starts with a PUSH to save the R0 and R1 registers, as well as the Link Register
(LR). It then loads the address of the EEFC Command Register in R0, and the value
to write into it in R1, with two LDR instructions (this data is stored just after the
function itself). The next instruction actually stores this value in the Command
Register, thereby starting the flashing process. The next LDR instruction loads the
value of the EEFC Status Register (whose address is 4 bytes after the Command
Register address, i.e., R0 + 4). The following CMP instruction compares this value
with 1. If it is not equal to 1, the B instruction jumps back to the LDR instruction to
read the Status Register again. Otherwise this instruction is skipped and the final POP
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6 0 0 1... 2 3 5 8 130 ...
109876 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

FIGURE 13.3 A data buffer containing 6 bytes of data (light blue), starting at address
10, begins with a 4 bytes header (dark blue) containing the size of the following data.

restores the R0 and R1 registers, and returns to the caller by moving the saved LR into
the Program Counter (PC). The first data word after that contains the address of the
EEFC1 Command Register (we want to store our compiler in the same flash memory
bank as our basic input output system). The final word is the command to write at
this address in order to flash the 0th page. To flash the pth page instead, p should be
put in bytes 1 and 2 of this word (e.g., to flash the 4th page, use 5A00040316 – see
Section 6.5). In summary, the complete code of this subroutine is:

400E0C04 0000BD03 E7FBBF18 29016841 60014904 4804B503 000
5A000003 018

13.1.3 Data buffers
In order to copy or save data we must know their address, but we must also know their
size in bytes. To avoid having to manually keep track of this size, we can store it in
memory too. One way to do this is to store it in a word located just before the data
themselves (see Figure 13.3). This word is called a header or a metadata (because it
is some data about other data). In the following we call this header and its associated
data a data buffer. And we provide functions to copy and save data buffers.

13.2 Implementation
We can now implement the above algorithms. We do this in a data buffer, so that our
flash memory driver can save itself. This buffer must be saved at the start of a page,
as we assumed at the beginning. Lets use the next page after our memory editor, page
10, starting at C0A0016. The code will thus start at C0A0416, after the header.

For Algorithm 13.1 we need functions to load and store a single byte. We already
have a load_byte function (see Table 12.1), but we don’t have a store_byte one.
We thus provide one, as follows:

store_byte(ptr , value)
fn 02 19 C0A04
get 00 ptr 16 +002
get 00 ptr 16 +004
load 13 +006
cst FFFFFF00 03 +007

and 08 +00C
get 01 value 16 +00D
or 09 +00F
store 14 +010
ret 1D +011
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This function loads the word at ptr, discards its 8 least significant bits (while
keeping the others unchanged) by computing the bitwise AND of this word with
FFFFFF0016, replaces them with value (supposed to be strictly less than 256) with a
bitwise OR, and finally stores the result back at ptr. We then implement Algorithm 13.1
in the following mem_copy function:

mem_copy(src, dst , n)→ dst + n
Step 1. If dst ≥ src, go the second

half of this function (see below).

Step 2. Initialize i to 0.
Step 3. If i+ 4 > n, go to step 4 (i is

stored in the 7th stack frame slot).

Otherwise, load the word at src + i
and store it at dst+ i, . . .

. . . increment i by 4, and go back above
to check again if i+ 4 < n.

Step 4. If i ≥ n, go the end of the
function (see below).

Otherwise, load the byte at src+ i and
store it at dst+ i, . . .

. . . increment i by 1, and go back above
to check again if i < n.

fn 03 19 C0A16
get 01 dst 16 +002
get 00 src 16 +004
ifge 0042 11 +006
cst_0 → i 00 +009
get 07 i 16 +00A
cst8 04 02 +00C
add 04 +00E
get 02 n 16 +00F
ifgt 0026 0E +011
get 01 dst 16 +014
get 07 i 16 +016
add 04 +018
get 00 src 16 +019
get 07 i 16 +01B
add 04 +01D
load 13 +01E
store 14 +01F
cst8 04 02 +020
add 04 +022
goto 000A 12 +023
get 07 i 16 +026
get 02 n 16 +028
ifge 0078 11 +02A
get 01 dst 16 +02D
get 07 i 16 +02F
add 04 +031
get 00 src 16 +032
get 07 i 16 +034
add 04 +036
call 03C0 load_byte 1A +037
call 0A04 store_byte 1A +03A
cst_1 01 +03D
add 04 +03E
goto 0026 12 +03F

The second half of the function is similar, and handles the case dst ≥ src by
copying data in decreasing order, as described in Algorithm 13.1:
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get 02 n 16 +042
get 07 i 16 +044
cst8 04 02 +046
iflt 005D 0C +048
cst8 04 02 +04B
sub 05 +04D
get 01 dst 16 +04E
get 07 i 16 +050
add 04 +052
get 00 src 16 +053
get 07 i 16 +055
add 04 +057
load 13 +058
store 14 +059
goto 0044 12 +05A

get 07 i 16 +05D
cst_0 00 +05F
ifle 0078 0F +060
cst_1 01 +063
sub 05 +064
get 01 dst 16 +065
get 07 i 16 +067
add 04 +069
get 00 src 16 +06A
get 07 i 16 +06C
add 04 +06E
call 03C0 load_byte 1A +06F
call 0A04 store_byte 1A +072
goto 005D 12 +075

Both parts jump to the following final instructions when the copy is done. These
instructions simply return dst+ n:

get 01 dst 16 +078
get 02 n 16 +07A

add 04 +07C
retv 1E +07D

Using this memory copy function, it is easy to write a function to copy a data
buffer from src to dst. Indeed, we simply need to call mem_copy with src, dst, and
n = mem32[src] + 4, the total size of the data buffer (recall that mem32[x] means
“the 32 bit value at address x”):

buffer_copy(src, dst)
fn 02 19 C0A94
get 00 src 16 +002
get 01 dst 16 +004
get 00 src 16 +006

load 13 +008
cst8 04 02 +009
add 04 +00B
call 0A16 mem_copy 1A +00C
ret 1D +00F

We can now implement a function to copy and save a single page in flash memory.
As described above, to save n ≤ 256 bytes, we must first copy them, then copy the
remaining 256 − n bytes of the page in place, and finally save the page by calling
the subroutine defined in Section 13.1.2. For this, the subroutine must be stored
somewhere in RAM first. The easiest solution is to store it on the stack. The following
function uses this method to save n bytes starting from src in a page of the Flash1
memory bank specified by its page index:

page_flash(src, page , n)
If n = 0 there is nothing to do, re-

turn right away. Otherwise execute the

fn 03 19 C0AA4
get 02 n 16 +002
cst_0 00 +004
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following instructions.

Copy n bytes from src to C000016 +
256.page, the address of the pageth page
of the Flash1 memory bank. The mem_copy
call returns dst = C000016 +256.page+
n, in the 7th stack frame slot.

Copy the remaining 256− n bytes of
the page in place, from dst to dst, and
discard the result returned by mem_copy.

Disable the USART interrupts with the
Nested Vector Interrupt Controller (see
Section 11.3 and below).

Push the value to store in the EEFC1
Command Register in order to save the
pageth page: 5A00000316 | (page≪ 8).

Push the remaining words of the sub-
routine to save this page. These words
must be pushed in reverse order, because
each word is pushed 4 bytes before the
previous one.

Call the subroutine, which starts in the
14th stack frame slot. Its interworking
address is the address of this slot (given by
the ptr instruction), plus 1.

Re-enable the USART interrupts and
return.

ifne 0009 10 +005
ret 1D +008
get 00 src 16 +009
cst 000C0000 03 +00B
get 01 page 16 +010
cst8 08 02 +012
lsl 0A +014
add 04 +015
get 02 n 16 +016
callr 00A6 mem_copy 1B +018
get 07 dst 16 +01B
get 07 dst 16 +01D
cst 00000100 03 +01F
get 02 n 16 +024
sub 05 +026
callr 00B5 mem_copy 1B +027
pop 18 +02A
cst E000E180 03 +02B
cst 00020000 03 +030
store 14 +035
cst 5A000003 03 +036
get 01 page 16 +03B
cst8 08 02 +03D
lsl 0A +03F
or 09 +040
cst 400E0C04 03 +041
cst 0000BD03 03 +046
cst E7FBBF18 03 +04B
cst 29016841 03 +050
cst 60014904 03 +055
cst 4804B503 03 +05A
ptr 0E 15 +05F
cst_1 01 +061
add 04 +062
blx 1F +063
cst E000E100 03 +064
cst 00020000 03 +069
store 14 +06E
ret 1D +06F

A few things should be noted:

• USART interrupts are temporarily disabled while the page is being saved. Without
this, a key press or release during this time would run the keyboard_handler,
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which would make use of the flash memory. In turn, this would cause a Hard Fault
because flash memory must not be used while a page is being saved. Unfortunately,
flashing a page takes a few milliseconds, during which several interrupts could
occur. In this case they are lost, except the last one, which can confuse the keyboard
driver. For instance, releasing the “r” key causes two interrupts, for the F016 and
2D16 scancodes. If the first is lost, this appears as a key press (see Appendix C).
This problem disappears in the next part.
• we use callr instead of call instructions to call mem_copy. The next section

explains why (these instructions use an offset from their own address, instead of an
offset from C000016 – see Section 8.2.4).
• n must be a multiple of 4, so that mem_copy does not call store_byte. Indeed,
store_byte does not work in flash memory, because loads do not “see” the effect
of stores until the page is saved (see Section 6.5.1). If it was called several times to
store the bytes of a word, only the last call would have any effect.

We can finally implement the last function of our flash memory driver, which
copies a data buffer starting at src and saves it in the Flash1 memory bank, starting at
the pageth page. This function simply calls page_flash for each page.

buffer_flash(src, page)
Compute the number of bytes n to

copy. This is mem32[src] + 4, rounded
upwards to a multiple of 4 (as required by
page_flash), i.e., (mem32[src] + 7) ∧
FFFFFFFC16.

If n, in the 6th stack frame slot, is
greater than 255, jump to the next instruc-
tions. Otherwise, call page_flash to copy
and save n bytes from src into page, and
return.

Call page_flash to copy and save 256
bytes from src into page.

Increment src by 256.

Increment page by 1.

fn 02 19 C0B14
get 00 src 16 +002
load 13 +004
cst8 07 02 +005
add 04 +007
cst FFFFFFFC 03 +008
and → n 08 +00D
get 06 n 16 +00E
cst8 FF 02 +010
ifgt 001F 0E +012
get 00 src 16 +015
get 01 page 16 +017
get 06 n 16 +019
callr 008B page_flash 1B +01B
ret 1D +01E
get 00 src 16 +01F
get 01 page 16 +021
cst 00000100 03 +023
callr 0098 page_flash 1B +028
get 00 src 16 +02B
cst 00000100 03 +02D
add 04 +032
set 00 src 17 +033
get 01 page 16 +035
cst_1 01 +037
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Function Address
buffer_copy(src, dst) C0A94 (C000016+2708)
buffer_flash(src, page) C0B14 (C000016+2836)
mem_copy(src, dst , n) → dst + n C0A16 (C000016+2582)
page_flash(src, page , n) C0AA4 (C000016+2724)
store_byte(ptr , value) C0A04 (C000016+2564)

TABLE 13.1 The most important functions of the flash memory driver.

Decrement n by 256 and go back above
to copy the rest of the data buffer.

add 04 +038
set 01 page 17 +039
cst 00000100 03 +03B
sub 05 +040
goto 000E 12 +041

In summary, the main functions of our flash memory driver are those listed in
Table 13.1, and its full code is the following:

00160116 03191D14 09011608 FFFFFF00 03130016 00160219 C0A04
04071600 16040716 01160026 0E021604 04020716 00004211 C0A1C
07160016 04071601 16007811 02160716 000A1204 04021413 C0A34
05040200 5D0C0402 07160216 00261204 010A041A 03C01A04 C0A4C
16050100 780F0007 16004412 14130407 16001604 07160116 C0A64
1E040216 0116005D 120A041A 03C01A04 07160016 04071601 C0A7C
00091000 02160319 1D0A161A 04040213 00160116 00160219 C0A94
03071607 1600A61B 0216040A 08020116 000C0000 0300161D C0AAC
03031400 02000003 E000E180 031800B5 1B050216 00000100 C0AC4
E7FBBF18 030000BD 0303400E 0C040309 0A080201 165A0000 C0ADC
00E10003 1F04010E 154804B5 03036001 49040329 01684103 C0AF4
061608FF FFFFFC03 04070213 00160219 1D140002 000003E0 C0B0C
00000100 03011600 161D008B 1B061601 16001600 1F0EFF02 C0B24
00000100 03011704 01011600 17040000 01000300 1600981B C0B3C

000E1205 C0B54

13.3 Storage
Lets store our driver in flash memory. For this we must first enter it in RAM, say at
address 2007000016, and then save it by calling the buffer_flash function. In the
memory editor, type “w20070000”+Enter, and then store the size of our driver at this
address by typing “00000154”+Enter. Continue by entering each word of the driver
code, listed above, by typing its value followed by Enter.
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Our driver is now in RAM. To save it in flash memory we must call buffer_flash,
at address C0B1416−C0A0016+2007000016, with src = 2007000016 and page =
10. This can be done with the following function:

save_driver()
fn 00 19 00000
cst 20070000 03 +002
cst8 0A 02 +007

cst 20070114 03 +009
calld 1C +00E
ret 1D +00F

Note that the call to buffer_flash causes indirect calls to page_flash and
mem_copy which, for now, are in RAM. Hence, the instructions calling these functions
cannot use their final address in flash memory, since they are not stored there yet!
This is why we used callr instructions instead of call instructions in the above code.
Indeed, by specifying the callee with an offset from the caller, the code works wherever
it is stored, in RAM or in flash memory. Such code is called position independent
code. The full code of the above function is the following:

1D1C2007 0114030A 02200700 00030019 00000

With the memory editor, enter these values in an unused RAM region, for instance
starting at address 2008000016. Then type “w20080000”+Enter, followed by “r”, to
run this function. The driver should now be saved in flash memory. To check this,
type “w000c0a00”+Enter. You should see the following screen, displaying the same
words as those listed above, after the data buffer header:

FFFFFF00 03130016 00160219 00000154 000C0A00
00004211 00160116 03191D14 09011608 000C0A10
...

Alternatively, if something went wrong or if you don’t want to enter all the driver
code with the keyboard, you can “cheat” by saving it via an external computer, as fol-
lows. First run the boot_mode_select_rom function by typing “w000c02b4”+Enter,
followed by “r”. Then reset the Arduino and, on the host computer, run the following
commands to flash the driver code and reset the Arduino again:
user@host:~$ python3 flash_helper.py < part3/flash_memory_driver.txt
>Reading page 1034... Done.
Reading page 1035... Done.
Writing page 1034... Done.
Writing page 1035... Done.
>Done.

Finally, on the Arduino, type “w000c0a00”+Enter to check that the driver is indeed
in flash memory: you should see the same screen as above.
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CHAPTER

Text Editor

In order to write source code, including the source code of our toy compiler, we need a
text editor. Since we don’t have a compiler yet, we need to write this editor directly in
binary form. It should thus be as short as possible, and therefore as simple as possible.
An editor for very short texts, a few lines, could be extremely simple. However, it
would be completely impractical to use for longer texts. In theory, we could start
with a tiny editor E0 written in binary form, write with E0 a small compiler C1 and a
larger editor E1 (in source code compiled with C1), write with E1 a larger compiler
C2 and a better editor E2, etc. In this chapter, to save space, we directly implement
an editor capable of editing “large” texts (tens of thousands of characters). As a result,
its size is not minimal, but is still manageable.

14.1 User interface
For very short texts, an editor could simply put any character typed at the end of
the current text. But for longer texts, one needs to insert or delete characters at any
position. For this we need a cursor, indicating where the next character typed will be
inserted, or which character will be deleted. We also need a way to move this cursor,
one character, one line, or even several lines at a time (it would be impractical to type
10,000 times the same key to move the cursor by 10,000 characters).

A text with more than 30 lines cannot fit on the screen of our toy computer. We
thus need a way to scroll the text, i.e., to select which part should be displayed at a
given time. A simple method is to use an automatic scroll, ensuring that the cursor
stays in the middle of the screen. This avoids the need of some “scroll keys”, and of
the related code. Based on this, we define the following requirements for our text
editor:

• the screen should show 15 lines before the cursor line or, if there are less than 15
lines before, all these lines. It should also show all the lines after the cursor, until
the end of the text or the bottom of the screen.
• pressing the Arrow Left (resp. Right) key should move the cursor to the previous

(resp. next) character.
• pressing the Arrow Up (resp. Down) key should move the cursor to the previous

(resp. next) line.
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• pressing the Page Up (resp. Down) key should move the cursor to the 30th previous
(resp. next) line.
• pressing the BackSpace key should delete the character before the cursor.
• pressing a character key should insert this character at the cursor.
• pressing the Escape key should exit the editor.

14.2 Algorithms
This section explains the methods used in our text editor in order meet these require-
ments, for texts made of tens of thousands of characters. It explains how the text is
stored and edited in memory, and how it is displayed and updated on the screen.

14.2.1 Gap buffer
The simplest way to store the edited text in memory is to store all its characters one
after the other, using one byte per character. Then we only need 3 addresses to know
where the text begins, where it ends, and where the cursor is. We call them begin,
end, and cursor, respectively (see Figure 14.1). With this method, moving the cursor
is very easy: we just need to change the cursor value. However, inserting a character
is more complex. Indeed, we need to copy each character after the cursor in the next
memory byte, in order to make space for the new character. Similarly, in order to
delete a character, we need to copy each character after the cursor in the previous
memory byte (see Figure 14.1). Unfortunately, doing this with tens of thousands of
characters after the cursor would be too slow (recall that our virtual machine is ten
times slower than the microprocessor).

To solve this problem, a solution is to use a slightly more complex data structure
to store the edited text, called a gap buffer. This structure adds some free memory
after the cursor. It uses an additional gap variable, indicating how many free bytes
are after the cursor (see Figure 14.2). With this structure, inserting a character is easy
and fast: just store it at the cursor, increment cursor by 1 and decrement gap by 11.
Deleting a character is also easy and fast: decrement cursor by 1 and increment gap
by 1. On the other hand, moving the cursor is now more complex. In order to move it
by n characters to the left, one must copy the n characters before the gap, to move
them after the gap (and vice-versa to move the cursor to the right – see Figure 14.3).
Still, if n represents at most 30 lines of text, this operation is fast enough, even if the
text has thousands of lines. We therefore use a gap buffer for our text editor.

Moving the cursor to a new address cursor′ in a gap buffer can be done as
described in Algorithm 14.1 (as can be seen from Figure 14.3). In order to move
the cursor to the lth previous line, this new address can be computed as described
in Algorithm 14.2. The basic idea is to scan the text from right to left, starting from
the cursor, and to count the number of “new line” characters encountered until l such
characters are found (or the beginning of the text is reached). Similarly, to move the

1If the gap is empty, the easiest solution is to simply drop any newly typed character.

194



14.2 Algorithms
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FIGURE 14.1 Inserting or deleting a character in a text stored in a single span requires
copying (dashed arrows) all the characters after the cursor to move them one byte
after or before their current position (we show characters for clarity, but cells actually
contain ASCII code numbers). On the other hand, moving the cursor is trivial.
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FIGURE 14.2 Inserting or deleting a character in a text stored in a gap buffer is very
easy and fast, whatever the text length. No memory copy is needed.
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FIGURE 14.3 Moving the cursor by n characters in a gap buffer requires copying n
bytes (dashed arrows) to move them from one side of the gap to the other. Still, if n
is bounded by a “reasonable” value, this is fast enough even for long texts.
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ALGORITHM 14.1 Setting the cursor to cursor′, where begin ≤ cursor′ ≤ end− gap.

if cursor′ > cursor
copy n = cursor′ − cursor bytes from src = cursor + gap to dst = cursor

otherwise
copy n = cursor− cursor′ bytes from src = cursor′ to dst = cursor′+ gap

set cursor to cursor′

ALGORITHM 14.2 Computing the beginning address a of the lth previous line, l > 0.
1. initialize a to cursor
2. if a = begin return a
3. if the character at a− 1 is a “new line” character
4. if l = 0 return a, otherwise decrement l by 1
5. decrement a by 1 and go back to step 2

cursor to the lth next line, the new address cursor′ can be computed as described in
Algorithm 14.3. Note that two addresses can be defined for a character: its current
address, depending on the position and size of the gap, and a “canonical address”
defined as its current address if there was no gap. The two addresses are equal for
characters before the cursor. For those after the cursor, the current address is equal
to the canonical address plus gap. Algorithms 14.2 and 14.3 compute a canonical
address a, but use current addresses to read characters.

14.2.2 Text drawing
In order to draw the text we must first compute the canonical address of the first
character to draw, on the top left corner, so that we get 15 lines of text before the line
containing the cursor (if possible). This could be done with Algorithm 14.2 but, with
a slightly improved algorithm, we can compute at the same time the column and row
where the cursor should appear on screen. Indeed, the row can be incremented from
0, each time we encounter a “new line” character while scanning the text backwards
from the cursor. And the column can be incremented from 0 for each character found
on the line containing the cursor (the 0th row). Finally, by taking tabulation characters
into account (we represent them with 2 spaces), we get Algorithm 14.4.

ALGORITHM 14.3 Computing the beginning address a of the lth next line, l > 0.
1. initialize a to cursor
2. if a = end− gap return a
3. if the character at a+ gap is a “new line” character
4. if l = 1 return a+ 1, otherwise decrement l by 1
5. increment a by 1 and go back to step 2
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ALGORITHM 14.4 Computing the beginning address a of the lth previous line, l > 0,
and the cursor’s screen column and row, col and row.

1. initialize a to cursor, col to 0 and row to 0
2. if a = begin return {a, col, row}
3. if the character c at a− 1 is a “new line” character
4. if row = l return {a, col, row}, otherwise increment row by 1
5. otherwise, and if row = 0
6. increment col by 1, or by 2 if c is a tabulation character
7. decrement a by 1 and go back to step 2

ALGORITHM 14.5 Drawing the text on screen.

1. clear the screen and set the graphics cursor to the top-left corner, (0, 0)
2. initialize r to 0
3. compute {a, col, row} with Algorithm 14.4
4. if a = cursor, increment a by gap
5. while a < end and r < 30
6. if the character c at a is a “new line” character
7. increment r by 1 and set the graphics cursor to (0, r)
8. otherwise
9. draw c, or two spaces if c is a tabulation character

10. increment a by 1
11. if a = cursor, increment a by gap

12. set the graphics cursor to (col, row)

We can then draw the text one character at a time, until the end of the text or the
bottom of the screen is reached (see Algorithm 14.5). Recall that the graphics cursor
automatically moves to the right after a character is drawn2. However, it does this
also for “new line” characters (drawn with some icon), instead of moving the graphics
cursor to the beginning of a new line. Thus, “new line” characters must not be drawn.
Instead, a “current row” variable r should be incremented, and the graphics cursor
should be set to the beginning of this row. Likewise, two spaces must be drawn for
each tabulation character (otherwise drawn with some icon). Finally, note that this
algorithm requires the current address a of each character, in order to read them. This
address must be incremented by gap when it reaches cursor.

14.2.3 Double buffering
Most of the time, when a character is typed, only the line containing it needs to be
updated on the screen, which could be fast. However, sometimes the whole screen

2The graphics card also automatically wraps lines longer than 100 characters. To simplify our text
editor we assume that lines are always shorter than this.
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FIGURE 14.4 To avoid flickering, text is drawn in one layer while the other is displayed
(left). When this is done the layer roles are exchanged (right).

must be redrawn (e.g., when scrolling up or down). To simplify our editor we always
redraw the whole screen after each key press. This takes some time, during which
partially redrawn images could be seen, causing flickering. To avoid this, a solution is
to draw the text in a video memory region which is not visible on screen and, when
this is done, display this image. The graphics card we are using provides an easy
way to use this method, called double buffering. It can divide its 768 KB of RAM in
two images, called layers 0 and 1. By default text is drawn in layer 0, which is also
displayed on the LCD. But it is possible to draw in layer 0 while layer 1 is displayed,
or vice-versa (see Figure 14.4). This can be done with the following graphics card
registers (we show only the bits that we use):

R2016 Display Configuration 0000000l

R4116 Memory Write Control 1 0000000 l

R5216 Layer Transparency 0 0000000 l

The l bit of the Display Configuration register enables the double buffering mode
when it is 1, and disables it otherwise. When it is enabled, characters are drawn in
the layer given by the l bit of the Memory Write Control 1 register, while the screen
displays the layer given by the l bit of the Layer Transparency 0 register. When double
buffering is disabled, characters are drawn in layer 0 and the screen displays layer 0
too. The layer used for drawing is called the back buffer, while the layer displayed on
the screen is called the front buffer.

14.3 Implementation
We can now implement our text editor, in a new data buffer starting at the next
page after the flash memory driver, at address C0C0016. We start with a function
implementing Algorithm 14.1, with the last step replaced with “return cursor′”:

ted_set_cursor(begin , cursor , gap, cursor ′)→ cursor ′

fn 04 19 C0C04
get 03 cursor ′ 16 +002
get 01 cursor 16 +004
ifle 001B 0F +006

get 01 cursor 16 +009
get 02 gap 16 +00B
add 04 +00D
get 01 cursor 16 +00E
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get 03 cursor ′ 16 +010
get 01 cursor 16 +012
sub 05 +014
call 0A16 mem_copy 1A +015
get 03 cursor ′ 16 +018
retv 1E +01A
get 03 cursor ′ 16 +01B
get 03 cursor ′ 16 +01D

get 02 gap 16 +01F
add 04 +021
get 01 cursor 16 +022
get 03 cursor ′ 16 +024
sub 05 +026
call 0A16 mem_copy 1A +027
get 03 cursor ′ 16 +02A
retv 1E +02C

Then, instead of implementing Algorithm 14.2, we implement Algorithm 14.4,
which is more general. This algorithm is supposed to return 3 values a, col and row.
Since a function can’t return several values, the following function only returns a. To
“return” col and row we use two pointers colp and rowp where these values can be
stored in memory. We suppose that these values are initialized to 0 by the caller:

ted_move_backward(begin , cursor , l , colp , rowp)→ a

Step 1. Initialize c to 0 and a to cursor.

Step 2. If a (in the 10th stack frame
slot) is equal to begin, go to step 8.

Step 3. Set c (in the 9th stack frame
slot) to the character at a− 1.

If c is not equal to Enter (A16), go to
step 5.

Step 4. If the value at rowp is equal to
l, go to step 8.

Otherwise, increment the value at rowp

by 1, and go to step 7.

Step 5. If the value at rowp is not 0,
go to step 7.

fn 05 19 C0C31
cst_0 → c 00 +002
get 01 cursor → a 16 +003
get 0A a 16 +005
get 00 begin 16 +007
ifle 004C 0F +009
get 0A a 16 +00C
cst_1 01 +00E
sub 05 +00F
call 03C0 load_byte 1A +010
set 09 c 17 +013
get 09 c 16 +015
cst8 0A 02 +017
ifne 002F 10 +019
get 04 rowp 16 +01C
load 13 +01E
get 02 l 16 +01F
ifeq 004C 0D +021
get 04 rowp 16 +024
get 04 rowp 16 +026
load 13 +028
cst_1 01 +029
add 04 +02A
store 14 +02B
goto 0047 12 +02C
get 04 rowp 16 +02F
load 13 +031
cst_0 00 +032
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Step 6. Add 1 to the value at colp, one
or two times, depending on whether c is
equal to Tab (916) or not.

Step 7. Decrement a by 1 and go back
to step 2.

Step 8. Return a.

ifne 0047 10 +033
get 03 colp 16 +036
get 03 colp 16 +038
load 13 +03A
get 09 c 16 +03B
cst8 09 02 +03D
ifne 0044 10 +03F
cst_1 01 +042
add 04 +043
cst_1 01 +044
add 04 +045
store 14 +046
cst_1 01 +047
sub 05 +048
goto 0005 12 +049
get 0A a 16 +04C
retv 1E +04E

We continue with the implementation of Algorithm 14.3:

ted_move_forward(cursor , gap, end , l )→ a

Step 1. Initialize a to cursor.
Step 2. If a (in the 8th stack frame slot)

is equal to end− gap return a.

Step 3. If the character at a + gap is
not Enter (A16), go to step 5.

Step 4. If l is equal to 1

return a+ 1,

otherwise decrement l by 1.

fn 04 19 C0C80
get 00 cursor → a 16 +002
get 08 a 16 +004
get 02 end 16 +006
get 01 gap 16 +008
sub 05 +00A
ifne 0011 10 +00B
get 08 a 16 +00E
retv 1E +010
get 08 a 16 +011
get 01 gap 16 +013
add 04 +015
call 03C0 load_byte 1A +016
cst8 0A 02 +019
ifne 002F 10 +01B
get 03 l 16 +01E
cst_1 01 +020
ifne 0029 10 +021
get 08 a 16 +024
cst_1 01 +026
add 04 +027
retv 1E +028
get 03 l 16 +029
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Step 5. Increment a by 1 and go back
to step 2.

cst_1 01 +02B
sub 05 +02C
set 03 l 17 +02D
cst_1 01 +02F
add 04 +030
goto 0004 12 +031

With this we can compute the new cursor position after an ArrowLeft, Right, Up
or Down key, or a PageUp or Down key c has been pressed, as follows:

ted_handle_key(begin , cursor , gap, end , c)→ cursor ′

Step 1. Initialize col and row to 0.

Step 2. If c is not the ArrowLeft key,
or if cursor = begin (no way to go left),
go to step 3.

Otherwise, return cursor − 1.

Step 3. If c is not the ArrowRight key,
or if cursor = end − gap (no way to go
right), go to step 4.

Otherwise, return cursor + 1.

Step 4. If c is not the ArrowUp key, go
to step 5.

Otherwise, return the beginning ad-
dress of the previous line by calling the
ted_move_backward function with l = 1,
and with pointers to col and row, in the
9th and 10th stack frame slots, for colp and

fn 05 19 C0CB4
cst_0 → col 00 +002
cst_0 → row 00 +003
get 04 c 16 +004
cst8 EB 02 +006
ifne 0017 10 +008
get 01 cursor 16 +00B
get 00 begin 16 +00D
ifeq 0017 0D +00F
get 01 cursor 16 +012
cst_1 01 +014
sub 05 +015
retv 1E +016
get 04 c 16 +017
cst8 F4 02 +019
ifne 002D 10 +01B
get 01 cursor 16 +01E
get 03 end 16 +020
get 02 gap 16 +022
sub 05 +024
ifge 002D 11 +025
get 01 cursor 16 +028
cst_1 01 +02A
add 04 +02B
retv 1E +02C
get 04 c 16 +02D
cst8 F5 02 +02F
ifne 0041 10 +031
get 00 begin 16 +034
get 01 cursor 16 +036
cst_1 01 +038
ptr 09 col 15 +039
ptr 0A row 15 +03B

201



CHAPTER 14 Text Editor

rowp.

Step 5. If c is not the ArrowDown key,
go to step 6.

Otherwise, return the beginning ad-
dress of the next line.

Step 6. If c is not the PageUp key, go
to step 7.

Otherwise, return the beginning ad-
dress of the 30th previous line (30 = 1E16).

Step 7. If c is not the PageDown key,
go to step 8.

Otherwise, return the beginning ad-
dress of the 30th next line.

Step 8. Return cursor.

call 0C31 ...move_backward 1A +03D
retv 1E +040
get 04 c 16 +041
cst8 F2 02 +043
ifne 0053 10 +045
get 01 cursor 16 +048
get 02 gap 16 +04A
get 03 end 16 +04C
cst_1 01 +04E
call 0C80 ...move_forward 1A +04F
retv 1E +052
get 04 c 16 +053
cst8 FD 02 +055
ifne 0068 10 +057
get 00 begin 16 +05A
get 01 cursor 16 +05C
cst8 1E 02 +05E
ptr 09 col 15 +060
ptr 0A row 15 +062
call 0C31 ...move_backward 1A +064
retv 1E +067
get 04 c 16 +068
cst8 FA 02 +06A
ifne 007B 10 +06C
get 01 cursor 16 +06F
get 02 gap 16 +071
get 03 end 16 +073
cst8 1E 02 +075
call 0C80 ...move_forward 1A +077
retv 1E +07A
get 01 cursor 16 +07B
retv 1E +07D

In order to implement a function to draw the edited text, we first provide 3 simple
functions to use double buffering. The first one enables this mode and sets the back
buffer to layer 1:

gpu_set_double_buffer()
fn 00 19 C0D32
cst8 20 02 +002
cst8 80 02 +004
call 0378 ...set_register 1A +006

cst8 41 02 +009
cst_1 01 +00B
call 0378 ...set_register 1A +00C
ret 1D +00F

The second one disables double buffering and sets the front and back buffers to
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layer 0:

gpu_set_single_buffer()
fn 00 19 C0D42
cst8 41 02 +002
cst_0 00 +004
call 0378 ...set_register 1A +005
cst8 52 02 +008

cst_0 00 +00A
call 0378 ...set_register 1A +00B
cst8 20 02 +00E
cst_0 00 +010
call 0378 ...set_register 1A +011
ret 1D +014

The third one swaps the layers used for the front and back buffers. For this, it reads
the l bit of the Memory Write Control (“back buffer”) register (in the 4th stack frame
slot), sets this register to 1 − l, and sets the Layer Transparency 0 (“front buffer”)
register to l. The first step is done by selecting the register with a Select Register
command, followed by a Read Data command (both sent with spi_transfer – see
Section 10.2.3):

gpu_swap_buffer()
fn 00 19 C0D57
cst 00008041 03 +002
call 034E spi_transfer 1A +007
pop 18 +00A
cst 00004000 03 +00B
call 034E spi_transfer 1A +010
cst_1 01 +013

get 04 layer 16 +014
sub 05 +016
call 034E spi_transfer 1A +017
pop 18 +01A
cst8 52 02 +01B
get 04 layer 16 +01D
call 0378 ...set_register 1A +01F
ret 1D +022

We can now implement a function to draw the edited text, with Algorithm 14.5:

ted_draw(begin , cursor , gap, end )
Step 1. Clear the screen (actually the

back buffer) and set the graphics cursor to
(0, 0).

Step 2. Initialize r to 0 and c to 0.

Step 3. Initialize col and row to 0, and
compute a, col and row – in the 12th, 10th
and 11th stack frame slots, respectively –
by calling ted_move_backward with l =
15 and with pointers to col and row for
colp and rowp.

Step 4. If a = cursor, increment a by
gap.

fn 04 19 C0D7A
call 0409 ...clear_screen 1A +002
cst_0 00 +005
cst_0 00 +006
call 0422 ...set_cursor 1A +007
cst_0 → r 00 +00A
cst_0 → c 00 +00B
cst_0 → col 00 +00C
cst_0 → row 00 +00D
get 00 begin 16 +00E
get 01 cursor 16 +010
cst8 0F 02 +012
ptr 0A col 15 +014
ptr 0B row 15 +016
call 0C31 ...move_backward 1A +018
get 0C a 16 +01B
get 01 cursor 16 +01D
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Step 5. If a ≥ end, go to step 12.

If r (in the 8th stack frame slot) is≥ 30,
go to step 12 (30 = 1E16).

Step 6. Set c (in the 9th stack frame
slot) to the character at a.

If c is not equal to Enter (A16), go to
step 9.

Step 7. Increment r by 1,

set the graphics cursor to (0, r), and go to
step 10.

Step 9. If c is equal to Tab (916), draw
two spaces (2016) and go to step 10.

Otherwise draw c.

Step 10. Increment a by 1.

Step 11. If a is not equal cursor, go
back to step 5.

Otherwise increment a by gap and go
back to step 5.

Step 12. Switch the back and front
buffers, set the graphics cursor to (col, row)
and return.

ifne 0025 10 +01F
get 02 gap 16 +022
add 04 +024
get 0C a 16 +025
get 03 end 16 +027
ifge 0078 11 +029
get 08 r 16 +02C
cst8 1E 02 +02E
ifge 0078 11 +030
get 0C a 16 +033
call 03C0 load_byte 1A +035
set 09 c 17 +038
get 09 c 16 +03A
cst8 0A 02 +03C
ifne 0050 10 +03E
get 08 r 16 +041
cst_1 01 +043
add 04 +044
set 08 r 17 +045
cst_0 00 +047
get 08 r 16 +048
call 0422 ...set_cursor 1A +04A
goto 0069 12 +04D
get 09 c 16 +050
cst8 09 02 +052
ifne 0064 10 +054
cst8 20 02 +057
call 0465 gpu_draw_char 1A +059
cst8 20 02 +05C
call 0465 gpu_draw_char 1A +05E
goto 0069 12 +061
get 09 c 16 +064
call 0465 gpu_draw_char 1A +066
cst_1 01 +069
add 04 +06A
get 0C a 16 +06B
get 01 cursor 16 +06D
ifne 0025 10 +06F
get 02 gap 16 +072
add 04 +074
goto 0025 12 +075
call 0D57 ...swap_buffer 1A +078
get 0A col 16 +07B
get 0B row 16 +07D
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call 0422 ...set_cursor 1A +07F
ret 1D +082

We can finally implement the main function of our text editor. The following
function takes as parameter the address of a text buffer, i.e., a data buffer containing
the text to edit (see Section 13.1.3). It also takes as parameter an initial cursor offset
from the beginning of the text, and a maximum text length. It starts by storing in the
7th stack frame slot the current text length (contained the text buffer header), and
returns immediately if it is larger than max_length:

text_editor(buffer , offset , max_length)
fn 03 19 C0DFD
get 00 buffer 16 +002
load → length 13 +004
get 07 length 16 +005

get 02 max_length 16 +007
ifle 000D 0F +009
ret 1D +00C

It continues by initializing begin to buffer + 4 , cursor to begin+ length, end
to begin+max_length, gap to end− cursor, and c to 0, in the 8th, 9th, 10th, 11th,
and 12th stack frame slots, respectively:

get 00 buffer 16 +00D
cst8 04 02 +00F
add → begin 04 +011
get 08 begin 16 +012
get 07 length 16 +014
add → cursor 04 +016
get 08 begin 16 +017

get 02 max_length 16 +019
add → end 04 +01B
get 0A end 16 +01C
get 09 cursor 16 +01E
sub → gap 05 +020
cst_0 → c 00 +021

The cursor is then changed to begin + offset with a call to ted_set_cursor,
after setting offset to length if it is larger than that. The initialization phase ends by
enabling the double buffering mode, setting the color to green (0, 7, 0), and drawing
the text:

get 01 offset 16 +022
get 07 length 16 +024
ifle 002D 0F +026
get 07 length 16 +029
set 01 offset 17 +02B
get 08 begin 16 +02D
get 09 cursor 16 +02F
get 0B gap 16 +031
get 08 begin 16 +033
get 01 offset 16 +035

add 04 +037
call 0C04 ...set_cursor 1A +038
set 09 cursor 17 +03B
call 0D32 ...double_buffer 1A +03D
cst_0 00 +040
cst8 07 02 +041
cst_0 00 +043
call 044D gpu_set_color 1A +044
get 08 begin 16 +047
get 09 cursor 16 +049
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get 0B gap 16 +04B
get 0A end 16 +04D

call 0D7A ted_draw 1A +04F

The rest of the function is a loop which handles keys typed on the keyboard, until
Escape is pressed.

Step 1. Read a character from the
keyboard and store it in c.

Step 2. If c is not the Escape key, go
to step 3.

Otherwise, set the cursor to the end
of the text, i.e., to end − gap, to remove
any gap in the text itself. Then store the
final text length in the buffer header, i.e.,
store this new cursor value minus begin at
address buffer .

Then disable the double buffering mode
and return.

Step 3. If c is not the BackSpace key,
go to Step 4.

Otherwise, if cursor = begin (no pre-
vious character to delete), go back to step
1.

Otherwise, delete the previous charac-
ter by decrementing cursor by 1,

and by incrementing gap by 1. Then go to
step 6 to redraw the text.

Step 4. If c is not an ASCII character
other than Delete (7F16), go to step 5.

Otherwise, if gap = 0 (no way to insert
a new character), go back to step 1.

call 0606 ...wait_char 1A +052
set 0C c 17 +055
get 0C c 16 +057
cst8 1B 02 +059
ifne 0076 10 +05B
get 00 buffer 16 +05E
get 08 begin 16 +060
get 09 cursor 16 +062
get 0B gap 16 +064
get 0A end 16 +066
get 0B gap 16 +068
sub 05 +06A
call 0C04 ...set_cursor 1A +06B
get 08 begin 16 +06E
sub 05 +070
store 14 +071
call 0D42 ...single_buffer 1A +072
ret 1D +075
get 0C c 16 +076
cst8 08 02 +078
ifne 0093 10 +07A
get 09 cursor 16 +07D
get 08 begin 16 +07F
ifeq 0052 0D +081
get 09 cursor 16 +084
cst_1 01 +086
sub 05 +087
set 09 cursor 17 +088
get 0B gap 16 +08A
cst_1 01 +08C
add 04 +08D
set 0B gap 17 +08E
goto 00CE 12 +090
get 0C c 16 +093
cst8 7F 02 +095
ifge 00B6 11 +097
get 0B gap 16 +09A
cst_0 00 +09C
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Otherwise, store c at cursor,

increment cursor by 1,

and decrement gap by 1. Then go to step
6 to redraw the text.

Step 5. If c is any character not handled
above, set the cursor to the new cursor value
computed by ted_handle_key.

Step 6. Redraw the edited text and go
back to step 1.

ifeq 0052 0D +09D
get 09 cursor 16 +0A0
get 0C c 16 +0A2
call 0A04 store_byte 1A +0A4
get 09 cursor 16 +0A7
cst_1 01 +0A9
add 04 +0AA
set 09 cursor 17 +0AB
get 0B gap 16 +0AD
cst_1 01 +0AF
sub 05 +0B0
set 0B gap 17 +0B1
goto 00CE 12 +0B3
get 08 begin 16 +0B6
get 09 cursor 16 +0B8
get 0B gap 16 +0BA
get 08 begin 16 +0BC
get 09 cursor 16 +0BE
get 0B gap 16 +0C0
get 0A end 16 +0C2
get 0C c 16 +0C4
call 0CB4 ...handle_key 1A +0C6
call 0C04 ...set_cursor 1A +0C9
set 09 cursor 17 +0CC
get 08 begin 16 +0CE
get 09 cursor 16 +0D0
get 0B gap 16 +0D2
get 0A end 16 +0D4
call 0D7A ted_draw 1A +0D6
goto 0052 12 +0D9

In summary, the main functions of our text editor are those listed in Table 14.1,
and its full code is the following:

0A161A05 01160316 01160402 16011600 1B0F0116 03160419 C0C04
0005191E 03160A16 1A050316 01160402 16031603 161E0316 C0C1C
2F100A02 09160917 03C01A05 010A1600 4C0F0016 0A160116 C0C34
00130416 00471214 04011304 16041600 4C0D0216 13041600 C0C4C
05120501 14040104 01004410 09020916 13031603 16004710 C0C64
1608161E 08160011 10050116 02160816 00160419 1E0A1600 C0C7C
0103161E 04010816 00291001 0316002F 100A0203 C01A0401 C0C94
0D001601 16001710 EB020416 00000519 00041204 01031705 C0CAC
002D1105 02160316 0116002D 10F40204 161E0501 01160017 C0CC4
0C311A0A 15091501 01160016 004110F5 0204161E 04010116 C0CDC
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Function Address
ted_draw(begin , cursor , gap, end ) C0D7A (C000016+3450)
text_editor(buffer , offset , max_length) C0DFD (C000016+3581)

TABLE 14.1 The most important functions of the text editor.

10FD0204 161E0C80 1A010316 02160116 005310F2 0204161E C0CF4
16007B10 FA020416 1E0C311A 0A150915 1E020116 00160068 C0D0C
0203781A 80022002 00191E01 161E0C80 1A1E0203 16021601 C0D24
1A002002 03781A00 52020378 1A004102 00191D03 781A0141 C0D3C
1601034E 1A000040 00031803 4E1A0000 80410300 191D0378 C0D54
04221A00 0004091A 04191D03 781A0416 52021803 4E1A0504 C0D6C
00251001 160C160C 311A0B15 0A150F02 01160016 00000000 C0D84
091703C0 1A0C1600 78111E02 08160078 1103160C 16040216 C0D9C
09160069 1204221A 08160008 17040108 16005010 0A020916 C0DB4
0104651A 09160069 1204651A 20020465 1A200200 64100902 C0DCC
04221A0B 160A160D 571A0025 12040216 00251001 160C1604 C0DE4
04071608 16040402 00161D00 0D0F0216 07161300 1603191D C0DFC
08160117 0716002D 0F071601 16000509 160A1604 02160816 C0E14
044D1A00 0702000D 321A0917 0C041A04 01160816 0B160916 C0E2C
16007610 1B020C16 0C170606 1A0D7A1A 0A160B16 09160816 C0E44
161D0D42 1A140508 160C041A 050B160A 160B1609 16081600 C0E5C
1704010B 16091705 01091600 520D0816 09160093 1008020C C0E74
0A041A0C 16091600 520D000B 1600B611 7F020C16 00CE120B C0E8C
1608160B 16091608 1600CE12 0B170501 0B160917 04010916 C0EA4
1A0A160B 16091608 1609170C 041A0CB4 1A0C160A 160B1609 C0EBC

00 52120D7A C0ED4

To store it in flash memory we must enter it in RAM first, lets say at address
2007000016, and then save it in flash. In the memory editor, type “w20070000”+Enter,
and then store the text editor size in bytes at this address by typing “w000002d5”+Enter.
Continue by entering each word of the text editor code, listed above, by typing its value
followed by Enter. Finally, save this code in flash memory (starting at page = 12) by
running the following function:

save()
fn 00 19 00000
cst 20070000 03 +002

cst8 0C 02 +007
call 0B14 buffer_flash 1A +009
ret 1D +00C

For this, type “w20080000”+Enter, followed by the full code of this function:

1D 0B141A0C 02200700 00030019 00000

Then type “w20080000” followed by “r” to run it. Alternatively, if you don’t want
to enter the full text editor code manually with the memory editor, which is a bit
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tedious, you can “cheat” by saving it via an external computer, as follows. First run
the boot_mode_select_rom function by typing “w000c02b4”+Enter, followed by
“r”. Then reset the Arduino and, on the host computer, run the following commands to
flash the text editor code and reset the Arduino again:
user@host:~$ python3 flash_helper.py < part3/text_editor.txt
>Reading page 1036... Done.
Reading page 1037... Done.
Reading page 1038... Done.
Writing page 1036... Done.
Writing page 1037... Done.
Writing page 1038... Done.
>Done.

14.4 Experiments
Lets test our text editor. The following function edits a text buffer stored at address
2007000016, with an initial cursor at the beginning of the text, and a maximum text
length of 100016 bytes:

test()
fn 00 19 00000
cst 20070000 03 +002
cst_0 00 +007

cst 00001000 03 +008
call 0DFD text_editor 1A +00D
ret 1D +010

Enter it in RAM at address 2008000016 by typing “w20080000”+Enter, followed
by the full code of this function:

1D 0DFD1A00 00100003 00200700 00030019 00000

Then initialize an empty text buffer by typing “w20070000”+Enter, followed
by “00000000”+Enter. Finally, run the text editor on this empty buffer by typing
“20080000”+Enter, followed by “r”. If all goes well you should be able to type some
text. Try typing some characters, test the Tab and Enter keys, type several lines and
then test the arrow keys, and the Page Up and Down keys. You can also exit the text
editor with Escape, and then run it again by typing “r” (you should see the text you
typed before, with the cursor reinitialized to the beginning of the text). When you
are back in the memory editor, you should also see the length of your text, at address
2007000016, followed by the ASCII codes of each character.

If something goes wrong, this is probably due to a typo when you entered the
text editor code. In this case, with the memory editor, double check the code in flash
memory by comparing it with the code shown at then end of the previous section. If
you find an error, copy this code in RAM (with a small function using buffer_copy),
fix the error with the memory editor, and save the code back in flash memory (with
the save function from the previous section).
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15
CHAPTER

Opcodes Compiler

We now have everything we need to implement our compiler. We start in this chapter
with a very simple version, whose main role is to convert opcode names into their
numerical value. Indeed, this initial compiler must be written in binary form, and
should thus be as small as possible, in order to simplify our task. Hopefully, this is the
last program we need to write in such form (besides a few small functions to launch
programs with the memory editor). We use it at the end to write a command editor,
namely a small program to make it easier to run other programs.

15.1 Requirements
The goal of our initial compiler is to convert opcode instructions from textual to binary
form. For instance, given the text “fn 1 get 0 cst_0 ifne 10 . . .”, it should produce,
in increasing address order, 1916 0116 1616 0016 0016 1016 000A16 . . . The programs
that it should accept as input can be described as “zero or more instructions, one after
the other”, where each instruction is one of “cst_0”, “cst_1”, “cst8” followed by an
8-bit value, “cst” followed by a 32-bit value, and so on for the remaining opcodes.
These rules define the grammar of a programming language, that valid programs must
follow. They can be summarized with:

program: instruction*
instruction: “cst_0” | “cst_1” | “cst8” INTEGER | “cst32” INTEGER | . . .

where “*” means “zero or more times” and “|” means “or”. Text between quotes, as
well as names in capital letters, refer to individual “words” or “punctuation signs” of
the program, called tokens. As in English, tokens are generally separated by spaces.
Here INTEGER designates an integer value, i.e., a token made of one or more decimal
digit characters. In this context, we define the precise requirements of our initial
compiler as follows:

• The compiler should take as input a source code address, noted src_buffer , and a
destination address where to store the compiled code, noted dst_buffer .
• The source code should be in a data buffer (see Section 13.1.3), and should follow

the above grammar.
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returns
tokens

calls callsScanner

f0 0 015 n 0 c s t _ 1 r e t v

Parser Backend

src_buffer src_endsrc

25 0 1
dst_buffer dst

FIGURE 15.1 The 3 parts of our compiler (top) and its 2 data structures (bottom),
here with 3 tokens of a 15 bytes program already read (left) and compiled (right).

• The compiled code must be produced in a data buffer. It must be the binary form of
the bytecode instructions provided as input.
• The compiler should return 0 if the compilation was successful, and a non-zero

value otherwise. In the latter case, the location of the error in the source code
should be stored at the dst_buffer address.

Many errors could occur in the source code, such as an undefined opcode name
(“cst_3”), an opcode without argument followed by integer value (“cst_0 10”), an
opcode with argument not followed by an integer value (“cst8 cst8”), an opcode with
an 8-bit argument followed by an integer greater than 255, a jump instruction opcode
followed by an invalid instruction offset, etc. To simplify our task, in this chapter, we
only require the detection of (most of the) undefined opcode names.

15.2 Algorithms
A compiler can generally be divided in at least 3 parts: a scanner, a parser, and
a backend (see Figure 15.1). The scanner reads the source code and extracts its
individual tokens. The parser calls the scanner to read tokens, and checks that they
follow the programming language’s grammar. The backend provides functions to
generate the compiled code. In very simple compilers such as ours, the parser uses
the backend to directly produce the compile code, while analyzing the source code.

Our compiler uses 5 main variables, shown in Figure 15.1. Besides src_buffer
and dst_buffer , already defined, the most important ones are src and dst. src points
to the next character to read. dst points to the next byte where compiled code must
be written. Finally, src_end points to the next byte after the end of the source code.
When src reaches src_end the whole program has been read and the compiler returns.

Scanner The scanner splits the source code in tokens, detects invalid tokens, and
returns some data about each token. For instance, it should detect that “cst_3” is
invalid, and it could return 42 for the token “42” (34163216 in ASCII). To simplify, in
this chapter, we move the error detection in the backend. A token is then any sequence
of characters which does not contain a space, a tabulation, or a “new line”. To compute
the numerical value v of an integer token “cn−1 . . . c1c0”, we can initialize v to 0 and
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15.2 Algorithms

ALGORITHM 15.1 Reading a token and returning its value v.
1. while src < src_end and the character at src is a space, tab or “new line”
2. increment src by 1 to skip this character
3. if src = src_end return nothing
4. initialize v to 0
5. while src < src_end and the character c at src is not a space, tab or “new line”
6. update v to 10v + (c− 3016)
7. increment src by 1
8. return v

0 01 2

1

4

v(cst8)

02

v(iflt)

0C

v

word(v)

v

byte(v)

v

half(v)

∅

output v

c ̸=
v ← 10v + c− 48

c ̸=
v ← c− 48

v(cst)

03

v(sub)

05

v(add)

04

v(...)
...

FIGURE 15.2 The scanner and parser can be modeled with Finite State Machines
(see Section 11.4.1) reading characters c (left) and token values v (right), respectively.

represents a space, tab or “new line”. Many parser transitions are not shown.

update v to 10v+(ci−3016), for each character ci from left to right. In fact, to simplify
the initial compiler, the scanner returns such a value for all tokens. For instance, for the
“fn” token (66166E16 in ASCII), it returns 10(6616 − 3016) + (6E16 − 3016) = 602.
In summary, a token is read as described in Algorithm 15.1, which also corresponds
to the finite state machine in Figure 15.2.

Backend The backend provides functions to write opcodes and their arguments in
the output buffer. Here we mostly need functions to write 8-bit and 16-bit values in
memory, plus some code to detect invalid opcodes. Valid opcodes are between 0 and
31 included, but we also add here a pseudo opcode d (for “data”, with value 32), with
an 8-bit argument x. Once compiled, a d x instruction simply produces the byte x. It
can be used to mix code and data (such as the transition table of our keyboard driver).
In summary, a function to write an opcode (without its argument) should return an
error if opcode > 32, do nothing if opcode = 32, or write the opcode byte otherwise.

Parser The parser calls the scanner to read the source code one token at a time, and
generates the corresponding compiled code with the backend. For our very simple
initial compiler, the parser can be modeled with a Finite State Machine, represented in
Figure 15.2. There are 4 states, corresponding to the expected “type” of the next token
returned by the scanner. State 0 corresponds to opcode tokens, such as add. States 1,
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token v opcode S

cst_0 8EA4E 00 0
cst_1 8EA4F 01 0
cst8 E414 02 1

cst 16CE 03 4
add 1560 04 0
sub 1D10 05 0
mul 1AC2 06 0
div 16D0 07 0

and 15C4 08 0
or 2B8 09 0
lsl 1A4A 0A 0
lsr 1A50 0B 0
iflt F65C 0C 2

ifeq F613 0D 2
ifgt F62A 0E 2
ifle F64D 0F 2

ifne F661 10 2

token v opcode S

ifge F61B 11 2
goto F25B 12 2
load 1051A 13 0

store B5E35 14 0
ptr 1BEA 15 1
get 17D2 16 1
set 1C82 17 1

pop 1BB6 18 0
fn 25A 19 1

call DCF0 1A 2
callr 8A1A2 1B 2
calld 8A194 1C 0

ret 1C1E 1D 0
retv 11972 1E 0
blx 1628 1F 0

d 34 20 1

TABLE 15.1 The token value v and the corresponding compiled opcode and next state
S for each valid opcode token.

2, and 4 correspond to 1, 2, and 4-byte opcode arguments, respectively (such as the
argument of cst8, iflt, and cst, respectively). In these 3 states, any token value v
should simply be written at dst in 1, 2, or 4 bytes, and the next state is state 0. In state
0, the opcode corresponding to the token value v, noted opcode(v), should be written
at dst. And the next state, noted S(v), should be either 0, 1, 2, or 4, depending on
this opcode. By listing the opcode names and computing their token values v with
Algorithm 15.1, we get opcode(v) and S(v), shown in Table 15.1.

In order to implement this Finite State Machine we need functions to compute
opcode(v) and S(v). For this, the easiest is to store Table 15.1 in memory. opcode(v)
can then be computed by finding the row corresponding to v, and then returning the
value in its opcode column – and similarly for S(v). In fact, since the opcode of the
ith row is i, we don’t need to store this column. Notice also that the least significant
byte lsb(v) of the token values v are all unique. We can thus store only one byte per
value in this column. In summary, opcode(v) and S(v) can be computed as described
in Algorithm 15.2, where LSB and S are the lsb(v) and S(v) value lists.

Note that for the invalid token cst_3, lsb(v) is equal to 51, which is not in LSB. In
such cases, Algorithm 15.2 returns the invalid opcode 33. Hence, most invalid tokens
can be detected by checking for invalid opcodes. However, some invalid tokens, such
as cst_2, cannot be detected like this because the least significant byte of their token
value is in LSB. We fix this in Chapter 16, at the price of a greater complexity.
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ALGORITHM 15.2 Computing {opcode(v), S(v)} for a token value v.
LSB = [4E, 4F, 14, CE, . . .], S = [0, 0, 1, 4, . . .]

1. initialize i to 0
2. while i ≤ 32 and the ith value in LSB is not equal to (v ∧ 255)
3. increment i by 1
4. return {i, ith value in S}

15.3 Implementation
We can now implement this initial compiler. We do this in a new data buffer, in the
next flash memory page after the text editor (i.e., at address C0F0016). We start with
the scanner, with a function returning 1 if a given character c is a space, a tabulation,
or a “new line” (2016, 0916, and 0A16 in ASCII, respectively), and 0 otherwise:

tc_is_space(c)→ bool
fn 01 19 C0F04
get 00 c 16 +002
cst8 20 02 +004
ifeq 0019 0D +006
get 00 c 16 +009
cst8 09 02 +00B
ifeq 0019 0D +00D

get 00 c 16 +010
cst8 0A 02 +012
ifeq 0019 0D +014
cst_0 00 +017
retv 1E +018
cst_1 01 +019
retv 1E +01A

We then implement Algorithm 15.1 in two parts. Steps 1 and 2 are implemented
in the following function, which returns the new src value:

tc_skip_spaces(src, src_end )→ src′

Initialize src′ to src.
Step 1. If src′ (in the 6th stack frame

slot) is greater than or equal to src_end,
go to the last instruction.

If the character at src′ is not a spacing
character, go to the last instruction.

Step 2. Increment src′ (the top stack
value) by 1 and go back to step 1.

Return the top stack value src′.

fn 02 19 C0F1F
get 00 src → src′ 16 +002
get 06 src′ 16 +004
get 01 src_end 16 +006
ifge 001C 11 +008
get 06 src′ 16 +00B
call 03C0 load_byte 1A +00D
call 0F04 tc_is_space 1A +010
cst_1 01 +013
ifne 001C 10 +014
cst_1 01 +017
add 04 +018
goto 0004 12 +019
retv 1E +01C

Steps 5 to 7 are implemented in the next function, which also returns the new src
value (we assume that steps 3 and 4 are done by the caller). Since a function can’t
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return several values, it can’t return v as described in Algorithm 15.1. Instead, it takes
as parameter a pointer vp to a memory word where v can be read and modified:

tc_read_token(src, src_end , vp)→ src′

Initialize src′ to src.
Step 5. If src′ (in the 7th stack frame

slot) is greater than or equal to src_end,
go to the last instruction.

If the character at src′ is a spacing
character, go to the last instruction.

Step 6. Update v, at address vp, to
10v + (c− 3016), where c is the character
at src′. To simplify, we do not check if
this new value actually fits in a word.

Step 7. Increment src′ (the top stack
value) by 1 and go back to step 5.

Return the top stack value src′.

fn 03 19 C0F3C
get 00 src → src′ 16 +002
get 07 src′ 16 +004
get 01 src_end 16 +006
ifge 002E 11 +008
get 07 src′ 16 +00B
call 03C0 load_byte 1A +00D
call 0F04 tc_is_space 1A +010
cst_1 01 +013
ifeq 002E 0D +014
get 02 vp 16 +017
get 02 vp 16 +019
load 13 +01B
cst8 0A 02 +01C
mul 06 +01E
get 07 src′ 16 +01F
call 03C0 load_byte 1A +021
cst8 30 02 +024
sub 05 +026
add 04 +027
store 14 +028
cst_1 01 +029
add 04 +02A
goto 0004 12 +02B
retv 1E +02E

This concludes the scanner part. We continue with the backend part. As said
above, we mostly need here functions to store 8-bit and 16-bit values in memory.
We already have a store_byte function (see Table 13.1), hence we only need a new
store_half function (very similar to store_byte, already explained):

store_half(ptr , value)
fn 02 19 C0F6B
get 00 ptr 16 +002
get 00 ptr 16 +004
load 13 +006
cst FFFF0000 03 +007

and 08 +00C
get 01 value 16 +00D
or 09 +00F
store 14 +010
ret 1D +011

We finish the backend part with a function to write an opcode byte at dst, which
returns the new dst value, dst′. As described above, this function returns an error
(represented with dst = 0) if opcode > 32, and does nothing if opcode = 32:
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tc_write_opcode(dst , opcode)→ dst ′

fn 02 19 C0F7D
get 01 opcode 16 +002
cst8 21 02 +004
ifne 000B 10 +006
cst_0 00 +009
retv 1E +00A
get 01 opcode 16 +00B
cst8 20 02 +00D
ifne 0015 10 +00F

get 00 dst 16 +012
retv 1E +014
get 00 dst 16 +015
get 01 opcode 16 +017
call 0A04 store_byte 1A +019
get 00 dst 16 +01C
cst_1 01 +01E
add 04 +01F
retv 1E +020

We continue the implementation with the parser part, starting with Algorithm 15.2.
We first store the LSB and S tables, at addresses C0F9E16 and C0FC016, respectively
(note that we end each table with a 33rd 0 value, since i can be equal to 33 at step 4 of
Algorithm 15.2):

EA351A5B 1B614D2A 135C504A B8C4D0C2 1060CE14 4F4E.... C0F9C
00000000 00000000 04010000 00342872 1E94A2F0 5AB682D2 C0FB4

0001 00000000 02020100 01010100 00020202 02020202 C0FCC

We then implement Algorithm 15.2 in the following function. Since a function
can’t return several values, it returns the opcode only, and stores S at an address Sp

passed as parameter. Note also that this function takes the least significant byte lsb of
v as parameter (instead of v in Algorithm 15.2):

tc_get_opcode(lsb, Sp)→ opcode
Step 1. Initialize i to 0.
Step 2. If i (in the 6th stack frame slot)

is greater than 32, go to step 4.

If the ith value in LSB is equal to lsb,
go to step 4.

Step 3. Increment the top stack value i
by 1 and go back to step 2.

Step 4. Store the ith value of S at Sp

and return the top stack value i.

fn 02 19 C0FE2
cst_0 → i 00 +002
get 06 i 16 +003
cst8 20 02 +005
ifgt 001F 0E +007
cst 000C0F9E 03 +00A
get 06 i 16 +00F
add 04 +011
call 03C0 load_byte 1A +012
get 00 lsb 16 +015
ifeq 001F 0D +017
cst_1 01 +01A
add 04 +01B
goto 0003 12 +01C
get 01 Sp 16 +01F
cst 000C0FC0 03 +021
get 06 i 16 +026
add 04 +028
call 03C0 load_byte 1A +029
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store 14 +02C
retv 1E +02D

With this we can now implement a function to perform a transition of the parser’s
Finite State Machine. The following function takes a pointer Sp to the current state S
as parameter, as well as a token value v and the current value of dst. It performs the
corresponding action, updates the value at Sp to the next state, and returns the new
dst value. It has 4 main parts, corresponding to the 4 possible values of the current
state, plus a shared 5th part:

tc_parse_token(dst , v , Sp)→ dst ′

Get the value S at address Sp.

Part 1. If S (in the 7th stack frame slot)
is not 0, go to part 2.

Otherwise, compute opcode(v) and
storeS(v) atSp by callingtc_get_opcode
on the least significant byte of v, v ∧
255. Write this opcode at dst by calling
tc_write_opcode, and return the result.

Part 2. If S is not 1, go to part 3.

Otherwise, store the byte v at dst and
go to part 5 (to simplify we do not check
if v actually fits in a byte).

Part 3. If S is not 2, go to part 4.

Otherwise, store the half word v at dst
and go to part 5 (to simplify we do not
check if v actually fits in a half word).

Part 4. S is necessarily equal to 4.
Store the word v at dst and continue to
part 5.

Part 5. Update the value at Sp to 0, the
next state after a transition from state 1, 2,
or 4.

fn 03 19 C1010
get 02 Sp 16 +002
load → S 13 +004
get 07 S 16 +005
cst_0 00 +007
ifne 001B 10 +008
get 00 dst 16 +00B
get 01 v 16 +00D
cst8 FF 02 +00F
and 08 +011
get 02 Sp 16 +012
call 0FE2 tc_get_opcode 1A +014
call 0F7D ...write_opcode 1A +017
retv 1E +01A
get 07 S 16 +01B
cst_1 01 +01D
ifne 002B 10 +01E
get 00 dst 16 +021
get 01 v 16 +023
call 0A04 store_byte 1A +025
goto 0041 12 +028
get 07 S 16 +02B
cst8 02 02 +02D
ifne 003C 10 +02F
get 00 dst 16 +032
get 01 v 16 +034
call 0F6B store_half 1A +036
goto 0041 12 +039
get 00 dst 16 +03C
get 01 v 16 +03E
store 14 +040
get 02 Sp 16 +041
cst_0 00 +043
store 14 +044
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Return the new dst value, dst + S
(since S is the number of bytes just writ-
ten).

get 00 dst 16 +045
get 07 S 16 +047
add 04 +049
retv 1E +04A

We can finally implement the compiler’s main function. It starts by initializing
src to src_buffer +4 , src_end to src+mem32[src_buffer ], dst to dst_buffer +4 ,
the token value v to 0, and the Finite State Machine state S to 0, in stack frame slots 6,
7, 8, 9, and 10, respectively:

tc_main(src_buffer , dst_buffer )→ error

fn 02 19 C105B
get 00 src_buffer 16 +002
cst8 04 02 +004
add → src 04 +006
get 06 src 16 +007
get 00 src_buffer 16 +009
load 13 +00B

add → src_end 04 +00C
get 01 dst_buffer 16 +00D
cst8 04 02 +00F
add → dst 04 +011
cst_0 → v 00 +012
cst_0 → S 00 +013

It continues with a loop which 1) skips spaces and returns 0 if src_end is reached,
2) reads a token and performs the corresponding Finite State Machine transition, 3)
returns 1 if an invalid token was found:

Step 1. Update src to the result of
tc_skip_spaces(src, src_end).

Step 2. If src < src_end, go to step
3.

Otherwise, i.e., if the end of the pro-
gram is reached, set the value at dst_buffer
to the number of bytes written, dst −
dst_buffer − 4 , and return 0 (meaning
“no error”). To simplify, we do not check
if S is 0 (if not the program ends in the
middle of an instruction, which is an error).

Step 3. Call the scanner to read a token
and store its value in v. Update src to the
result of tc_read_token.

get 06 src 16 +014
get 07 src_end 16 +016
call 0F1F ...skip_spaces 1A +018
set 06 src 17 +01B
get 06 src 16 +01D
get 07 src_end 16 +01F
iflt 0031 0C +021
get 01 dst_buffer 16 +024
get 08 dst 16 +026
get 01 dst_buffer 16 +028
sub 05 +02A
cst8 04 02 +02B
sub 05 +02D
store 14 +02E
cst_0 00 +02F
retv 1E +030
get 06 src 16 +031
get 07 src_end 16 +033
ptr 09 v 15 +035
call 0F3C tc_read_token 1A +037
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Step 4. Perform the Finite State Ma-
chine transition corresponding to v. Up-
date dst to the result of tc_parse_token.

Step 5. If dst ̸= 0, go to step 6.

Otherwise, i.e., if an invalid token has
been read, set the value at dst_buffer to the
location of the error, src−src_buffer−4 ,
and return 1 (meaning “error”).

Step 6. Reinitialize v to 0 for the next
loop iteration, and go back to step 1.

set 06 src 17 +03A
get 08 dst 16 +03C
get 09 v 16 +03E
ptr 0A S 15 +040
call 1010 ...parse_token 1A +042
set 08 dst 17 +045
get 08 dst 16 +047
cst_0 00 +049
ifne 005A 10 +04A
get 01 dst_buffer 16 +04D
get 06 src 16 +04F
get 00 src_buffer 16 +051
sub 05 +053
cst8 04 02 +054
sub 05 +056
store 14 +057
cst_1 01 +058
retv 1E +059
cst_0 00 +05A
set 09 v 17 +05B
goto 0014 12 +05D

In summary the full code of our initial compiler is the following:

0000190D 0A020016 00190D09 02001600 190D2002 00160119 C0F04
10010F04 1A03C01A 0616001C 11011606 16001602 191E011E C0F1C
03C01A07 16002E11 01160716 00160319 1E000412 0401001C C0F34
04053002 03C01A07 16060A02 13021602 16002E0D 010F041A C0F4C
14090116 08FFFF00 00031300 16001602 191E0004 12040114 C0F64
00161E00 16001510 20020116 1E00000B 10210201 1602191D C0F7C
135C504A B8C4D0C2 1060CE14 4F4E1E04 0100160A 041A0116 C0F94
04010000 00342872 1E94A2F0 5AB682D2 EA351A5B 1B614D2A C0FAC
02020100 01010100 00020202 02020202 00000000 00000000 C0FC4
04061600 0C0F9E03 001F0E20 02061600 02190001 00000000 C0FDC
1A040616 000C0FC0 03011600 03120401 001F0D00 1603C01A C0FF4
021608FF 02011600 16001B10 00071613 02160319 1E1403C0 C100C
16004112 0A041A01 16001600 2B100107 161E0F7D 1A0FE21A C1024
00021614 01160016 0041120F 6B1A0116 0016003C 10020207 C103C
04020116 04130016 06160404 02001602 191E0407 16001614 C1054
16081601 1600310C 07160616 06170F1F 1A071606 16000004 C106C
15091608 1606170F 3C1A0915 07160616 1E001405 04020501 C1084
01140504 02050016 06160116 005A1000 08160817 10101A0A C109C

001412 0917001E C10B4

To store it in flash memory we must enter it in RAM first, lets say at address
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2007000016, and then save it in flash. In the memory editor, type “w20070000”+Enter,
and then store the compiler size in bytes at this address by typing “w000001b7”+Enter.
Continue by entering each word of the compiler code, listed above, by typing its value
followed by Enter. Finally, save this code in flash memory (starting at page = 15) by
running the following function:

save()
fn 00 19 00000
cst 20070000 03 +002

cst8 0F 02 +007
call 0B14 buffer_flash 1A +009
ret 1D +00C

For this enter the full code of the above function in an unused RAM region, for
instance starting at address 2008000016:

1D 0B141A0F 02200700 00030019 00000

Then type “w20080000” followed by “r” to run it. Alternatively, if you don’t
want to enter the full compiler code manually with the memory editor, which is a
bit tedious, you can “cheat” by saving it via an external computer, as follows. First
run the boot_mode_select_rom function by typing “w000c02b4”+Enter, followed
by “r”. Then reset the Arduino and, on the host computer, run the following command
to flash the compiler code and reset the Arduino again:
user@host:~$ python3 flash_helper.py < part3/opcodes_compiler.txt
>Reading page 1039... Done.
Reading page 1040... Done.
Writing page 1039... Done.
Writing page 1040... Done.
>Done.

15.4 Command editor
We can now write and compile our very first program in textual form. For this we
first need to enter it in memory with the text editor. This requires calling the text
editor, and then the compiler, with specific arguments. In turn, this currently requires
typing a few bytecode instructions in binary form with the memory editor, as we did
above to call buffer_flash. To avoid having to do this in the next chapters, our first
program is a command editor. Its goal is to edit, compile and run small functions,
called commands, such as the save function above.

15.4.1 User interface
A task such as writing and compiling a program requires less than a dozen distinct
commands to edit the program, save it, compile it, save the compiled code, etc.
However, each command must usually be run several times (if the compiler returns
an error, the program must be edited, saved, and compiled again). In order to avoid
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having to repeatedly type the same commands, the command editor should be able to
save up to 12 distinct commands in flash memory. We number them from 1 to 12. It
should then be able to load an existing command, and to edit it if necessary. Finally, it
should be able to compile and run a command. To fulfill these requirements we define
the command editor user interface as follows:

• typing a “Fi” key between “F1” and “F12” included should load command number
i and display it. This command becomes the current command.
• typing “e” should run the text editor to edit the current command. Each command

must be a function without argument, returning an integer value.
• typing “s” should save the current command in flash memory.
• typing “r” should compile the current command, run it, display its result, and wait

until Enter is pressed (and not until any key press because releasing “r” can appear
as a key press for commands using the flash memory driver – see Section 13.2). If
the compilation fails, the compiler result should be displayed instead.
• typing Escape should exit the command editor.

Finally, when launched, the command editor should load and display command
number 1. All commands are initially empty in flash memory.

15.4.2 Implementation
We can now write the command editor source code. For this we assume that its
compiled code will eventually be stored in the next page after the opcodes compiler,
i.e., at address C110016=C000016+4352.

To implement the above requirements we reserve 12 pages of flash memory, one
for each command, starting at address D000016. This gives 256− 4 = 252 bytes for
the source code of each command, stored as a data buffer (see Section 13.1.3). We
can then write a function to load command number command (here numbered from
0 to 11) at address dst (the right column shows source code; in particular, all numbers
are in decimal form):

ced_load(command , dst)
Initialize dst to an empty buffer.

Compute the src address of command .
This is D000016 + 256 ∗ command .

If the src buffer size is greater than
252 this means that no command has ever
been stored here (each flash memory bit is

fn 2 04356
get 1 dst +002
cst_0 +004
store +005
cst 851968 +006
get 0 command +011
cst8 8 +013
lsl +015
add → src +016
get 6 src +017
load +019
cst8 252 +020
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initialized to 1). Then return directly.
Otherwise copy the src buffer to dst

and return.

ifgt 32 +022
get 6 src +025
get 1 dst +027
call 2708 buffer_copy +029
ret +032

We continue with a function to display the command at src. For this we simply
reuse the ted_draw function of the text editor:

ced_draw(src)
Set the color to yellow, to make it easier

to distinguish the command editor and the
text editor (which draws text in green).

Compute the begin address of the text,
which is 4 bytes after src.

Compute the end address of the text,
which is n bytes after begin (where n, the
src buffer size, is the value at address src).

Draw the text with a zero gap and a
cursor at the end (see Chapter 14).

fn 1 04389
cst8 7 +002
cst8 7 +004
cst_0 +006
call 1101 gpu_set_color +007
get 0 src +010
cst8 4 +012
add → begin +014
get 5 begin +015
get 0 src +017
load +019
add → end +020
get 5 begin +021
get 6 end +023
cst_0 +025
get 6 end +026
call 3450 ted_draw +028
ret +031

The next function compiles the source code at src, writes the compiled code at
dst , and runs it. It then displays the result and waits until Enter is pressed.

ced_run(src, dst)
Compile the code. The result, noted

error , is pushed in the 6th stack frame slot.

If the compilation is successful (i.e., if
error = 0), run the compiled code (which
starts after the 4 bytes dst header) and
store its result in error . Otherwise skip
this step.

Clear the screen, set the cursor to the

fn 2 04421
get 0 src +002
get 1 dst +004
call 4187 tc_main +006
get 6 error +009
cst_0 +011
ifne 23 +012
get 1 dst +015
cst8 4 +017
add +019
calld +020
set 6 error +021
call 1033 ...clear_screen +023
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top-left corner, draw error in hexadecimal,
and wait until Enter is pressed.

cst_0 +026
cst_0 +027
call 1058 ...set_cursor +028
get 6 error +031
call 1868 ...draw_hex_word +033
call 1504 ...get_char +036
cst8 10 +039
ifne 36 +041
ret +044

We can finally write the main command editor function. This function loops until
Escape is pressed, and performs the appropriate action for any other typed key. It
loads the current command in the 256 bytes region starting at address 2007000016,
and compiles and runs it the next 256 bytes.

command_editor()
Initialize src to 2007000016.
Initialize command to 0.
Initialize c to “F1” (see Table 11.3).
Step 1. If c is not the Escape key go to

step 2. Otherwise return.

Step 2. If c is not between “F1” and
“F12” included go to step 3.

Otherwise set command to c−“F1”.

Then load this new command and go
to step 6 to display it.

Step 3. If c is not equal to “e” go to
step 4.

Otherwise call the text editor to edit
the current command (with a maximum
text length of 252 bytes). Then go to step
6 to display it.

fn 0 04466
cst 537329664→ src +002
cst_0 → command +007
cst8 128 → c +008
get 6 c +010
cst8 27 +012
ifne 18 +014
ret +017
get 6 c +018
cst8 128 +020
iflt 49 +022
get 6 c +025
cst8 139 +027
ifgt 49 +029
get 6 c +032
cst8 128 +034
sub +036
set 5 command +037
get 5 command +039
get 4 src +041
call 4356 ced_load +043
goto 110 +046
get 6 c +049
cst8 101 +051
ifne 67 +053
get 4 src +056
cst_0 +058
cst8 252 +059
call 3581 text_editor +061
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Step 4. If c is not equal to “e” go to
step 5.

Otherwise save the current command at
addressD000016+256∗command , which
corresponds to page 256 + command .

Step 5. If c is not equal to “r” go to
step 6.

Otherwise compile and run the current
command. The compiled code is written
at dst = src+ 256 . Then continue to step
6.

Step 6. Draw the current command,
wait for a key to be pressed, store it in c,
and go back to step 1 to handle it.

goto 110 +064
get 6 c +067
cst8 115 +069
ifne 90 +071
get 4 src +074
cst 256 +076
get 5 command +081
add +083
call 2836 buffer_flash +084
goto 110 +087
get 6 c +090
cst8 114 +092
ifne 110 +094
get 4 src +097
get 4 src +099
cst 256 +101
add +106
call 4421 ced_run +107
get 4 src +110
call 4389 ced_draw +112
call 1542 ...wait_char +115
set 6 c +118
goto 10 +120

The command editor implementation is now complete, and is summarized below:

fn 2
get 1 cst_0 store
cst 851968 get 0 cst8 8 lsl add
get 6 load cst8 252 ifgt 32 get 6 get 1 call 2708
ret

fn 1
cst8 7 cst8 7 cst_0 call 1101
get 0 cst8 4 add
get 5 get 0 load add
get 5 get 6 cst_0 get 6 call 3450
ret

fn 2
get 0 get 1 call 4187
get 6 cst_0 ifne 23 get 1 cst8 4 add calld set 6
call 1033
cst_0 cst_0 call 1058
get 6 call 1868
call 1504 cst8 10 ifne 36
ret

fn 0
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cst 537329664
cst_0
cst8 128
get 6 cst8 27 ifne 18 ret
get 6 cst8 128 iflt 49 get 6 cst8 139 ifgt 49
get 6 cst8 128 sub set 5
get 5 get 4 call 4356 goto 110
get 6 cst8 101 ifne 67 get 4 cst_0 cst8 252 call 3581 goto 110
get 6 cst8 115 ifne 90 get 4 cst 256 get 5 add call 2836 goto 110
get 6 cst8 114 ifne 110 get 4 get 4 cst 256 add call 4421
get 4 call 4389
call 1542 set 6 goto 10

15.4.3 Compilation
We now need to type this source code with the text editor, save it, compile it, and store
the compiled code. These 4 steps are explained below.

Edit
Typing the source code requires launching the text editor first. For this, in the memory
editor, type “w20080000”+Enter, followed by the code below (see Section 14.4):

1D 0DFD1A00 00100003 00200700 00030019 00000

Then initialize an empty text buffer by typing “w20070000”+Enter, followed by
“00000000”+Enter. Run the text editor on this empty buffer by typing “20080000”+En-
ter, followed by “r”. Finally, type the command editor source code listed above,
followed by Escape to return in the memory editor.

Alternatively, if you don’t want to type this source code, you can “cheat” by saving
it via an external computer, as follows. First run the boot_mode_select_rom function
by typing “w000c02b4”+Enter, followed by “r”. Then reset the Arduino and, on the
host computer, run the following command to flash the source code and reset the
Arduino again (you can then skip the “Save” step below):
user@host:~$ python3 flash_helper.py < part3/command_editor.txt

Save
Before compiling this code we want to save it, in case something goes wrong. We
can save it after the 12 pages reserved for the commands, at address D0C0016, which
corresponds to page 268 = 10C16. This can be done with the following function:

save_source()
fn 00 19 00000
cst 20070000 03 +002

cst 0000010C 03 +007
call 0B14 buffer_flash 1A +00C
ret 1D +00F
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Enter it in RAM after the “edit” function, at address 2008002016, by typing
“w20080020”+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080020”+Enter, followed by “r”.

1D0B141A 0000010C 03200700 00030019 00000

Compile
Compiling the code can be done with the following function, which writes the compiled
code at address 2007100016 and the compiler’s result value at address 2008006016:

compile_source()
fn 00 19 00000
cst 20080060 03 +002
cst 000D0C00 03 +007

cst 20071000 03 +00C
call 105B tc_main 1A +011
store 14 +014
ret 1D +015

Enter it in RAM after the “save” function, at address 2008004016, by typing
“w20080040”+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080040”+Enter, followed by “r”.

1D14 105B1A20 07100003 000D0C00 03200800 60030019 00000

If all goes well the value at address 2008006016 should be 0, because the compiler
returns 0 if and only if the compilation is successful. If this is not the case, run the
“edit” function again, double check the source code and fix any error found (you can
also get the location of the error at address 2007100016). Then save and compile the
code again. And repeat this until success.

Store
Once the compilation is successful, the compiled code can be stored in flash memory.
The following function stores it in the next page after the compiler itself, i.e., at
address C110016, which corresponds to page 17 = 1116:

save_code()
fn 00 19 00000
cst 20071000 03 +002

cst8 11 02 +007
call 0B14 buffer_flash 1A +009
ret 1D +00C

Enter it in RAM after the “compile” function, at address 2008008016, by typing
“w20080080”+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080080”+Enter, followed by “r”.

1D 0B141A11 02200710 00030019 00000
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15.4.4 First commands
We can now try our command editor. Start it by typing “w000c1172”+Enter, followed
by “r” (its main function is at address C000016+4466=C117216 – see Section 15.4.2).
The screen should now be empty, because it displays command number 1, initially
empty. Lets use this command to show a welcome message when the command editor
starts. Type “e” to edit it, then type “Welcome to the command editor." followed by
Escape. At this point the message you typed should be displayed in yellow. For now it
is only in RAM. Type “s” to save it in flash memory. We now want to define some
commands to create, load, edit, save, and compile a program.

New (F2) initializes an empty text buffer at address 537330176 = 2007020016, just
after the memory region used by the command editor (see Figure 15.3). Type “F2”
followed by “e” to edit it, then type its source code followed by Escape and “s” (the
dummy data at the end describes the command):
fn 0

cst 537330176 cst_0 store
cst_0 retv

d NEW_SOURCE_CODE

Load (F3) calls buffer_copy to load a program stored in flash memory at address
856064 = D100016, just after the command editor source code (see Figure 15.3). Store
its source code in command number 3:
fn 0

cst 856064 cst 537330176 call 2708
cst_0 retv

d LOAD_SOURCE_CODE

Edit (F4) calls text_editor to edit the text buffer at address 2007020016, with the
word at address 537379328 = 2007C20016 as initial offset, and a maximum length of
48 KB (including the 4 bytes header). The initial offset corresponds to the header of a
compiled code buffer (see Figure 15.3) which, in case of a compilation error, contains
the error location. Hence, editing the source code after a compilation error opens the
text editor at the location of this error. Store the following source code in command
number 4:
fn 0

cst 537330176 cst 537379328 load cst 49148 call 3581
cst_0 retv

d EDIT_SOURCE_CODE

Save (F5) calls buffer_flash to save the edited program in flash memory at address
D100016, which corresponds to page 272. Store it in command number 5:
fn 0

cst 537330176 cst 272 call 2836
cst_0 retv

d SAVE_SOURCE_CODE
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FIGURE 15.3 The flash memory and RAM regions used by the command editor, and
by the commands defined in Section 15.4.4. White, blue and gray areas represent
source code, bytecode and unused memory, respectively (not to scale).

Compile (F6) calls tc_main to compile the source code at address D100016, and to
write the compiled code at address 537379328 = 2007C20016 (just after the source
code in RAM, see Figure 15.3). It returns the compiler’s result, which is non-zero if a
compilation error occurs. Store it in command number 6:

fn 0
cst 856064 cst 537379328 call 4187 retv

d COMPILE_SOURCE_CODE

Store (F7) calls buffer_flash to store the compiled code in flash memory at address
791040 = C120016, which corresponds to page 18 (after the command editor – see
Figure 15.3). Before that, this command backs up the current compiled code by saving
a copy of it at address 917504 = E000016, which corresponds to page 512. Store it in
command number 7:

fn 0
cst 791040 cst 512 call 2836
cst 537379328 cst 18 call 2836
cst_0 retv

d STORE_COMPILED_CODE

Restore (F8) calls buffer_flash to restore the backup created by the previous command,
in case something goes wrong. Store it in command number 8:

fn 0
cst 917504 cst 18 call 2836
cst_0 retv

d RESTORE_BACKUP_CODE
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15.4.5 Tests
In order to test the above commands, type “F2”+“r” to create a new program, and
press Enter to return in the command editor. Then type “F4”+“r” to edit this program,
and type the following code, which contains an error on purpose:

fn 0 cst_3 retv

Then type Escape to exit the text editor. The command’s result, 0, should be displayed.
Press Enter to return in the command editor’s main loop (in the following we omit
these “press Enter” instructions, for brevity).

Type “F5”+“r” to save this program, “F2”+“r” to create a new one, and “F4”+“r”
to edit it. The screen should be empty. Type Escape to return in the memory editor,
then type “F3”+“r” to load the previously saved program. Type “F4”+“r” to check
that it is now loaded in RAM, and Escape to return in the command editor.

Type “F6”+“r” to compile this program. The result should be 1, because cst_3 is
an invalid opcode. Then type “F4”+“r” to edit the program. The cursor should be just
after this invalid opcode. Enter the correct code below:

fn 0 cst8 3 retv

Finally, type Escape to exit the text editor, “F5”+“r” to save the corrected code,
and “F6”+“r” to compile it. The result should be 0 this time.
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CHAPTER

Labels Compiler

The opcodes compiler written in the previous chapter removes the need to manually
convert each opcode into its numerical value, and to convert each opcode argument into
the correct number of bytes. However, with this compiler, we still need to manually
keep track of the address of each function, and of the offset of each instruction inside
functions. Indeed, these values are needed for function call and jump instructions.
To solve these issues, we implement in this chapter a new compiler, for a better
programming language.

16.1 Requirements
So far we manually kept track of the address of each function by using a symbolic
name for each function, and by keeping the address corresponding to each name in
tables such as Table 12.1. To avoid this manual work, a solution is to use function
names in the program source code, instead of outside of it (as we did so far). For
instance, instead of writing “fn 1”, we can write “fn factorial 1”. We can then
write “call factorial” to call this function, instead of something like “call 4096”.
From this, the compiler can do what we have been doing manually, i.e., compute the
address corresponding to each name, keep these addresses in a table, and replace each
name with its corresponding address to produce the compiled code.

Similarly, so far, we used symbolic names such as “Step 1” to refer to some
instructions in a function. And we added comments next to jump instructions, such as
“go back to step 1”, to make it easier to understand them. To avoid having to manually
convert these symbolic names, called labels, into instruction offsets, we can use the
same solution as above. Namely use labels in the program source code, instead of
outside of it. For instance, we can write “:step1 add” to label an instruction, and
then “goto step1” to jump to it (instead of something like “goto 13”). The compiler
can then compute the offset corresponding to each label, keep them in a table, and
replace each label with its corresponding offset to produce the compiled code.

Programs with bytecode instructions in textual form, augmented with function
names and labels, can be defined with the following grammar:

program: (fn | static)* END
fn: “fn” fn_name fn_body
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fn_name: IDENTIFIER
fn_body: INTEGER instruction* | “;”
instruction: label | “cst_0” | “cst_1” | “cst8” argument | “cst32” argument | . . .
label: “:” IDENTIFIER
argument: INTEGER | IDENTIFIER
static: “static” IDENTIFIER INTEGER*

where IDENTIFIER refers to a token made of letters in “a” to “z”, “A” to “Z”, “0” to
“9”, or “_”, not starting with a digit, and not equal to “static”, “fn”, “cst_0”, etc.

The “fn” rule gives a symbolic name (defined by the “fn_name” rule) to a function.
The body of this function is either an integer (its number of parameters) followed by
a list of instructions, or a semi-colon. The latter case allows the introduction of a
function name before its implementation is defined. It is explained in the next section.

The “instruction” rule is similar to the one in the previous chapter. The main
differences are the introduction of labels (with the “label” rule), the generalization of
arguments to either an INTEGER (as before) or an IDENTIFIER (which should be a
function name, a label, or a static block name – see below), and the removal of the
“fn” instruction (which now has its own rule, as explained above).

The “static” rule gives a symbolic name to the address of the first byte in a series of
bytes. For instance, “static FIBONACCI 0 1 1 2 3 5 8” gives the name “FIBONACCI”
to the address of the 0 byte, and compiles into the series of bytes 0 1 1 2 3 5 8. It
replaces the pseudo d instruction used in the previous chapter to insert data between
code. And it avoids the need to manually compute the address of this data, just like
function names.

Finally, the main “program” rule defines a program as any number of function
and static blocks, in any order (the parentheses are not tokens; they mean that the “*”
applies to their content). END is a special token representing the end of the source
code. It does not correspond to any character. Its role is to ensure that the program is
not followed by “garbage” content. Without it, for instance, “lorem ipsum” would be
a valid (empty) program for the above grammar.

In this context, the precise requirements for our new compiler, also called an
assembler, are mostly the same as in Section 15.1, but for the above grammar. The
main difference is that the compiler now needs an additional input parameter, namely
the address where the compiled code will be stored and executed. Indeed, this is
needed to compute correct addresses in call instructions1. We call this new parameter
flash_buffer . We also want our compiler to detect more errors. In particular, it should
detect all invalid opcode names, and all references to undefined names or labels.

16.2 Algorithms
Our new compiler is divided in a scanner, a parser and a backend, like the previous
one. This section explains the algorithms used in each part.

1To simplify, the compiler does not produce position independent code (see Section 13.3).
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16.2.1 Scanner
Based on the above grammar, the tokens that the scanner must recognize are integers,
identifiers, keywords such as “static”, “fn”, “cst_0”, etc, the colon and semi-colon
characters, and the special END token. A token can thus no longer be represented
with a single value v, as in the previous chapter. Instead, the scanner produces the
following values for each token:

• token identifies the token type. We use 0 for END, 1 for invalid tokens (such as
“=”), 2 for integers, 3 for identifiers, 115 (“s” in ASCII) for “static”, 102 (“f”
in ASCII) for “fn”, 58 (“:” in ASCII) for “:”, 59 (“;” in ASCII) for “;”, and
opcode + 128 for the token corresponding to opcode.
• token_data is the token’s value for integer tokens (e.g., 42 for the “42” token), or

the address of the token’s first character in the source code for identifier tokens.
• token_length is the number of characters of identifier tokens (e.g., 3 for “src”).

As before, the scanner could be represented with a Finite State Machine. But it
would then have a lot of states. Another method is to use the following properties:

• keywords excepted, all tokens start with a different type of character: a digit for
integers, a lowercase or uppercase letter (or an underscore) for identifiers, and a
colon or a semi-colon for the single-character tokens.
• keywords are special cases of identifiers.

This suggests the following method to read a token: 1) look at its first character, 2)
call a dedicated function to read the type of token corresponding to this first character,
3) if the token looks like an identifier, check if it is equal to a keyword and, if so,
treat it as such. To implement this method, it is useful to have a CHAR_TYPES table
indicating the type of each character: 1 for unsupported characters such as “=”, 2 for
digits, 3 for letters and the underscore, 58 for “:” and 59 for “;”. It is also useful to
have a KEYWORDS table of all the keywords, associated with their token value. Each
entry in this table can be stored as the keyword’s number of characters n, followed by
these n characters, and ending with the corresponding token value:

KEYWORDS = 5 c s t _ 0 128 5 c s t _ 1 129 4 c s t 8 130 ... 0
where, to indicate the end of the table, a last “entry” with n = 0 is used. With this
table, finding the token value of an identifier or keyword starting at address start
and with length characters can be done with Algorithm 16.2, which makes use of
Algorithm 16.1 to compare two names (this algorithm simply compares the token
characters with those of each keyword in the table, one by one).

The above method can then be split into 3 functions to read a character, an integer,
or an identifier or keyword, called by a main function to read an arbitrary token:

• The function to read a character increments src by 1 and stores the next character to
read and its CHAR_TYPES type in the new next_char and next_char_type variables.
Reading a character can then be done as described in Algorithm 16.3 (recall that
src is defined as the address of the next character to read). In order to support the
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ALGORITHM 16.1 Comparing the size bytes starting at address ptr1 with those start-
ing at address ptr2, and returning 0 if and only if they are equal.

1. initialize i to 0
2. while i < size and the byte at ptr1 + i is equal to the byte at ptr2 + i
3. increment i by 1
4. return size - i

ALGORITHM 16.2 Computing the token value of the identifier or keyword starting at
address start and made of length characters.

1. initialize ptr to the address of the KEYWORDS table
2. load the byte at ptr (a keyword length) into len
3. if len = 0 return 3 (no keyword was found, hence this is an identifier)
4. if len = length and if the len bytes starting at start are equal to those starting

at ptr + 1 (the keyword’s characters)
5. return the keyword’s token value, i.e., the byte at ptr + len+ 1
6. otherwise
7. increment ptr by len+ 2 and go back to step 2 to try the next keyword

END token, this algorithm “reads the character” at src_end by setting next_char
and next_char_type to 0. Trying to read any character after that returns an error.
• The function to read an integer reads characters one by one, while the next character

is a digit. It computes its numerical value in token_data as in Algorithm 15.2, and
returns the token value of integer tokens (see Algorithm 16.4).
• The function to read an identifier or keyword reads characters one by one, while the

next character is a letter, an underscore or a digit. It then returns the token value
computed with Algorithm 16.2 (see Algorithm 16.5).
• Finally, the function to read an arbitrary token reads characters one by one while

the next character is a spacing character (for this it assumes that the CHAR_TYPES of
the space, tab and “new line” characters is 32 – “ ” in ASCII). It then calls one of
the above 3 functions, depending on the next character type (see Algorithm 16.6).
It uses the property that the token value of single character tokens and of the END
token is equal to the character type (the CHAR_TYPES are chosen to ensure this).

Note that Algorithms 16.4 to 16.6 assume that the first character of the to-
ken to read, called a lookahead character, is already available in next_char and
next_char_type . This property is ensured by the fact that, each time a character is read
with Algorithm 16.3, the next character is stored in next_char and next_char_type .

16.2.2 Parser
The parser uses the scanner to read the source code, checks that the tokens follow the
grammar, and generates the corresponding compiled code with the backend. Here the
latter task requires building a table mapping identifiers to values (function names to
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ALGORITHM 16.3 Reading a character.
1. if src ≥ src_end return an error
2. increment src by 1, set next_char and next_char_type to 0
3. if src < src_end
4. set next_char to the character at src
5. set next_char_type to the byte at CHAR_TYPES + next_char

ALGORITHM 16.4 Reading an integer token.
1. initialize v to 0
2. while next_char_type = 2
3. update v to 10v + (next_char − 3016 )
4. read a character with Algorithm 16.3
5. set token_data to v and return the token value 2

function addresses, label names to instruction offsets), and using this table to find the
value corresponding to an identifier. The following presents the algorithms used to do
this, before presenting the overall parsing algorithm.

Symbol table
The above table can be stored in memory in several ways. We use here a linked list
because it is simple to implement, although not very efficient. As its name implies,
this is a list of elements, where each element has a pointer to (i.e., the address of) the
next one (or 0 for the last element). In our case we call each element a symbol. Besides
a link to the next symbol, a symbol contains an identifier and a value. The identifier is
represented with the address of its first character, and its length (see Figure 16.1).

Symbols must be stored in RAM in a different region than the dst_buffer used
for the compiled code. We call this new region the heap, and we use a new heap
variable to indicate where a new symbol can be stored. We also use a new symbols
variable storing the address of the first symbol in the list (or 0 if the list is empty –
see Figure 16.1). With this data structure, adding a new symbol in the table is very
easy: we just need to store it in memory, starting at the heap address, with symbols
as pointer to the next symbol. Finally, we need to set symbols to heap, the address of
the new first symbol, and to increase heap by the number of bytes needed to store
a symbol (see Figure 16.1). Finding the symbol corresponding to a given identifier
I (specified by its address and length) is also very easy. We just need to iterate
over all the symbols in the list, by using the pointers from each symbol to the next,
until we find one whose identifier is equal to I (or we reach the end of the list – see
Algorithm 16.7).

Forward references Sometimes a jump instruction needs to jump to a later instruc-
tion, whose offset is not yet known when the jump instruction is parsed and compiled.
In such cases, called forward references, what we did manually so far was to leave a
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ALGORITHM 16.5 Reading an identifier or keyword token.
1. set start to src
2. while next_char_type = 3 or next_char_type = 2
3. read a character with Algorithm 16.3
4. set length to src− start
5. set token_data to start and token_length to length
6. return the token value computed with Algorithm 16.2 for start and length

ALGORITHM 16.6 Reading an arbitrary token.
1. while next_char_type = 32
2. read a character with Algorithm 16.3
3. set token to next_char_type
4. if next_char_type = 2 set token to the result of Algorithm 16.4
5. if next_char_type = 3 set token to the result of Algorithm 16.5
6. if next_char_type ̸= 0 read a character with Algorithm 16.3

placeholder for the jump offset in the compiled code, and to fill it once the jump target
was known. The compiler can do exactly the same, with the following algorithm:

• If a jump instruction uses a label which is not in the symbols list, add a new symbol
for this label, with the placeholder address as the symbol’s value. To distinguish
this symbol from normal ones, each symbol also stores its kind, which can be
resolved (0) or, for forward references, unresolved (1) – see Figure 16.1.
• When a label is defined with the “:label” syntax, check if it is in the symbols list.

If so the symbol should be unresolved. Then fill the placeholder at the address
stored in the symbol’s value with the label offset (now known), store this offset in
the symbol’s value, and set the symbol kind to “resolved”.

In fact several instructions can jump to a label which is not yet defined. In such
cases we need to store several placeholder addresses. One way to do this would be to
store in each placeholder the address of the previous one, yielding a linking list of
placeholders. Unfortunately a placeholder has only 16 bits. To solve this issue, we
can store instead in each placeholder the offset to the previous one (see Figure 16.2).
In summary, adding a placeholder and filling a list of placeholders can be done as
described in Algorithms 16.8 and 16.9. Finally, note that a call instruction can also
refer to a function whose address is not yet known. These forward function references
can be handled in exactly the same way as forward label references.

Local identifiers In compiled code a jump instruction can only jump to an instruction
in the same function. Hence, in source code, a jump instruction should only use local
labels, i.e., labels defined in the same function. To ensure this, and to save memory at
the same time, we can delete the symbols added for the labels of a function after it has
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FIGURE 16.1 A linked list of symbols (top). Each symbol is made of 5 words. name
and length refer to an identifier in the source code (bottom). next is the address of
the next symbol, or 0 for the last one (left). New symbols are stored at heap, which
is then incremented by 5 ∗ 4 bytes (right). symbols is the start of the linked list.

ALGORITHM 16.7 Finding the symbol corresponding to the identifier starting at
address name and with length characters.

1. initialize symbol to symbols
2. while symbol ̸= 0
3. if the symbol’s length is not equal to length go to step 6
4. if the symbol’s name is not equal to name (cf. Algorithm 16.1), go to step 6
5. return symbol
6. update symbol to the symbol’s next value
7. no symbol has been found, return 0

been compiled. Doing this is very simple: we just need to save the value of the heap
and symbols variables before compiling the function’s body, and to restore heap and
symbols to these saved values after the body has been compiled. Note however that
this method removes all the symbols added during the function compilation. Hence,
we cannot add a symbol for a forward function reference while compiling another
(otherwise this forward reference would be lost and thus never resolved). This explains
why, to simplify the compiler, we require an explicit forward declaration of functions
with the “fn name;” syntax (compiled by adding an unresolved symbol for name,
outside any function body).

Parsing algorithm
As in the previous chapter, the parser could be represented with a Finite State Machine.
Doing so, however, would lead to a complex implementation. Moreover, in the next
chapters, using a Finite State Machine is no longer possible. We thus use here another
method, called a recursive descent parser. This method uses one parse_r function
per rule r of the grammar. Each function checks that the next tokens follow the
corresponding grammar rule. A parse_r function for a rule r using another rule r′

can thus call parse_r′ to check this subpart of r.
For instance, in our case, 3 of the parser functions are parse_fn, parse_fn_name,
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FIGURE 16.2 The value of an unresolved symbol is the address x of its last place-
holder in the compiled code (in blue). Each placeholder contains the offset to the
previous one, or 0 for the first one. Adding a placeholder at address y simply requires
storing y − x in it, and updating value to y (right).

ALGORITHM 16.8 Adding a new placeholder at y for an unresolved symbol.
1. initialize x to the symbol’s value (the address of the previous placeholder)
2. set the symbol’s value to y (the address of the new placeholder)
3. if x = 0, set x to y
4. set the half-word at y to the offset y − x to the previous placeholder

and parse_fn_body, for the 3 rules fn, fn_name and fn_body. The parse_fn function is
implemented by reading a token, checking that it is equal to “fn”, and then calling
parse_fn_name and parse_fn_body (because the fn rule is defined by “fn” fn_name
fn_body – see Section 16.1). The parse_fn_body function is more complex because
the fn_body rule has two alternatives. The body can either be an integer followed
by instructions, or a semi-colon. To decide which alternative to use, the next token
must be inspected. If it is an identifier the first alternative must be used. If it is a
semi-colon the second one must be used. Any other case is an error. In the first case,
zero or more instructions must be parsed after the integer. This can be done by calling
the parse_instruction function, but how many times should it be called? The answer
is as long as the next token is the start of an instruction. By looking at the grammar
rules, we see that an instruction either starts with a label, or with an opcode keyword
(“cst_0”, etc). And a label starts with a colon. Thus, parse_instruction should
be called as long as the next token is a colon or an opcode keyword. In summary,
parse_fn_body can be implemented as follows:

1. if the next token is a semi-colon, read it
2. otherwise, if the next token is an integer
3. read it
4. while the next token is a colon or an opcode keyword, call parse_instruction
5. otherwise return an error

and the same principles can be used for all the other parsing functions. Note that
such algorithms need the value of the “next token” (after the last one that has been
read), called a lookahead token. For this we consider that what Algorithm 16.6 stores
in token , token_data , and token_length is actually about this lookahead token (by
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ALGORITHM 16.9 Filling the placeholders of an unresolved symbol to value.
1. initialize placeholder to the symbol’s value
2. while placeholder ̸= 0
3. set offset to the half-word value at placeholder
4. store the half-world value value at placeholder
5. if offset = 0 there is no previous placeholder, return
6. decrement placeholder by offset

analogy with Algorithm 16.3). And, for this reason, we rename these variables to
next_token , next_token_data , and next_token_length from now on. The above
algorithm thus becomes:

1. if next_token is a semi-colon, read it with Algorithm 16.6
2. otherwise, if next_token is an integer
3. read it with Algorithm 16.6
4. while next_token is a colon or an opcode keyword, call parse_instruction
5. otherwise return an error

Finally, to produce the compiled code, calls to the backend are inserted in the
parse_r functions where needed. For instance, for parse_fn_body, calls are inserted
between steps 2 and 3 above to add the fn opcode to the compiled code, followed by
next_token_data (which contains the function’s number of parameters). Other calls
are also inserted to update the list of symbols when a new function or label is defined,
and to use this list to compile function calls and jump instructions.

16.2.3 Error handling
Note that the above parse_fn_body algorithm can “return an error”. In fact any parse_r
function of the recursive descent parser might do so, and Algorithm 16.3 can as well.
Thus, for instance, parse_program could call parse_fn, itself calling parse_fn_body, in
turn calling parse_instruction, itself calling parse_label, where an error could be found
(e.g., if a colon is followed by integer). At this stage we would like to stop everything
and simply return the error from parse_program. One way to do this is to check, after
each function call, if an error occurred and, if so, immediately return from the current
function. This is what we did in the previous chapter, but this was easy because
only tc_parse_token could return an error, and it was called directly from the main
tc_compile function. Doing the same here would be much more cumbersome.

Another solution is to return from parse_label, or in fact any function, directly
into parse_program, without going through all the intermediate functions. But how
can we do this? Here we need to remember how the bytecode interpreter returns from
a function. The answer is by restoring 4 registers to the values which were saved
on the callee’s stack frame by the caller (see Chapter 8 and Figure 8.5). parse_label
returns into parse_instruction because the saved register values in its stack frame
were set by this caller. If we can somehow replace these saved register values with
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FIGURE 16.3 When panic_result(ptr) is called from a, the saved registers necessary
to return in a (light blue) are copied at ptr (top, in red). Later on, in e called from d,
called from c, ... called from a, a call to panic(err) copies the values at ptr in panic’s
stack frame (middle). When panic returns err, it thus returns in a (bottom).

those set by parse_program when it calls another function, parse_label would actually
return directly in parse_program! And this is in fact possible, since a function can
access these saved register values in its stack frame (for instance with get and set
instructions). The rest of this section presents a method to do this.

In a first step, the function we want to return to directly, say a, calls the predefined
panic_result(ptr) function. This function copies at ptr the saved register values
necessary to return into a (see Figure 16.3). This can be done by copying the 16
bytes starting 16 bytes before the address of the 0th stack frame slot (given by ptr 0).
panic_result then saves ptr at a fixed address A, and returns 0 (“no error”).

Later on, for instance, a calls b, which calls c, ... which calls e, where an error
err is found. To return this error directly into a, e calls the predefined panic(err)
function. This function reads ptr at address A, and then copies the 16 bytes at ptr
into its own stack frame (16 bytes before the address of the 0th stack frame slot, as
before – see Figure 16.3). It then returns err. By doing this, the Frame Pointer (FP)
is restored to a’s stack frame, the Function Address (FA) is restored to a’s address,
and the Instruction Counter (IC) is restored to a’s Return Address (RA), i.e., to the
instruction following the initial call to panic_result. In other words, from a’s point
of view, panic_result is returning twice, the second time with the error value err
(and from e’s point of view, panic(err) never returns). Note however that the Stack
Pointer (SP) is updated by popping the panic stack frame, and then pushing the result
value err. As a consequence, after a panic, a’s stack frame contains all the stack
frames of the intermediate functions, with err on top (see Figure 16.3). When a itself
returns, this large stack frame is popped and everything goes back to normal.
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16.3 Implementation
We can now implement our new compiler. We first need to write it without using
function names and labels, so that it can be compiled with the opcodes compiler (the
only compiler we have for now). We then compile this source code, which gives us
the labels compiler bytecode. Finally, we rewrite the labels compiler source code with
function names and labels, and we compile it with the labels compiler bytecode.

In the following, to save space, we give the two compiler versions (with or without
function names and labels) at the same time. Most of the code is the same in both
versions, and is shown in black. Parts which are only in the 1st version are highlighted
in red. And parts which are only in the 2nd version are highlighted in green. Some
comments, in gray, make it easier to understand the code but are not part of it. These
include function addresses and instruction offsets, shown at the beginning of each
line (we still need to compute them manually in the 1st version). Because of these
comments, some lines are too long to fit on a page. In these cases they are wrapped
on the next line, as indicated by ≀ marks (which are not part of the code).

We start with the compiler’s main function, so that its address is easy to obtain
(C120016 + 4 = C000016 + 4612, see Figure 15.3). Indeed, in the 2nd version and
in the next chapters, we have no easy way to get the address of the other functions.
This function just calls a tc_main function, implemented at the very end. At this
stage, in the 1st version, we don’t know tc_main’s address yet, and so we need to
use a placeholder, filled at the end. Here we show the end result directly. In the 2nd

version we can just call tc_main, but we need to declare it first with “fn tc_main;”:

fn tc_main;
4612 fn main 3 (src_buffer, dst_buffer, flash_buffer)
+2 get src_buffer:0 get dst_buffer:1 get flash_buffer:2 call 6673tc_ma ≀

≀in retv

We continue with functions to load and store bytes and half-words. We already have
such functions, but we re-implement them here to avoid the need of function addresses
in the 2nd version (4294967040 = FFFFFF0016, 4294901760 = FFFF000016):

4624 fn load8 1 (ptr)
+2 get ptr:0 load cst8 255 and retv

4633 fn load16 1 (ptr)
+2 get ptr:0 load cst 65535 and retv

4645 fn store8 2 (ptr, value)
+2 get ptr:0 get ptr:0 load cst 4294967040 and get value:1 or store ret

4663 fn store16 2 (ptr, value)
+2 get ptr:0 get ptr:0 load cst 4294901760 and get value:1 or store ret

We then implement the panic functions, using an auxiliary function to copy 16
bytes between two addresses (for the same reason as above, we don’t reuse the already
existing mem_copy function – see Table 13.1):

4681 fn panic_copy 2 (src, dst)
+2 get dst:1 get src:0 load store
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+8 get dst:1 cst8 4 add get src:0 cst8 4 add load store
+20 get dst:1 cst8 8 add get src:0 cst8 8 add load store
+32 get dst:1 cst8 12 add get src:0 cst8 12 add load store
+44 ret
4726 fn panic_result 1 (ptr)
+2 ptr ptr:0 cst8 16 sub get ptr:0 call 4681panic_copy
+12 cst A=1074666152 get ptr:0 store
+20 cst_0 retv
4748 fn panic 1 (error)
+2 cst A=1074666152 load ptr error:0 cst8 16 sub call 4681panic_copy
+16 get error:0 retv

where A=1074666152 = 400E1AA816 is the 7th General Purpose Backup Register
(we already used 3 in Section 11.4.2, and 3 more in Section 12.2).

16.3.1 Scanner
We start the scanner implementation with the CHAR_TYPES and KEYWORDS tables (the
former has 256 values, one for each possible character; the latter omits the keywords
that we don’t need for now, such as lsl and lsr):

4767 static TC_CHAR_TYPES
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 32 d 32 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 32 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 58 d 59 d 1 d 1 d 1 d 1
d 1 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3
d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 1 d 1 d 1 d 1 d 3
d 1 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3
d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 3 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1
d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1

5023 static TC_KEYWORDS
d 5 d 'c'99 d 's'115 d 't'116 d '_'95 d '0'48 d 128
d 5 d 'c'99 d 's'115 d 't'116 d '_'95 d '1'49 d 129
d 4 d 'c'99 d 's'115 d 't'116 d '8'56 d 130
d 3 d 'c'99 d 's'115 d 't'116 d 131
d 3 d 'a'97 d 'd'100 d 'd'100 d 132
d 3 d 's'115 d 'u'117 d 'b'98 d 133
d 3 d 'm'109 d 'u'117 d 'l'108 d 134
d 3 d 'd'100 d 'i'105 d 'v'118 d 135
d 3 d 'a'97 d 'n'110 d 'd'100 d 136
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d 2 d 'o'111 d 'r'114 d 137
d 4 d 'i'105 d 'f'102 d 'l'108 d 't'116 d 140
d 4 d 'i'105 d 'f'102 d 'e'101 d 'q'113 d 141
d 4 d 'i'105 d 'f'102 d 'g'103 d 't'116 d 142
d 4 d 'i'105 d 'f'102 d 'l'108 d 'e'101 d 143
d 4 d 'i'105 d 'f'102 d 'n'110 d 'e'101 d 144
d 4 d 'i'105 d 'f'102 d 'g'103 d 'e'101 d 145
d 4 d 'g'103 d 'o'111 d 't'116 d 'o'111 d 146
d 4 d 'l'108 d 'o'111 d 'a'97 d 'd'100 d 147
d 5 d 's'115 d 't'116 d 'o'111 d 'r'114 d 'e'101 d 148
d 3 d 'p'112 d 't'116 d 'r'114 d 149
d 3 d 'g'103 d 'e'101 d 't'116 d 150
d 3 d 's'115 d 'e'101 d 't'116 d 151
d 3 d 'p'112 d 'o'111 d 'p'112 d 152
d 4 d 'c'99 d 'a'97 d 'l'108 d 'l'108 d 154
d 3 d 'r'114 d 'e'101 d 't'116 d 157
d 4 d 'r'114 d 'e'101 d 't'116 d 'v'118 d 158
d 2 d 'f'102 d 'n'110 d 102
d 6 d 's'115 d 't'116 d 'a'97 d 't'116 d 'i'105 d 'c'99 d 115
d 0

We continue with the implementation of Algorithms 16.1 and 16.2:
5182 fn mem_compare 3 (ptr1, ptr2, size)
+2 cst_0 → i
+3 :step2
+3 get i:7 get size:2 ifge 38step4
+10 get ptr1:0 get i:7 add call 4624load8 get ptr2:1 get i:7 add call 4 ≀

≀624load8 ifne 38step4
+29 get i:7 cst_1 add set i:7 goto 3step2
+38 :step4
+38 get size:2 get i:7 sub retv

5226 fn tc_get_keyword 2 (start, length)
+2 cst_0 → len
+3 cst 791455TC_KEYWORDS → ptr
+8 :step2
+8 get ptr:7 call 4624load8 set len:6
+15 get len:6 cst_0 ifne 24step4
+21 cst8 TC_IDENTIFIER=3 retv
+24 :step4
+24 get length:1 get len:6 ifne 57step7
+31 get start:0 get ptr:7 cst_1 add get length:1 call 5182mem_compare c ≀

≀st_0 ifne 57step7
+46 get ptr:7 get len:6 add cst_1 add call 4624load8 retv
+57 :step7
+57 get ptr:7 get len:6 add cst8 2 add set ptr:7 goto 8step2

To implement the next scanner functions we need to decide where to store
the 7 scanner variables src, src_end , next_char , next_char_type, next_token ,
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next_token_data and next_token_length . Passing them as function parameters
would be cumbersome (because there are many variables, and because we would
actually need to pass their addresses). Storing them at some fixed addresses, such as
537329664, 537329668, 537329672, etc is not better. Instead, we assume that these
variables are stored next to each other, somewhere in RAM, and we pass the address of
the first one, noted self , to each scanner function. Hence, src, src_end , next_char ,
etc can be read or written by loading or writing the word at self , self + 4 , self + 8 ,
etc (respectively). With this hypothesis, Algorithm 16.3 can be implemented with the
following function, which returns next_char_type (or panics with error = 10 ):

5296 fn tc_read_char 1 (self)
+2 get self:0 tc_src=cst_0 add load → src
+7 get self:0 cst8 tc_src_end=4 add load → src_end
+13 get src:5 get src_end:6 iflt 25step2
+20 cst8 10 call 4748panic
+25 :step2
+25 get src:5 cst_1 add set src:5 cst_0 → char cst_0 → type
+33 get src:5 get src_end:6 ifge 60end
+40 get src:5 call 4624load8 set char:7
+47 cst 791199TC_CHAR_TYPES get char:7 add call 4624load8 set type:8
+60 :end
+60 get self:0 tc_src=cst_0 add get src:5 store
+67 get self:0 cst8 tc_next_char=8 add get char:7 store
+75 get self:0 cst8 tc_next_char_type=12 add get type:8 store
+83 get type:8 retv

We continue with the implementation of Algorithm 16.4 (as before, to simplify,
we do not check if v fits in a word):

5382 fn tc_read_integer 1 (self)
+2 get self:0 cst8 tc_next_char_type=12 add load → type
+8 cst_0 → v
+9 :step2
+9 get type:5 cst8 TC_INTEGER=2 ifne 43step5
+16 get v:6 cst8 10 mul get self:0 cst8 tc_next_char=8 add load cst8 48 ≀

≀ sub add set v:6
+33 get self:0 call 5296tc_read_char set type:5
+40 goto 9step2
+43 :step5
+43 get self:0 cst8 tc_next_token_data=20 add get v:6 store
+51 cst8 TC_INTEGER=2 retv

and of Algorithm 16.5:

5436 fn tc_read_identifier 1 (self)
+2 get self:0 tc_src=cst_0 add load → start
+7 get self:0 cst8 tc_next_char_type=12 add load → type
+13 :step2
+13 get type:6 cst8 TC_IDENTIFIER=3 ifeq 27step3
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+20 get type:6 cst8 TC_INTEGER=2 ifne 37step4
+27 :step3
+27 get self:0 call 5296tc_read_char set type:6 goto 13step2
+37 :step4
+37 get self:0 tc_src=cst_0 add load get start:5 sub → length
+45 get self:0 cst8 tc_next_token_data=20 add get start:5 store
+53 get self:0 cst8 tc_next_token_length=24 add get length:7 store
+61 get start:5 get length:7 call 5226tc_get_keyword retv

With this we can finally implement Algorithm 16.6 in the main scanner function:
5505 fn tc_read_token 1 (self)
+2 get self:0 cst8 tc_next_char_type=12 add load → type
+8 :step1
+8 get type:5 cst8 32 ifne 25step3
+15 get self:0 call 5296tc_read_char set type:5 goto 8step1
+25 :step3
+25 get type:5 → token
+27 get type:5 cst8 TC_INTEGER=2 ifne 44step5
+34 get self:0 call 5382tc_read_integer set token:6 goto 73end
+44 :step5
+44 get type:5 cst8 TC_IDENTIFIER=3 ifne 61step6
+51 get self:0 call 5436tc_read_identifier set token:6 goto 73end
+61 :step6
+61 get type:5 cst_0 ifeq 73end
+67 get self:0 call 5296tc_read_char pop
+73 :end
+73 get self:0 cst8 tc_next_token=16 add get token:6 store
+81 ret

16.3.2 Backend
We start the backend implementation with a small function which increments the
pointer at address ptrp by size and returns the previous pointer at this address. We
use it later on to increment dst and heap:
5587 fn mem_allocate 2 (size, ptr_p)
+2 get ptr_p:1 load → ptr
+5 get ptr_p:1 get ptr:6 get size:0 add store
+13 get ptr:6 retv

To implement the backend itself we need to decide where to store the dst variable.
We assume here that it is stored after the 7 scanner variables. Hence, dst can be read
and written by loading or writing the word at self + 28 . We can then implement 3
functions to write a byte, a half-word or a word at dst, respectively:
5603 fn tc_write8 2 (self, value)

+2 cst_1 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get value ≀
≀:1 call 4645store8
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+16 ret
5620 fn tc_write16 2 (self, value)
+2 cst8 2 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get valu ≀

≀e:1 call 4663store16
+17 ret
5638 fn tc_write32 2 (self, value)
+2 cst8 4 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get valu ≀

≀e:1 store
+15 ret

We continue the backend with functions to manage placeholders. Placeholders
were introduced while describing the parser, but managing them involves writing and
updating bytes in the dst buffer, which is the backend’s responsibility. The following
function adds a new placeholder for an unresolved symbol, with Algorithm 16.8. It
takes the symbol’s value address valuep as parameter, and uses y = dst . Step 4 only
returns y − x, and lets the caller fill the placeholder:

5654 fn tc_add_placeholder 2 (self, value_p)
+2 get self:0 cst8 tc_dst=28 add load → y
+8 get value_p:1 load → x
+11 get value_p:1 get y:6 store
+16 get x:7 cst_0 ifne 26step4 get y:6 set x:7
+26 :step4
+26 get y:6 get x:7 sub retv

The next function fills all the placeholders in the list starting at placeholder with
value, using Algorithm 16.9 (step 1 must be done by the caller):

5686 fn tc_fill_placeholders 2 (placeholder, value)
+2 cst_0 → offset
+3 :step2
+3 get placeholder:0 cst_0 ifeq 40end
+9 :step3
+9 get placeholder:0 call 4633load16 set offset:6
+16 get placeholder:0 get value:1 call 4663store16
+23 get offset:6 cst_0 ifne 30step6 ret
+30 :step6
+30 get placeholder:0 get offset:6 sub set placeholder:0
+37 goto 3step2
+40 :end
+40 ret

We finish the backend with a small function to write a fn instruction and its
argument, the function’s number of parameters, also called its arity:

5727 fn tc_write_fn_insn 2 (self, arity)
+2 get self:0 cst8 25 call 5603tc_write8
+9 get self:0 get arity:1 call 5603tc_write8
+16 ret
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16.3.3 Parser
We start the parser implementation with a function to search for a symbol in the list of
symbols starting with symbol , with Algorithm 16.7. We assume that the symbol’s
name, length , kind , data , and next symbol are stored at symbol , symbol + 4 ,
symbol + 8 , symbol + 12 , and symbol + 16 , respectively (as in Figure 16.1.):

5744 fn sym_lookup 3 (symbol, name, length)
+2 :step2
+2 get symbol:0 cst_0 ifeq 49step7
+8 get symbol:0 cst8 sym_length=4 add load get length:2 ifne 38step6
+19 get symbol:0 sym_name=cst_0 add load get name:1 get length:2 call 5 ≀

≀182mem_compare cst_0 ifne 38step6
+35 get symbol:0 retv
+38 :step6
+38 get symbol:0 cst8 sym_next=16 add load set symbol:0 goto 2step2
+49 :step7
+49 cst_0 retv

We continue with a function to add a new symbol with the given name, length,
kind and value in the symbols list. We assume here that the heap and symbols
variables are stored after dst, i.e., at self + 32 and self + 36 , respectively. We start
by reserving 20 bytes to store the 5 words of the new symbol at heap:

5795 fn tc_add_symbol 5 (self, name, length, kind, value)
+2 cst8 20 get self:0 cst8 tc_heap=32 add call 5587mem_allocate → sym ≀

≀ → bol

If the symbol is already in the symbols list, this is an error:

+12 get self:0 cst8 tc_symbols=36 add load get name:1 get length:2 call ≀
≀ 5744sym_lookup cst_0 ifeq 34ok

+29 cst8 30 call 4748panic

otherwise we store the symbol’s name, length, kind and value, and set its next symbol
to symbols . Finally, we update symbols and return the new symbol:

+34 :ok
+34 get symbol:9 sym_name=cst_0 add get name:1 store
+41 get symbol:9 cst8 sym_length=4 add get length:2 store
+49 get symbol:9 cst8 sym_kind=8 add get kind:3 store
+57 get symbol:9 cst8 sym_value=12 add get value:4 store
+65 get symbol:9 cst8 sym_next=16 add get self:0 cst8 tc_symbols=36 add ≀

≀ load store
+77 get self:0 cst8 tc_symbols=36 add get symbol:9 store
+85 get symbol:9 retv

The following function adds a symbol with the given name, length and value to
the symbols list, as a resolved symbol. Unless this symbol is already in the list, in
which case it resolves it. We for this we first search this symbol. If it is not found, we
add one and return it:
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5883 fn tc_add_or_resolve_symbol 4 (self, name, length, value)
+2 get self:0 cst8 tc_symbols=36 add load get name:1 get length:2 call ≀

≀ 5744sym_lookup → symbol
+15 get symbol:8 cst_0 ifne 34found
+21 get self:0 get name:1 get length:2 SYM_RESOLVED=cst_0 get value:3 c ≀

≀all 5795tc_add_symbol retv

If the symbol already exists, then it should be unresolved (otherwise it means we
are trying to define this symbol more than once). We thus check that this is the case,
and panic otherwise:

+34 :found
+34 get symbol:8 cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifeq 49o ≀

≀k cst8 31 call 4748panic

If everything is fine, we fill the symbol’s placeholders with value , update its kind
to “resolved”, update its value to value , and return it:

+49 :ok
+49 get symbol:8 cst8 sym_value=12 add load get value:3 call 5686tc_fil ≀

≀l_placeholders
+60 get symbol:8 cst8 sym_kind=8 add SYM_RESOLVED=cst_0 store
+67 get symbol:8 cst8 sym_value=12 add get value:3 store
+75 get symbol:8 retv

To make it easier to implement the parsing functions corresponding to each
grammar rule, we first provide 3 basic functions to parse a token, an integer or an
identifier. The first one panics if the next token is not the one passed as parameter.
Otherwise it just reads this token:

5961 fn tc_parse_token 2 (self, token)
+2 get self:0 cst8 tc_next_token=16 add load get token:1 ifeq 18ok cst ≀

≀8 20 call 4748panic
+18 :ok
+18 get self:0 call 5505tc_read_token
+23 ret

The second panics if the next token is not an integer. Otherwise it reads this token
and returns its numeric value:

5985 fn tc_parse_integer 1 (self)
+2 get self:0 cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifeq 18 ≀

≀ok cst8 21 call 4748panic
+18 :ok
+18 get self:0 cst8 tc_next_token_data=20 add load → value
+24 get self:0 call 5505tc_read_token
+29 get value:5 retv

The last one panics if the next token is not an identifier. Otherwise it reads this
token, sets its length at address lengthp and returns the address of its first character:
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6017 fn tc_parse_identifier 2 (self, length_p)
+2 get self:0 cst8 tc_next_token=16 add load cst8 TC_IDENTIFIER=3 ifeq ≀

≀ 18ok cst8 22 call 4748panic
+18 :ok
+18 get self:0 cst8 tc_next_token_data=20 add load → name
+24 get length_p:1 get self:0 cst8 tc_next_token_length=24 add load sto ≀

≀re
+33 get self:0 call 5505tc_read_token
+38 get name:6 retv

We can now implement the parsing functions, one per rule of the grammar. We
implement them in reverse order, starting with the “static” rule. Parsing a static
block starts by parsing this keyword and the following identifier. We then compute
the final address of the following data, dst − dst_buffer + flash_buffer , and add a
symbol for this identifier and value. Here we assume that dst_buffer − flash_buffer
is stored in a flash_offset variable at self + 40 :

6058 fn tc_parse_static 1 (self)
+2 get self:0 cst8 TC_STATIC=115 call 5961tc_parse_token
+9 cst_0 → length
+10 get self:0 ptr length:5 call 6017tc_parse_identifier → name
+17 get self:0 cst8 tc_dst=28 add load get self:0 cst8 tc_flash_offset= ≀

≀40 add load sub → value
+30 get self:0 get name:6 get length:5 SYM_RESOLVED=cst_0 get value:7 c ≀

≀all 5795tc_add_symbol pop

Finally, while the next token is an integer, we parse it and append the corresponding
byte to the compiled code (to simplify we do not check if it fits in a byte):

+43 :loop
+43 get self:0 cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifne 67 ≀

≀end
+54 get self:0 get self:0 call 5985tc_parse_integer call 5603tc_write8
+64 goto 43loop
+67 :end
+67 ret

The next function implements the “argument” rule. If the next token is an integer
we just parse it and return its numeric value:

6126 fn tc_parse_argument 1 (self)
+2 get self:0 cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifne 19 ≀

≀identifier get self:0 call 5985tc_parse_integer retv

Otherwise the next token should be an identifier. We get its name and length with
tc_parse_identifier:

+19 :identifier
+19 cst_0 → length
+20 get self:0 ptr length:5 call 6017tc_parse_identifier → name
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and then search it in the symbol table:

+27 get self:0 cst8 tc_symbols=36 add load get name:6 get length:5 call ≀
≀ 5744sym_lookup → symbol

If no symbol is found we add an unresolved one for this identifier:

+40 get symbol:7 cst_0 ifne 59found
+46 get self:0 get name:6 get length:5 SYM_UNRESOLVED=cst_1 cst_0 call ≀

≀5795tc_add_symbol set symbol:7

Otherwise we jump here directly. In both cases we now have a symbol for the
identifier, but it might be unresolved. If it is, we add a new placeholder and return the
value to store in it:

+59 :found
+59 get symbol:7 cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifne 80r ≀

≀esolved
+69 get self:0 get symbol:7 cst8 sym_value=12 add call 5654tc_add_place ≀

≀holder retv

Finally, if it is resolved, we just return its value:

+80 :resolved
+80 get symbol:7 cst8 sym_value=12 add load retv

Parsing a label starts by parsing a colon (58 in ASCII) and then an identifier:

6213 fn tc_parse_label 1 (self)
+2 get self:0 cst8 58 call 5961tc_parse_token
+9 cst_0 → length
+10 get self:0 ptr length:5 call 6017tc_parse_identifier → name

We then want to compute the instruction offset corresponding to this label. This is
dst minus the address of the current function’s first instruction, noted fn_dst . This
address can be computed in the parse_fn function. We assume here that it is stored
after tc_flash_offset , i.e., at self + 44 :

+17 get self:0 cst8 tc_dst=28 add load get self:0 cst8 tc_fn_dst=44 add ≀
≀ load sub → value

Finally, we add a symbol for this label or resolve it, and return:

+30 get self:0 get name:6 get length:5 get value:7 call 5883tc_add_or_r ≀
≀esolve_symbol ret

To implement parse_instruction it is useful to have in a table – noted S in the
previous chapter – the argument size of each opcode (in bytes):

6255 static ARG_SIZES
d 0 d 0 d 1 d 4 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 2 d 2 d 2 d 2
d 2 d 2 d 2 d 0 d 0 d 1 d 1 d 1 d 0 d 0 d 2 d 0 d 0 d 0 d 0 d 0

If the next token is a colon (58 in ASCII) we just call parse_label and return:
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6287 fn tc_parse_instruction 1 (self)
+2 get self:0 cst8 tc_next_token=16 add load → token
+8 get token:5 cst8 58 ifne 21not_label
+15 get self:0 call 6213tc_parse_label
+20 ret

Otherwise the next token should be an opcode keyword, and we assume here
that the caller has already checked this. We then compute the corresponding opcode
(token − 128 by construction), write it, and read the token:
+21 :not_label
+21 get token:5 cst8 128 sub → opcode
+26 get self:0 get opcode:6 call 5603tc_write8
+33 get self:0 call 5505tc_read_token

Then there are 4 cases, depending on the argument size (computed withARG_SIZES).
If it is 0 we have nothing to do and thus return directly:
+38 cst 792687ARG_SIZES get opcode:6 add call 4624load8 → arg_size
+49 get arg_size:7 cst_0 ifne 56not0
+55 ret

Otherwise we need to parse the argument, and then write it in 1, 2 or 4 bytes:
+56 :not0
+56 get self:0 call 6126tc_parse_argument → arg
+61 get arg_size:7 cst_1 ifne 75not1
+67 get self:0 get arg:8 call 5603tc_write8 ret
+75 :not1
+75 get arg_size:7 cst8 2 ifne 90not2
+82 get self:0 get arg:8 call 5620tc_write16 ret
+90 :not2
+90 get self:0 get arg:8 call 5638tc_write32 ret

Parsing a function name starts by parsing an identifier, and by storing its address
(dst) in fn_dst , as we assumed above. We then compute the value of this identifier,
i.e., the argument which much be used in a call instruction to call this function.
This is its final address in flash memory, dst − dst_buffer + flash_buffer , minus
C000016.
6385 fn tc_parse_fn_name 1 (self)
+2 cst_0 → length
+3 get self:0 ptr length:5 call 6017tc_parse_identifier → name
+10 get self:0 cst8 tc_dst=28 add load → fn_dst
+16 get self:0 cst8 tc_fn_dst=44 add get fn_dst:7 store
+24 get fn_dst:7 get self:0 cst8 tc_flash_offset=40 add load sub cst 78 ≀

≀6432 sub → value

Finally, we add or resolve a symbol with this value, and return it:
+39 get self:0 get name:6 get length:5 get value:8 call 5883tc_add_or_r ≀

≀esolve_symbol retv
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Parsing the body of a function is done as explained in the previous section. The
following function takes as parameter the symbol computed by parse_fn_name. If
the next token is a semi-colon (59 in ASCII), it reads this token and changes this
symbol to “unresolved”, with an empty list of placeholders:

6436 fn tc_parse_fn_body 2 (self, function)
+2 get self:0 cst8 tc_next_token=16 add load cst8 59 ifne 33body
+13 get self:0 call 5505tc_read_token
+18 get function:1 cst8 sym_kind=8 add SYM_UNRESOLVED=cst_1 store
+25 get function:1 cst8 sym_value=12 add cst_0 store
+32 ret

Otherwise it parses an integer (the function’s arity) and writes it as an argument
of an fn instruction:

+33 :body
+33 get self:0 get self:0 call 5985tc_parse_integer call 5727tc_write_f ≀

≀n_insn

Finally, it parses an instruction while the next token is a colon or an opcode (i.e.,
while next_token = 58 or next_token ≥ 128 ):

+43 :loop
+43 get self:0 cst8 tc_next_token=16 add load cst8 58 ifeq 66insn
+54 get self:0 cst8 tc_next_token=16 add load cst8 128 ifge 66insn
+65 ret
+66 :insn
+66 get self:0 call 6287tc_parse_instruction goto 43loop

A jump instruction can reference a label which is not yet defined, but this label
must be defined before the end of the function. We thus need to verify, when we
reach the end of the function, that all its label symbols are resolved. To this end, we
implement the following function, which checks that all the symbols from symbol to
end_symbol (excluded) are resolved (and panics otherwise):

6510 fn tc_check_symbols 2 (symbol, end_symbol)
+2 :loop
+2 get symbol:0 get end_symbol:1 ifeq 35end
+9 get symbol:0 cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifne 24n ≀

≀ext
+19 cst8 32 call 4748panic
+24 :next
+24 get symbol:0 cst8 sym_next=16 add load set symbol:0 goto 2loop
+35 :end
+35 ret

With this we can now implement the parse_fn function. It simply needs to parse
the fn token, and then call the above functions to parse the function name and body,
and to check that all the labels are resolved. As explained in the previous section,
this function saves the heap and symbols variables before parsing the body, and
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restores their values once this is done. Note that we only check the symbols added
in tc_parse_fn_body. Indeed, it is not an error if a symbol added before that is
undefined (it corresponds to a forward function reference).
6546 fn tc_parse_fn 1 (self)
+2 get self:0 cst8 TC_FN=102 call 5961tc_parse_token
+9 get self:0 call 6385tc_parse_fn_name → function
+14 get self:0 cst8 tc_heap=32 add load → heap
+20 get self:0 cst8 tc_symbols=36 add load → symbols
+26 get self:0 get function:5 call 6436tc_parse_fn_body
+33 get self:0 cst8 tc_symbols=36 add load get symbols:7 call 6510tc_ch ≀

≀eck_symbols
+44 get self:0 cst8 tc_symbols=36 add get symbols:7 store
+52 get self:0 cst8 tc_heap=32 add get heap:6 store
+60 ret

We can finally implement the last parsing function, corresponding to the main
grammar rule. For this we loop while the next token is fn or static and, if so, call
the corresponding parsing function:
6607 fn tc_parse_program 1 (self)
+2 :loop
+2 get self:0 cst8 tc_next_token=16 add load cst8 TC_FN=102 ifne 21not ≀

≀_fn
+13 get self:0 call 6546tc_parse_fn goto 2loop
+21 :not_fn
+21 get self:0 cst8 tc_next_token=16 add load cst8 TC_STATIC=115 ifne 4 ≀

≀0end
+32 get self:0 call 6058tc_parse_static goto 2loop

We then test if the next token is the special END token (0), and panic otherwise.
Finally, we check that all the symbols are resolved, i.e., that all the functions declared
with the fn name; syntax are effectively implemented:
+40 :end
+40 get self:0 cst8 tc_next_token=16 add load cst_0 ifeq 55ok
+50 cst8 23 call 4748panic
+55 :ok
+55 get self:0 cst8 tc_symbols=36 add load cst_0 call 6510tc_check_symb ≀

≀ols ret

The last function of our compiler is the tc_main function which was declared
at the very beginning. This function initializes the compiler variables, sets a panic
handler, and finally calls tc_parse_program. We start by initializing the variables
defined above on the stack. Since the stack grows in decreasing address order, we
define them in reverse order, i.e., from fn_dst to src. fn_dst can be set to any
value (it is reset in parse_fn). flash_offset is equal to flash_buffer − dst_buffer .
symbols must be initialized to 0 (an empty list). We set heap 12 KB after dst_buffer ,
which leaves more than enough space for the compiled code (the current compiled
code size is about 2 KB). dst starts after the 4 bytes buffer header. The next scanner
variables can be set to any value (see below):
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6673 fn tc_main 3 (src_buffer, dst_buffer, flash_buffer)
+2 cst_0 → fn_dst
+3 get dst_buffer:1 get flash_buffer:2 sub → flash_offset
+8 cst_0 → symbols
+9 get dst_buffer:1 cst 12288 add → heap
+17 get dst_buffer:1 cst8 4 add → dst
+22 cst_0 → next_token_length
+23 cst_0 → next_token_data
+24 cst_0 → next_token
+25 cst_0 → next_char_type
+26 cst_0 → next_char

We then initialize src_end to the end of the source code, src_buffer + 4 +
mem32[src_buffer ], and src to the start of the source code minus 1 (see below):

+27 get src_buffer:0 cst8 4 add get src_buffer:0 load add → src_end
+36 get src_buffer:0 cst8 3 add → src

We continue with a call to panic_result so that calls to panic directly return
here, just after the call instruction. As explained in the previous section, this function
saves the 4 values necessary for this at some ptr address. Here we push 4 zeros on
the stack and use the address of the top one as ptr :

+41 cst_0 → panic3
+42 cst_0 → panic2
+43 cst_0 → panic1
+44 cst_0 → panic0
+45 cst_0 → error
+46 ptr panic0:22 call 4726panic_result set error:23

This first call returns 0 but, in case of panic, panic_result returns again with a
non-zero value (stored in error just above). Thus, if error ̸= 0, we store the location
of this error in the source code, src − src_buffer − 4 at the dst_buffer address, and
return the error itself (as per the compiler requirements):

+53 get error:23 cst_0 ifeq 73ok
+59 get dst_buffer:1 get src:18 get src_buffer:0 sub cst8 4 sub store
+70 get error:23 retv

We finally call tc_parse_program, set the compiled code sizedst−dst_buffer−4
in the dst_buffer header, and return 0 (meaning “no error”). Before this, since all
parsing functions, and tc_parse_program in particular, assume that information
about the next token is already available in next_token, we call tc_read_token.
And since this function assumes that information about the next character is already
available in next_char, we call tc_read_char first (which explains why src was set
to 1 byte before the start of the source code, and why the other scanner variables could
be initialized to any value).

+73 :ok
+73 ptr src:18 call 5296tc_read_char pop
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+79 ptr src:18 call 5505tc_read_token
+84 ptr src:18 call 6607tc_parse_program
+89 get dst_buffer:1 get dst:11 get dst_buffer:1 sub cst8 4 sub store
+100 cst_0 retv

16.4 Compilation and tests
To compile the above source code proceed as follows (see also Figure 16.4). First
launch the command editor by typing “w000c1172”+Enter in the memory editor,
followed by “r”.

Edit v1 Type “F2”+“r” to create a new program, and “F4”+“r” to edit it. Then type
the 1st version of the labels compiler (that is, the above code with the parts highlighted
in red). For convenience, we also provide this code in the labels_compiler_v1.txt
file in https://ebruneton.github.io/toypc/sources.zip. When you are done, type Escape
to exit the text editor and “F5”+“r” to save your work. Alternatively, you can “cheat” by
saving it via an external computer, as follows. First run the boot_mode_select_rom
function by typing “w000c02b4”+Enter in the memory editor, followed by “r”. Then
reset the Arduino and, on the host computer, run the following command (then restart
the command editor and type “F3”+“r”):
user@host:~$ python3 flash_helper.py < part3/labels_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed. If
all goes well, after about 1 second, you should get a result equal to 0, meaning that
no error was found. If this is not the case, type “F4”+“r” to fix the error. The text
editor should open right at the error location. Fix the error indicated by the error code
returned by the compiler (see Appendix D), save the program and compile it again.
Repeat this process until the compilation is successful. Then type “F7”+“r” to save
the result.

Test v1 Type “F9”+“e” to edit a new command, and type the following code:

fn 0
cst 537330176 cst 537379328 cst 803328 call 4612
get 4 cst_0 ifne 47
cst 537379328 cst 66 call 2836
cst 803332 calld set 4
get 4 retv

d TEST_COMPILER

Then type Escape and “s” to save it. The first line calls the labels compiler
with src_buffer=2007020016, dst_buffer=2007C20016, and flash_buffer=C420016
(12 KB after “saved program” – see Figure 15.3). If there is a compilation error
the second line returns it by jumping to the fifth line. Otherwise the third line calls
buffer_flash to save the compiled program in flash_buffer , which corresponds to
page 66. The last lines call this compiled program and return its result.
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FIGURE 16.4 The memory content after each step of Section 16.4. White, blue and
gray areas represent source code, bytecode and unused memory, respectively (not
to scale). See also Figure 15.3.

Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the following
small test program, which computes the factorial of 6:
fn factorial;
fn test 0

cst 6 call factorial retv
fn factorial 1
get 0 cst_0 ifne not_zero cst_1 retv
:not_zero get 0 cst_1 sub call factorial get 0 mul retv

Then type “F9”+“r” to compile and run it. The result should be 720 = 2D016. If this
is not the case this means that the compiler is wrong. Repeat the previous steps and
double check everything until this test passes.

Edit v2 Type “F3”+“r” to load the 1st version of the labels compiler and “F4”+“r”
to edit it. Then update it to the 2nd version (that is, the code in the previous section,
with the parts highlighted in green). For convenience, we also provide this code in the
labels_compiler_v2.txt file. Then save this new version with the F5 command.
Alternatively, run the following command on an external computer (see above):
user@host:~$ python3 flash_helper.py < part3/labels_compiler_v2.txt

Compile v2 To compile this new code we need to update command number 6 first,
in order to use the labels compiler instead of the opcodes compiler. Type “F6”+“e” to
edit this command and change its code to the following:
fn 0

cst 856064 cst 537379328 cst 791040 call 4612 retv
d COMPILE_SOURCE_CODE

Then type “s” to save it, and “r” to run it. The result should be 0, meaning “no error”.
If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all errors are
fixed, as explained in “Compile v1”.
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Test v2 The compilation of the 2nd version of the labels compiler should give the
same function addresses and instruction offsets as those we computed manually to
write the 1st version. Consequently, the compiled code of the 2nd version (at address
2007C20016) should be identical to that of the 1st version (at address C120016). To
check this we can use the following function, which compares the buffers at these two
addresses with Algorithm 16.1:

compare_compiled_code()
Step 1. Initialize ptr1 and ptr2 to the

above addresses.
Initialize size to the size of the ptr1

buffer, which is the value at this address
plus 4.

Initialize i to 0.
Step 2. If i is not less than size, go to

step 4.

If the two bytes at ptr1+i and ptr2+i
are different, go to step 4.

Step 3. Increment the top stack value i
by 1 and go back to step 2.

Step 4. Return size − i .

fn 0 00000
cst 537379328→ ptr1 +002
cst 791040→ ptr2 +007
get 4 ptr1 +012
load +014
cst8 4 +015
add → size +017
cst_0 → i +018
get 7 i +019
get 6 size +021
ifge 50 +023
get 4 ptr1 +026
get 7 i +028
add +030
call 960 load_byte +031
get 5 ptr2 +034
get 7 i +036
add +038
call 960 load_byte +039
ifne 50 +042
cst_1 +045
add +046
goto 19 +047
get 6 size +050
get 7 i +052
sub +054
retv +055

Type “F10”+“e” to edit a new command, and type the source code of the above
function:

fn 0
cst 537379328 cst 791040
get 4 load cst8 4 add
cst_0
get 7 get 6 ifge 50
get 4 get 7 add call 960 get 5 get 7 add call 960 ifne 50
cst_1 add goto 19
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get 6 get 7 sub retv
d COMPARE_COMPILED_CODE

Then type Escape and “s” to save it. Finally, type “r” to run it. The result should
be 0, indicating that the two compiler versions have the same compiled code. If this
is not the case, repeat the steps from “Edit v2” until this test passes. It might also
happen that the 1st version is wrong despite the “Test v1” step. In this case you need
to restore the “F6” command to its previous value and restart from the “Edit v1” step.
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17
CHAPTER

Expressions Compiler

The labels compiler written in the previous chapter removes the need to manually
compute function addresses and instruction offsets, which is a huge improvement.
However, it still requires us to use numbers to refer to function arguments or values
on the stack. This is easier to do than to use function addresses and instruction offsets,
but it would be better if we could avoid this. Another issue is that computing simple
expressions such as 2 + 3 ∗ 4 requires a “lot” of code, in an unnatural order (cst8 2
cst8 3 cst8 4 mul add). It would be better if we could just type 2+3*4 instead. This
chapter extends our toy programming language and its compiler in order to solve these
issues.

17.1 Requirements
17.1.1 Function parameters
So far we used comments to give a symbolic name to each function parameter. We also
used these symolic names in comments next to each get, set or ptr instruction, in
order to make them easier to understand. To avoid using numbers in these instructions,
the same solution as in the previous chapter can be used: we can use symbolic names
directly in the source code, instead of in comments. The compiler can then keep track
of the value of these symbols (i.e., their index in the stack frame), like it does for
function names and labels. To this end, we now require function parameters to be
declared after the function name, between parentheses and separated by commas, as
in the following example:

fn gpu_set_color(red, green, blue) . . .

We could then use these names in instructions such as get red, set green or ptr
blue (instead of writing get 0, set 1 or ptr 2). In fact, to get shorter programs we
simply use “red” instead of get red and “&blue” instead of ptr blue (see below).

17.1.2 Expressions
A well-formed series of arithmetic and logic instructions (see Section 8.2.1) computes
a single value on the stack which can be written in a shorter mathematical form. For
instance, as noted above, cst8 2 cst8 3 cst8 4 mul add computes 2+3*4, which is
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much shorter to write and is called an expression. For this reason, we now require our
programming language to support expressions. This means that it should be possible
to write 2+3*4 in a program, for instance, and that the compiler should automatically
compile this into cst8 2 cst8 3 cst8 4 mul add (in binary form).

More precisely, our programming language should support the following expres-
sions (where ei is an expression and code[ei] the corresponding compiled code, x is
a symbolic name corresponding to the ith stack frame slot, and f is the name of a
function whose address is a+ C000016):

• integer constants: compiled to cst_0, cst_1, cst8, or cst, depending on the value.
• e1 + e2: compiled to code[e1] code[e2] add.
• e1 - e2: compiled to code[e1] code[e2] sub.
• e1 * e2: compiled to code[e1] code[e2] mul.
• e1 / e2: compiled to code[e1] code[e2] div.
• e1 & e2: compiled to code[e1] code[e2] and.
• e1 | e2: compiled to code[e1] code[e2] or.
• *e1: compiled to code[e1] load.
• &x: compiled to ptr i.
• x: compiled to get i.
• f(e1, e2, . . .): compiled to code[e1] code[e2] . . . call a.

These expressions correspond to all the bytecode instructions which produce a
value on the stack, except the ones we don’t need for now (namely lsl, lsr, callr,
and calld). The call instruction is a special case: the callee might not return a value.
However, functions used in subexpressions must return a value.

17.1.3 Local variables
The result of most expressions is immediately consumed in other expressions or
instructions. Some results, however, are left on the stack and used later on with get,
set or ptr instructions. This currently requires keeping track of which value is stored
in which stack frame slot. To avoid this, our programming language should provide a
way to give a symbolic name to an expression whose value is stored on the stack. In
this chapter we use the “let x e;” syntax, where x is an identifier, and e an expression.
x can then be used in other expressions, such as ‘‘x+1” or “&x” (unlike labels, x must
be declared with let before it can be used). It is called a local variable because it can
only be used in the current function (since get, set and ptr can only refer to slots in
the top stack frame). This does not prevent another function to declare a variable with
the same name, but it is then independent (i.e., refers to a different slot).

17.1.4 Grammar
We can now extend the grammar of our programming language in order to support
the above requirements. Lets look at expressions first. The above definitions might
suggest a grammar rule of the following form:
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expr: expr (“+” | “-” | “*” | “/” | ...) expr | “*” expr | “&” IDENTIFIER | ...

meaning that an expression is either a binary expression made of two subexpressions
with an operator in between, or an unary expression with an operator followed by an
expression, etc. However, this rule has several issues:

• It is ambiguous. Consider for instance the 2 + 3 ∗ 4 expression. It can be seen as a
binary + expression with subexpressions 2 and 3 ∗ 4. But it can also be seen as
a binary ∗ expression with subexpressions 2 + 3 and 4. Both interpretations are
valid for the above grammar, but they don’t give the same value! In practice anyone
would give the value 14 because we use implicit operator precedence rules. One
such rule is that multiplications have a higher precedence than additions, meaning
that they must be performed first. When we want to use the other interpretation we
use parentheses, which have the highest precedence: (2 + 3) ∗ 4.
Another ambiguity of the above rule is that 2− 3− 4 can be seen as “2− 3” minus
4, or as 2 minus “3− 4”. Here again, both interpretations are valid for the grammar
(and for the precedence rules), but they don’t give the same value. In practice one
always uses the first interpretation, because we use another implicit rule saying that
operations are done from left to right.
• It can not be implemented with a recursive descent parser. This is because the “expr”

rule is used on the leftmost position in the definition of one of its alternatives (such
grammars are called left recursive). This would give a parse_expr function which
would call itself recursively without reading any token in between, i.e., indefinitely
(if the stack was unbounded).

To solve these issues, a solution is to use several rules, one per precedence level.
For instance, considering only the four basic operations for now, we can use

expr: term ((“+” | “-”) term)*
term: factor ((“*”| “/”) factor)*
factor: INTEGER | “(” expr “)”

where precedence increases from top to bottom. Indeed, with these rules, 2+3∗4 can
be interpreted in only one way, the one we are used to (because 2 + 3 is not a factor).
Similarly, 2− 3− 4 can only be seen as an expression with an unambiguously ordered
list of 3 terms. This does not tell in itself whether these terms must be evaluated
from left to right or right to left, but this choice can be enforced in the compiler
implementation. Finally, these rules can be implemented with a recursive descent
parser (“expr” indirectly uses itself recursively, but only after the “(” token; hence
there is no left recursion).

The following grammar applies this idea to all the expressions in Section 17.1.2,
and takes into account the requirements in Sections 17.1.1 and 17.1.3. It does this by
extending the previous grammar as follows (unchanged parts are in gray):

program: (fn | static | const)* END
fn: “fn” fn_name fn_parameters fn_body
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fn_name: IDENTIFIER
fn_parameters: “(” (IDENTIFIER (“,” IDENTIFIER)*)? “)”
fn_body: “{” statement* “}” | “;”
statement: label | let_stmt | (expr (“,” expr)*)? instruction? “;”
let_stmt: “let” IDENTIFIER expr “;”
instruction: “iflt” argument | “ifeq” argument | ... | “store” | “pop” | ...
expr: bit_and_expr (“|” bit_and_expr)*
bit_and_expr: add_expr (“&” add_expr)*
add_expr: mult_expr ((“+” | “-”) mult_expr)*
mult_expr: pointer_expr ((“*” | “/”) pointer_expr)*
pointer_expr: “*” pointer_expr | “&” IDENTIFIER | primitive_expr
primitive_expr: INTEGER | IDENTIFIER fn_arguments? | “(” expr “)”
fn_arguments: “(” (expr (“,” expr)*)? “)”
label: “:” IDENTIFIER
argument: IDENTIFIER
static: “static” IDENTIFIER INTEGER*
const: “const” IDENTIFIER INTEGER

where “?” denotes an optional element. Thus, for instance, the “fn_parameters” rule
means “a left parenthesis, optionally followed by an a non-empty list of parameters,
followed by a right parenthesis” (the non-empty list of parameters being defined as an
identifier, followed by any number of “comma identifier” groups).

The body of a function is now defined as a list of statements between curly braces
(added to more clearly separate functions from each other, but also to simplify the
parser). Each statement is either a label, a local variable declaration, or a comma
separated list of expressions1 followed by an optional instruction and ending with a
semi-colon. Examples of the latter case include “ret;”, “0 set x;”, “x, y ifeq ok;”
(an instruction preceded by 0, 1 or 2 expressions, respectively), or “panic(1);” (an
expression not followed by any instruction).

Instructions are defined as in the previous chapter, except that all the instructions
listed in Section 17.1.2 (add, sub, etc) are now removed (expressions must be instead).
Similarly, instruction arguments can no longer be integers: label, function parameter
or local variable names must be used instead.

Expressions are defined as explained above, with 6 levels of precedence. Constants,
identifiers, function calls, parentheses, and the address-of operator “&” have the same
highest precedence2. They are followed by the dereference operator “*” which
loads the value at some address. Then comes multiplicative expressions, additive
expressions, bitwise and expressions, and finally bitwise or expressions. Thus, for
instance, “a + *b * c & d” is equivalent to “(a + ((*b) * c)) & d” and not to

1It is possible to use more strict rules to enforce a precise number of expressions before each instruction
(e.g., 0 before ret, 1 before set, or 2 before ifeq). We use this less strict rule to simplify the grammar,
and thus the implementation.

2We put the address-of operator in the pointer_expr rule for convenience, but it could be moved in the
primitive_expr rule instead, thus showing that it has the same precedence as the others.
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“a + ((*b) * (c & d))” or “a + (*(b * c) & d)”, for instance. However, when
in doubt, it is preferable to use explicit parentheses.

Finally, the new “const” rule adds a syntax to give a symbolic name to a constant
value. For instance, “const RESOLVED 0” makes it possible to use “RESOLVED” in an
expression, which is more meaningful than using “0”. To simplify the implementation,
a constant must be defined before it is used.

17.1.5 Scanner
As a last new requirement, our programming language should support INTEGER
tokens of the form “’c’”, where c is a printable character (ASCII code between 32
and 127, excluded), and whose numeric value is the ASCII code of c. For instance, it
should be possible to write ’a’ instead of a’s ASCII code 97, or ’’’ instead of the
quote’s ASCII code 39.

17.2 Algorithms
Compiling function parameters, local variable names and const declarations can be
done with the same algorithms used for function names and labels. Namely those to
add a symbol in the list of symbols, and to use this list to find the value of a symbol.
Similarly, compiling expressions can be done with the same recursive descent method
already used, namely with one function per grammar rule. Hence we do not really
need any new algorithm in this chapter. Instead, we list here the main implementation
differences compared with the previous compiler version.

The scanner needs an updated CHAR_TYPES table to support the new single character
tokens (parentheses, curly braces, +, -, *, /, &, | and ,). It also needs an updated
KEYWORDS table (let and const are added, add, sub, etc are removed). Finally, a new
function is needed to read the new quoted character tokens defined above.

The backend should provide new functions to write the opcode instructions needed
to compile expressions (cst_0, . . . add, . . .). The goal is to simplify the parser by
encapsulating the low level instruction encoding details in simple to use functions.

The compiler needs to keep track of the stack frame slot index corresponding to
each function parameter and local variable. The former is easy: the ith parameter is
in the ith slot. For the latter we assume that let statements are the only ones which
leave a value on the stack (this forbids, for instance, statements such as “1;”). We also
assume, without verification, that let statements are executed in the same order as in
the source code, and exactly once (unless the function returns before). Then the ith

local variable is in the (i+ 4)th slot (recall that 4 saved register values are pushed
after the function arguments).

Compiling a const c v declaration does not need to produce any code. Instead,
we can simply add a corresponding symbol in the symbols list. Then, each time c is
used, a cst* instruction to push v on the stack can be produced. Note however that,
in order to do this, the parser must know that c refers to a constant. Indeed, if c is
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referring to a local variable or function argument, a get instruction must be produced
instead. To this end, we introduce a new symbol kind, VARIABLE (2), in addition to
the RESOLVED and UNRESOLVED kinds. And we use RESOLVED for const symbols and
VARIABLE for local variables and function arguments.

17.3 Implementation
We can now extend the labels compiler in order to support expressions. We first
need to write it without using expressions, so that it can be compiled with the labels
compiler. We then compile this source code, which gives us the expressions compiler
bytecode. Finally, we rewrite this source code with expressions, and we compile it
with the expressions compiler bytecode. As before, to save space, we give the two
compiler versions at the same time (without expressions in red, with in green).

The start of the compiler does not change in the 1st version (changes are indicated
with a vertical bar in the margin), but can be rewritten in a clearer way in the 2nd:
fn tc_main(src_buffer, dst_buffer, flash_buffer);
fn main 3(src_buffer, dst_buffer, flash_buffer) {

get 0 get 1 get 2 call tc_main(src_buffer, dst_buffer, flash_buffer) ret ≀
≀v;

}

fn load8 1(ptr) { get 0 load cst8 255 and(*ptr) & 255 retv; }
fn load16 1(ptr) { get 0 load cst 65535 and(*ptr) & 65535 retv; }
fn store8 2(ptr, value) { get 0ptr, get 0 load cst 4294967040 and get 1 or ≀

≀(*ptr) & 4294967040 | value store; ret; }
fn store16 2(ptr, value) { get 0ptr, get 0 load cst 4294901760 and get 1 o ≀

≀r(*ptr) & 4294901760 | value store; ret; }

const PANIC_BUFFER 1074666152
fn panic_copy 2(src, dst) {

get 1dst, get 0 load*src store;
get 1 cst8 4 add(dst + 4), get 0 cst8 4 add load*(src + 4) store;
get 1 cst8 8 add(dst + 8), get 0 cst8 8 add load*(src + 8) store;
get 1 cst8 12 add(dst + 12), get 0 cst8 12 add load*(src + 12) store;
ret;

}
fn panic_result 1(ptr) {

ptr 0 cst8 16 sub get 0 call panic_copy(&ptr - 16, ptr);
cst 1074666152PANIC_BUFFER, get 0ptr store;
cst_0 retv;

}
fn panic 1(error) {

cst 1074666152 load ptr 0 cst8 16 sub call panic_copy(*PANIC_BUFFER, &er ≀
≀ror - 16);

get 0error retv;
}
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17.3.1 Shared constants
We then declare, in the 2nd version, a set of constants for token values, symbol’s
kind values, for the offset of each symbol’s variable (and their total size), and for the
offset of the compiler variables from self . For convenience, we set the token values
of +, -, *, /, &, and | to their corresponding opcode (4, 5, 6, 7, 8, and 9, respectively).
const TC_INTEGER 2
const TC_IDENTIFIER 3
const TC_ADD 4
const TC_SUB 5
const TC_MUL 6
const TC_DIV 7
const TC_BIT_AND 8
const TC_BIT_OR 9
const TC_FN 'f'
const TC_LET 'l'
const TC_CONST 'c'
const TC_STATIC 's'

const SYM_RESOLVED 0
const SYM_UNRESOLVED 1
const SYM_VARIABLE 2

const sym_name 0
const sym_length 4
const sym_kind 8
const sym_value 12
const sym_next 16
const sizeof_symbol 20

const tc_src 0
const tc_src_end 4
const tc_next_char 8
const tc_next_char_type 12
const tc_next_token 16
const tc_next_token_data 20
const tc_next_token_length 24
const tc_dst 28
const tc_heap 32
const tc_symbols 36
const tc_flash_offset 40
const tc_fn_dst 44

17.3.2 Scanner
The CHAR_TYPES table must be updated to support the new single character tokens
(+, -, *, /, &, |, comma, parentheses and curly braces). For convenience, we set the
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character types of +, -, *, /, &, and | to the corresponding token values. And we set
the type of the others, including the quote, to their ASCII code. The KEYWORDS table
must also be updated to remove instructions now handled with expressions (add, sub,
etc) and to add the new let and const keywords.

static TC_CHAR_TYPES
1 1 1 1 1 1 1 1 1 32 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 8 39 40 41 6 4 44 5 1 7 2 2 2 2 2 2 2 2 2 2 58 59 1 1 1 1
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 3
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 123 9 125 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

static TC_KEYWORDS
4 105'i' 102'f' 108'l' 116't' 140
4 105'i' 102'f' 101'e' 113'q' 141
4 105'i' 102'f' 103'g' 116't' 142
4 105'i' 102'f' 108'l' 101'e' 143
4 105'i' 102'f' 110'n' 101'e' 144
4 105'i' 102'f' 103'g' 101'e' 145
4 103'g' 111'o' 116't' 111'o' 146
5 115's' 116't' 111'o' 114'r' 101'e' 148
3 115's' 101'e' 116't' 151
3 112'p' 111'o' 112'p' 152
3 114'r' 101'e' 116't' 157
4 114'r' 101'e' 116't' 118'v' 158
2 102'f' 110'n' 102
3 108'l' 101'e' 116't' 108
5 99'c' 111'o' 110'n' 115's' 116't' 99
6 115's' 116't' 97'a' 116't' 105'i' 99'c' 115
0

The first scanner functions are unchanged compared with the labels compiler:

fn mem_compare 3(ptr1, ptr2, size) {
let i cst_0;

:step2
get 7i, get 2size ifge step4;
get 0 get 7 add call load8(ptr1 + i), get 1 get 7 add call load8(ptr2 + ≀

≀i) ifne step4;
get 7 cst_1 addi + 1 set 7i; goto step2;

:step4
get 2 get 7 subsize - i retv;

}

fn tc_get_keyword 2(start, length) {
let len cst_0;
let ptr cst TC_KEYWORDS;
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:step2
get 7 call load8(ptr) set 6len;
get 6len, cst_0 ifne step4;
cst8 3TC_IDENTIFIER retv;

:step4
get 1length, get 6len ifne step7;
get 0 get 7 cst_1 add get 1 call mem_compare(start, ptr + 1, length), cs ≀

≀t_0 ifne step7;
get 7 get 6 add cst_1 add call load8(ptr + len + 1) retv;

:step7
get 7 get 6 add cst8 2 addptr + len + 2 set 7ptr; goto step2;

}

fn tc_read_char 1(self) {
let src get 0 cst_0 add load*(self+tc_src);
let src_end get 0 cst8 4 add load*(self+tc_src_end);
get 5src, get 6src_end iflt step2;
cst8 10 call panic(10);

:step2
get 5 cst_1 addsrc + 1 set 5src;
let c cst_0;
let type cst_0;
get 5src, get 6src_end ifge end;
get 5 call load8(src) set 7c;
cst TC_CHAR_TYPES get 7 add call load8(TC_CHAR_TYPES + c) set 8type;

:end
get 0 cst_0 add(self+tc_src), get 5src store;
get 0 cst8 8 add(self+tc_next_char), get 7c store;
get 0 cst8 12 add(self+tc_next_char_type), get 8type store;
get 8type retv;

}

fn tc_read_integer 1(self) {
let type get 0 cst8 12 add load*(self+tc_next_char_type);
let v cst_0;

:step2
get 5type, cst8 2TC_INTEGER ifne step5;
get 6 cst8 10 mul get 0 cst8 8 add load cst8 48 sub addv * 10 + (*(self+ ≀

≀tc_next_char) - '0') set 6v;
get 0 call tc_read_char(self) set 5type;
goto step2;

:step5
get 0 cst8 20 add(self+tc_next_token_data), get 6v store;
cst8 2TC_INTEGER retv;

}

To support the new quoted characters tokens such as “’a’” we add the following
function. It starts by reading the first quote (the caller should check that the next
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character is a quote). It then checks if the second character, in value, is printable,
and panics otherwise. Finally, it checks that the third character is a quote, sets the
next_token_data to value and return the INTEGER token type:
fn tc_read_quoted_char 1(self) {

get 0 call tc_read_char(self) pop;
let value get 0 cst8 8 add load*(self+tc_next_char);
get 5value, cst8 32 iflt not_printable;
get 5value, cst8 127 iflt printable;

:not_printable
cst8 11 call panic(11);

:printable
get 0 call tc_read_char(self), cst8 39''' ifeq ok;
cst8 12 call panic(12);

:ok
get 0 call tc_read_char(self) pop;
get 0 cst8 20 add(self+tc_next_token_data), get 5value store;
cst8 2TC_INTEGER retv;

}

The remaining scanner functions are essentially unchanged compared with the
labels compiler. We just add a new case in tc_read_token, which calls the above
function if the next character is a quote:
fn tc_read_identifier 1(self) {

let start get 0 cst_0 add load*(self+tc_src);
let type get 0 cst8 12 add load*(self+tc_next_char_type);

:step2
get 6type, cst8 3TC_IDENTIFIER ifeq step3;
get 6type, cst8 2TC_INTEGER ifne step4;

:step3
get 0 call tc_read_char(self) set 6type; goto step2;

:step4
let length get 0 cst_0 add load get 5 sub*(self+tc_src) - start;
get 0 cst8 20 add(self+tc_next_token_data), get 5start store;
get 0 cst8 24 add(self+tc_next_token_length), get 7length store;
get 5 get 7 call tc_get_keyword(start, length) retv;

}

fn tc_read_token 1(self) {
let type get 0 cst8 12 add load*(self+tc_next_char_type);

:step1
get 5type, cst8 32' ' ifne step3;
get 0 call tc_read_char(self) set 5type; goto step1;

:step3
let token get 5type;
get 5type, cst8 2TC_INTEGER ifne step4;
get 0 call tc_read_integer(self) set 6token; goto end;

:step4
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get 5type, cst8 39''' ifne step5;
get 0 call tc_read_quoted_char(self) set 6token; goto end;

:step5
get 5type, cst8 3TC_IDENTIFIER ifne step6;
get 0 call tc_read_identifier(self) set 6token; goto end;

:step6
get 5type, cst_0 ifeq end;
get 0 call tc_read_char(self) pop;

:end
get 0 cst8 16 add(self+tc_next_token), get 6token store;
ret;

}

17.3.3 Backend
The backend is extended with new functions to write the opcode instructions needed
by the parser. Its first functions are unchanged compared with the labels compiler:
fn mem_allocate 2(size, ptr_p) {

let ptr get 1 load*ptr_p;
get 1ptr_p, get 6 get 0 addptr + size store;
get 6ptr retv;

}
fn tc_write8 2(self, value) {

cst_1 get 0 cst8 28 add call mem_allocate get 1 call store8(mem_allocate ≀
≀(1, self+tc_dst), value);

ret;
}
fn tc_write16 2(self, value) {

cst8 2 get 0 cst8 28 add call mem_allocate get 1 call store16(mem_alloca ≀
≀te(2, self+tc_dst), value);

ret;
}
fn tc_write32 2(self, value) {

cst8 4 get 0 cst8 28 add call mem_allocate(4, self+tc_dst), get 1value s ≀
≀tore;

ret;
}

We then add a generic utility function to write an instruction with a single byte
argument, used later on:
fn tc_write_insn 3(self, opcode, argument) {

get 0 get 1 call tc_write8(self, opcode);
get 0 get 2 call tc_write8(self, argument);
ret;

}

The next two functions are unchanged (last_placeholder and new_placeholder
refer to x and y in Algorithm 16.8, respectively):
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fn tc_add_placeholder 2(self, placeholder_p) {
let new_placeholder get 0 cst8 28 add load*(self+tc_dst);
let last_placeholder get 1 load*placeholder_p;
get 1placeholder_p, get 6new_placeholder store;
get 7last_placeholder, cst_0 ifne step4; get 6new_placeholder set 7last_ ≀

≀placeholder;
:step4

get 6 get 7 subnew_placeholder - last_placeholder retv;
}

fn tc_fill_placeholders 2(placeholder, value) {
let offset cst_0;

:step2
get 0placeholder, cst_0 ifeq end;

:step3
get 0 call load16(placeholder) set 6offset;
get 0 get 1 call store16(placeholder, value);
get 6offset, cst_0 ifne step6; ret;

:step6
get 0 get 6 subplaceholder - offset set 0placeholder;
goto step2;

:end
ret;

}

The following new function writes an instruction to push a given value on the stack.
It encapsulates the details related to the cst_0, cst_1, cst8 and cst instructions by
writing the appropriate instruction depending on value:
fn tc_write_cst_insn 2(self, value) {

get 1value, cst_1 ifgt not0_or_1;
get 0 get 1 call tc_write8(self, value); ret;

:not0_or_1
get 1value, cst 256 ifge not_byte;
get 0 cst8 2 get 1 call tc_write_insn(self, 2, value); ret;

:not_byte
get 0 cst8 3 call tc_write8(self, 3);
get 0 get 1 call tc_write32(self, value); ret;

}

The next function writes the instruction to perform the arithmetic operation speci-
fied by token , which must be one of TC_ADD, TC_SUB, TC_MUL, TC_DIV, TC_BIT_AND,
or TC_BIT_OR. It is trivial since these values are equal to the corresponding opcodes:
fn tc_write_binary_insn 2(self, token) {

get 0 get 1 call tc_write8(self, token);
ret;

}

The following 3 functions write the instruction corresponding to their name. They
encapsulate the details related to their encoding.
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fn tc_write_load_insn 1(self) {
get 0 cst8 19 call tc_write8(self, 19);
ret;

}
fn tc_write_ptr_insn 2(self, variable) {

get 0 cst8 21 get 1 call tc_write_insn(self, 21, variable);
ret;

}
fn tc_write_get_insn 2(self, variable) {

get 0 cst8 22 get 1 call tc_write_insn(self, 22, variable);
ret;

}

The next function is simplified by using the new tc_write_insn function:

fn tc_write_fn_insn 2(self, arity) {
get 0 cst8 25 get 1 call tc_write_insn(self, 25, arity);
ret;

}

The last backend function writes the instruction to call a given function , specified
with a symbol. It writes the call opcode, followed either by a new placeholder if the
symbol is unresolved, or by the symbol’s value. By hypothesis, this value is the call
instruction argument which must be used to call function . The following function
encapsulates the details of its computation.

fn tc_get_fn_value 2(self, fn_dst) {
get 1 get 0 cst8 40 add load sub cst 786432 subfn_dst - *(self+tc_flash_ ≀

≀offset) - 786432 retv;
}
fn tc_write_call_insn 2(self, function) {

get 0 cst8 26 call tc_write8(self, 26);
get 1 cst8 8 add load*(function+sym_kind), cst_1SYM_UNRESOLVED ifne reso ≀

≀lved;
get 0 get 0 get 1 cst8 12 add call tc_add_placeholder call tc_write16(se ≀

≀lf, tc_add_placeholder(self, function+sym_value));
ret;

:resolved
get 0 get 1 cst8 12 add load call tc_write16(self, *(function+sym_value) ≀

≀);
ret;

}

17.3.4 Parser
The start of the parser is the same as in the labels compiler:

fn sym_lookup 3(symbol, name, length) {
:step2
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get 0symbol, cst_0 ifeq step7;
get 0 cst8 4 add load*(symbol+sym_length), get 2length ifne step6;
get 0 cst_0 add load get 1 get 2 call mem_compare(*(symbol+sym_name), na ≀

≀me, length), cst_0 ifne step6;
get 0symbol retv;

:step6
get 0 cst8 16 add load*(symbol+sym_next) set 0symbol; goto step2;

:step7
cst_0 retv;

}

fn tc_add_symbol 5(self, name, length, kind, value) {
let symbol cst8 20 get 0 cst8 32 add call mem_allocate(sizeof_symbol, se ≀

≀lf+tc_heap);
get 0 cst8 36 add load get 1 get 2 call sym_lookup(*(self+tc_symbols), n ≀

≀ame, length), cst_0 ifeq ok;
cst8 30 call panic(30);

:ok
get 9 cst_0 add(symbol+sym_name), get 1name store;
get 9 cst8 4 add(symbol+sym_length), get 2length store;
get 9 cst8 8 add(symbol+sym_kind), get 3kind store;
get 9 cst8 12 add(symbol+sym_value), get 4value store;
get 9 cst8 16 add(symbol+sym_next), get 0 cst8 36 add load*(self+tc_symb ≀

≀ols) store;
get 0 cst8 36 add(self+tc_symbols), get 9symbol store;
get 9symbol retv;

}

fn tc_add_or_resolve_symbol 4(self, name, length, value) {
let symbol get 0 cst8 36 add load get 1 get 2 call sym_lookup(*(self+tc_ ≀

≀symbols), name, length);
get 8symbol, cst_0 ifne found;
get 0 get 1 get 2 cst_0 get 3 call tc_add_symbol(self, name, length, SYM ≀

≀_RESOLVED, value) retv;
:found

get 8 cst8 8 add load*(symbol+sym_kind), cst_1SYM_UNRESOLVED ifeq ok;
cst8 31 call panic(31);

:ok
get 8 cst8 12 add load get 3 call tc_fill_placeholders(*(symbol+sym_valu ≀

≀e), value);
get 8 cst8 8 add(symbol+sym_kind), cst_0SYM_RESOLVED store;
get 8 cst8 12 add(symbol+sym_value), get 3value store;
get 8symbol retv;

}

fn tc_parse_token 2(self, token) {
get 0 cst8 16 add load*(self+tc_next_token), get 1token ifeq ok;
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cst8 20 call panic(20);
:ok

get 0 call tc_read_token(self);
ret;

}
fn tc_parse_integer 1(self) {

get 0 cst8 16 add load*(self+tc_next_token), cst8 2TC_INTEGER ifeq ok;
cst8 21 call panic(21);

:ok
let value get 0 cst8 20 add load*(self+tc_next_token_data);
get 0 call tc_read_token(self);
get 5value retv;

}
fn tc_parse_identifier 2(self, length_p) {

get 0 cst8 16 add load*(self+tc_next_token), cst8 3TC_IDENTIFIER ifeq ok ≀
≀;

cst8 22 call panic(22);
:ok

let name get 0 cst8 20 add load*(self+tc_next_token_data);
get 1length_p, get 0 cst8 24 add load*(self+tc_next_token_length) store;
get 0 call tc_read_token(self);
get 6name retv;

}

Here we add a new utility function to parse an identifier which must correspond to
an existing symbol. This function parses an identifier and returns its corresponding
symbol in the list passed as argument in symbol (or panics if no symbol is found):

fn tc_parse_symbol 2(self, symbol) {
let length cst_0;
let name get 0 ptr 6 call tc_parse_identifier(self, &length);
get 1 get 7 get 6 call sym_lookup(symbol, name, length) set 1symbol;
get 1symbol, cst_0 ifne ok;
cst8 33 call panic(33);

:ok
get 1symbol retv;

}

The tc_parse_static function is unchanged, but a new trivial tc_parse_const
function is added for the new “const x v” syntax. This function simply adds a new
symbol for x, with value v.

fn tc_parse_const 1(self) {
get 0 cst8 99 call tc_parse_token(self, TC_CONST);
let length cst_0;
let name get 0 ptr 5 call tc_parse_identifier(self, &length);
get 0 get 6 get 5 cst_0 get 0 call tc_parse_integer call tc_add_symbol(s ≀

≀elf, name, length, SYM_RESOLVED, tc_parse_integer(self)) pop;
ret;
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}
fn tc_parse_static 1(self) {

get 0 cst8 115 call tc_parse_token(self, TC_STATIC);
let length cst_0;
let name get 0 ptr 5 call tc_parse_identifier(self, &length);
let value get 0 cst8 28 add load get 0 cst8 40 add load sub*(self+tc_dst ≀

≀) - *(self+tc_flash_offset);
get 0 get 6 get 5 cst_0 get 7 call tc_add_symbol(self, name, length, SYM ≀

≀_RESOLVED, value) pop;
:loop

get 0 cst8 16 add load*(self+tc_next_token), cst8 2TC_INTEGER ifne end;
get 0 get 0 call tc_parse_integer call tc_write8(self, tc_parse_integer( ≀

≀self)); goto loop;
:end

ret;
}

The parse_argument function is updated to match the new “argument” grammar
rule, which no longer allows INTEGER arguments. As a consequence, the start of
this function, which was calling tc_parse_integer, is removed. On the other hand,
the tc_parse_label function is unchanged (the “label” rule has not changed):
fn tc_parse_argument 1(self) {

let length cst_0;
let name get 0 ptr 5 call tc_parse_identifier(self, &length);
let symbol get 0 cst8 36 add load get 6 get 5 call sym_lookup(*(self+tc_ ≀

≀symbols), name, length);
get 7symbol, cst_0 ifne found;
get 0 get 6 get 5 cst_1 cst_0 call tc_add_symbol(self, name, length, SYM ≀

≀_UNRESOLVED, 0) set 7symbol;
:found

get 7 cst8 8 add load*(symbol+sym_kind), cst_1SYM_UNRESOLVED ifne resolv ≀
≀ed;

get 0 get 7 cst8 12 add call tc_add_placeholder(self, symbol+sym_value) ≀
≀retv;

:resolved
get 7 cst8 12 add load*(symbol+sym_value) retv;

}

fn tc_parse_label 1(self) {
get 0 cst8 58 call tc_parse_token(self, ':');
let length cst_0;
let name get 0 ptr 5 call tc_parse_identifier(self, &length);
let value get 0 cst8 28 add load get 0 cst8 44 add load sub*(self+tc_dst ≀

≀) - *(self+tc_fn_dst);
get 0 get 6 get 5 get 7 call tc_add_or_resolve_symbol(self, name, length ≀

≀, value);
ret;

}
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The following functions are the main new part of the compiler. They implement
the expressions rules in reverse order, starting with “fn_arguments”. This rule uses
“expr” but since tc_parse_expr is implemented last, we need to declare it first.

fn tc_parse_expr(self);

The tc_parse_fn_arguments function parses the arguments of a function call
f(e0, e1, . . .), and takes as argument the symbol corresponding to f . It first checks
that this symbol is not a local variable, and panics otherwise. It then parses the
arguments with the recursive descent method: after parsing the opening parenthesis, it
parses a first expression unless the next token is a closing parenthesis. Then, while the
next token is a comma, it reads it and parses another expression. This generates the
compiled code for the arguments, after which we just need to write a call instruction.

fn tc_parse_fn_arguments 2(self, function) {
get 1 cst8 8 add load*(function+sym_kind), cst8 2SYM_VARIABLE ifne ok;
cst8 34 call panic(34);

:ok
get 0 cst8 40 call tc_parse_token(self, '(');
get 0 cst8 16 add load*(self+tc_next_token), cst8 41')' ifeq end;
get 0 call tc_parse_expr(self);

:loop
get 0 cst8 16 add load*(self+tc_next_token), cst8 44',' ifne end;
get 0 call tc_read_token(self);
get 0 call tc_parse_expr(self);
goto loop;

:end
get 0 cst8 41 call tc_parse_token(self, ')');
get 0 get 1 call tc_write_call_insn(self, function);
ret;

}

A primitive expression can either start with an integer, an identifier, or an opening
parenthesis. In the first case we generate the code to push this integer on the stack:

fn tc_parse_primitive_expr 1(self) {
let symbol cst_0;
get 0 cst8 16 add load*(self+tc_next_token), cst8 2TC_INTEGER ifne not_i ≀

≀nteger;
get 0 get 0 call tc_parse_integer call tc_write_cst_insn(self, tc_parse_ ≀

≀integer(self));
ret;

In the second case, there must be a symbol for this identifier. If it is followed by
an opening parenthesis this is a function call, and we parse it with the above function.

:not_integer
get 0 cst8 16 add load*(self+tc_next_token), cst8 3TC_IDENTIFIER ifne pa ≀

≀rentheses;
get 0 get 0 cst8 36 add load call tc_parse_symbol(self, *(self+tc_symbol ≀
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≀s)) set 5symbol;
get 0 cst8 16 add load*(self+tc_next_token), cst8 40'(' ifne identifier;
get 0 get 5 call tc_parse_fn_arguments(self, symbol);
ret;

Otherwise we write the appropriate instruction depending on the kind of symbol
referred to by the identifier (or panic if the symbol is unresolved).
:identifier

get 5 cst8 8 add load*(symbol+sym_kind), cst8 2SYM_VARIABLE ifne not_var ≀
≀iable;

get 0 get 5 cst8 12 add load call tc_write_get_insn(self, *(symbol+sym_v ≀
≀alue));

ret;
:not_variable

get 5 cst8 8 add load*(symbol+sym_kind), cst_0SYM_RESOLVED ifne error;
get 0 get 5 cst8 12 add load call tc_write_cst_insn(self, *(symbol+sym_v ≀

≀alue));
ret;

:error
cst8 35 call panic(35);

In the last case, we simply need to parse an expression between parentheses:
:parentheses

get 0 cst8 40 call tc_parse_token(self, '(');
get 0 call tc_parse_expr(self);
get 0 cst8 41 call tc_parse_token(self, ')');
ret;

}

A pointer expression either starts with “*” or “&”, or is a primitive expression.
Following the recursive descent method, the first case is trivial: we just need to read
the “*” token, parse a pointer expression recursively, and finally generate a load
instruction (recall that “*e” means “the value at address e”). The second case is also
simple: the “&” must be followed by an identifier which must correspond to a local
variable or function parameter x. If it is we must generate a ptr x instruction (recall
that “&x” means “the address of x’s stack frame slot”), otherwise this is an error:
fn tc_parse_pointer_expr 1(self) {

let symbol cst_0;
get 0 cst8 16 add load*(self+tc_next_token), cst8 6TC_MUL ifne not_mul;
get 0 call tc_read_token(self);
get 0 call tc_parse_pointer_expr(self);
get 0 call tc_write_load_insn(self);
ret;

:not_mul
get 0 cst8 16 add load*(self+tc_next_token), cst8 8TC_BIT_AND ifne not_b ≀

≀it_and;
get 0 call tc_read_token(self);
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get 0 get 0 cst8 36 add load call tc_parse_symbol(self, *(self+tc_symbol ≀
≀s)) set 5symbol;

get 5 cst8 8 add load*(symbol+sym_kind), cst8 2SYM_VARIABLE ifne error;
get 0 get 5 cst8 12 add load call tc_write_ptr_insn(self, *(symbol+sym_v ≀

≀alue));
ret;

:error
cst8 36 call panic(36);

:not_bit_and
get 0 call tc_parse_primitive_expr(self);
ret;

}

The remaining expression parsing functions are straightforward, again by following
the recursive descent method. After parsing a first subexpression, a loop is used, while
the next token is a permitted operator (e.g., “+” or “-” for the “add_expr” rule), to
read the operator, parse a subexpression, and write the operator’s instruction:
fn tc_parse_mult_expr 1(self) {

get 0 call tc_parse_pointer_expr(self);
let next_token get 0 cst8 16 add load*(self+tc_next_token);

:loop
get 5next_token, cst8 6TC_MUL ifeq mul_or_div;
get 5next_token, cst8 7TC_DIV ifne end;

:mul_or_div
get 0 call tc_read_token(self);
get 0 call tc_parse_pointer_expr(self);
get 0 get 5 call tc_write_binary_insn(self, next_token);
get 0 cst8 16 add load*(self+tc_next_token) set 5next_token;
goto loop;

:end
ret;

}
fn tc_parse_add_expr 1(self) {

get 0 call tc_parse_mult_expr(self);
let next_token get 0 cst8 16 add load*(self+tc_next_token);

:loop
get 5next_token, cst8 4TC_ADD ifeq add_or_sub;
get 5next_token, cst8 5TC_SUB ifne end;

:add_or_sub
get 0 call tc_read_token(self);
get 0 call tc_parse_mult_expr(self);
get 0 get 5 call tc_write_binary_insn(self, next_token);
get 0 cst8 16 add load*(self+tc_next_token) set 5next_token;
goto loop;

:end
ret;

}
fn tc_parse_bit_and_expr 1(self) {
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get 0 call tc_parse_add_expr(self);
:loop

get 0 cst8 16 add load*(self+tc_next_token), cst8 8TC_BIT_AND ifne end;
get 0 call tc_read_token(self);
get 0 call tc_parse_add_expr(self);
get 0 cst8 8 call tc_write_binary_insn(self, TC_BIT_AND);
goto loop;

:end
ret;

}
fn tc_parse_expr 1(self) {

get 0 call tc_parse_bit_and_expr(self);
:loop

get 0 cst8 16 add load*(self+tc_next_token), cst8 9TC_BIT_OR ifne end;
get 0 call tc_read_token(self);
get 0 call tc_parse_bit_and_expr(self);
get 0 cst8 9 call tc_write_binary_insn(self, TC_BIT_OR);
goto loop;

:end
ret;

}

The tc_parse_instruction function is similar to its previous version in the
labels compiler and is even simpler, since an instruction can no longer be a label
(labels have been moved to the “statement” rule):
static ARG_SIZES

0 0 1 4 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 1 1 1 0 0 2 0 0 0 0

fn tc_parse_instruction 1(self) {
let opcode get 0 cst8 16 add load cst8 128 sub*(self+tc_next_token) - 12 ≀

≀8;
get 0 get 5 call tc_write8(self, opcode);
get 0 call tc_read_token(self);
let arg_size cst ARG_SIZES get 5 add call load8(ARG_SIZES + opcode);
get 6arg_size, cst_0 ifne not0;
ret;

:not0
let arg get 0 call tc_parse_argument(self);
get 6arg_size, cst_1 ifne not1;
get 0 get 7 call tc_write8(self, arg); ret;

:not1
get 6arg_size, cst8 2 ifne not2;
get 0 get 7 call tc_write16(self, arg); ret;

:not2
get 0 get 7 call tc_write32(self, arg); ret;

}

The following function parses the new “let x e;” syntax. It takes as parameter
the stack frame slot index of x and returns the index to use for the next let. The
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parsing itself is trivial. No code needs to be generated besides the one generated while
parsing e. We just need to add x in the list of symbols, with value variable .

fn tc_parse_let_stmt 2(self, variable) {
get 0 cst8 108 call tc_parse_token(self, TC_LET);
let length cst_0;
let name get 0 ptr 6 call tc_parse_identifier(self, &length);
get 0 call tc_parse_expr(self);
get 0 cst8 59 call tc_parse_token(self, ';');
get 0 get 7 get 6 cst8 2 get 1 call tc_add_symbol(self, name, length, SY ≀

≀M_VARIABLE, variable) pop;
get 1 cst_1 addvariable + 1 retv;

}

The next function implements the “statement” rule. It takes as parameter the stack
frame slot to use if the statement is a let construct, and returns the slot to use for
the next statement. If the next token is a colon or the let keyword, we just need to
call the function to parse a label or a let statement. Otherwise, if the next token is not
an opcode keyword (token ≥ 128 ) or a semicolon, we need to parse an expression.
Then, while the next token is a comma, we should read it and parse another expression.
Finally, we should parse an instruction if the next token is not a semicolon.

fn tc_parse_statement 2(self, next_variable) {
get 0 cst8 16 add load*(self+tc_next_token), cst8 58':' ifne not_label;
get 0 call tc_parse_label(self);
goto end;

:not_label
get 0 cst8 16 add load*(self+tc_next_token), cst8 108TC_LET ifne expr_or ≀

≀_insn;
get 0 get 1 call tc_parse_let_stmt(self, next_variable) retv;

:expr_or_insn
get 0 cst8 16 add load*(self+tc_next_token), cst8 59';' ifeq insn;
get 0 cst8 16 add load*(self+tc_next_token), cst8 128 ifge insn;
get 0 call tc_parse_expr(self);

:loop
get 0 cst8 16 add load*(self+tc_next_token), cst8 44',' ifne insn;
get 0 call tc_read_token(self);
get 0 call tc_parse_expr(self);
goto loop;

:insn
get 0 cst8 16 add load*(self+tc_next_token), cst8 59';' ifeq insn_end;
get 0 cst8 16 add load*(self+tc_next_token), cst8 128 ifge ok;
cst8 24 call panic(24);

:ok
get 0 call tc_parse_instruction(self);

:insn_end
get 0 cst8 59 call tc_parse_token(self, ';');

:end
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get 1next_variable retv;
}

The tc_parse_fn_name function is the same as in the labels compiler, except that
it now computes the symbol’s value with the new tc_get_fn_value function:
fn tc_parse_fn_name 1(self) {
let length cst_0;
let name get 0 ptr 5 call tc_parse_identifier(self, &length);
let fn_dst get 0 cst8 28 add load*(self+tc_dst);
get 0 cst8 44 add(self+tc_fn_dst), get 7fn_dst store;
let value get 0 get 7 call tc_get_fn_value(self, fn_dst);
get 0 get 6 get 5 get 8 call tc_add_or_resolve_symbol(self, name, length ≀

≀, value) retv;
}

The overall algorithm of the tc_parse_fn_parameters function is the same as
the one parsing function arguments, and derives from the recursive descent method.
This function parses an opening parenthesis and then, while the next token is not a
closing parenthesis, parses a comma (except at the first iteration) and an identifier.
Each identifier is added to the list of symbols with its index i as value. i is initialized
to 0, incremented after each identifier, and finally returned to the caller.
fn tc_parse_fn_parameters 1(self) {

let i cst_0;
let name cst_0;
let length cst_0;
get 0 cst8 40 call tc_parse_token(self, '(');

:loop
get 0 cst8 16 add load*(self+tc_next_token), cst8 41')' ifeq end;
get 5i, cst_0 ifle identifier;
get 0 cst8 44 call tc_parse_token(self, ',');

:identifier
get 0 ptr 7 call tc_parse_identifier(self, &length) set 6name;
get 0 get 6 get 7 cst8 2 get 5 call tc_add_symbol(self, name, length, SY ≀

≀M_VARIABLE, i) pop;
get 5 cst_1 addi + 1 set 5i;
goto loop;

:end
get 0 call tc_read_token(self);
get 5i retv;

}

The parse_fn_body function is updated to parse the new curly braces, and no
longer parses the function’s arity, now passed as argument. It also parses statements
instead of instructions, and keeps track of the stack frame slot to use for let statements
(initialized to arity + 4 – cf. Section 17.2).
fn tc_parse_fn_body 3(self, function, arity) {

get 0 cst8 16 add load*(self+tc_next_token), cst8 59';' ifne body;
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get 0 call tc_read_token(self);
get 1 cst8 8 add(function+sym_kind), cst_1SYM_UNRESOLVED store;
get 1 cst8 12 add(function+sym_value), cst_0 store;
ret;

:body
get 0 cst8 123 call tc_parse_token(self, '{');
get 0 get 2 call tc_write_fn_insn(self, arity);
let next_variable get 2 cst8 4 addarity + 4;

:loop
get 0 cst8 16 add load*(self+tc_next_token), cst8 125'}' ifeq end;
get 0 get 7 call tc_parse_statement(self, next_variable) set 7next_varia ≀

≀ble;
goto loop;

:end
get 0 call tc_read_token(self);
ret;

}

The tc_check_symbols function is unchanged, while tc_parse_fn is updated
to parse the function parameters before parsing its body. Note that restoring the heap
and symbols variables now also deletes the symbols added for the function parameters
and for the local variables (in addition to the label symbols). This is what we want, so
that parameters and local variables defined in one function cannot be used in another.
fn tc_check_symbols 2(symbol, end_symbol) {
:loop

get 0symbol, get 1end_symbol ifeq end;
get 0 cst8 8 add load*(symbol+sym_kind), cst_1SYM_UNRESOLVED ifne next;
cst8 32 call panic(32);

:next
get 0 cst8 16 add load*(symbol+sym_next) set 0symbol; goto loop;

:end
ret;

}
fn tc_parse_fn 1(self) {

get 0 cst8 102 call tc_parse_token(self, TC_FN);
let function get 0 call tc_parse_fn_name(self);
let heap get 0 cst8 32 add load*(self+tc_heap);
let symbols get 0 cst8 36 add load*(self+tc_symbols);
let arity get 0 call tc_parse_fn_parameters(self);
get 0 get 5 get 8 call tc_parse_fn_body(self, function, arity);
get 0 cst8 36 add load get 7 call tc_check_symbols(*(self+tc_symbols), s ≀

≀ymbols);
get 0 cst8 36 add(self+tc_symbols), get 7symbols store;
get 0 cst8 32 add(self+tc_heap), get 6heap store;
ret;

}

Finally, tc_parse_program is updated to handle the new “const” case, while the
tc_main function is unchanged:
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fn tc_parse_program 1(self) {
:loop

get 0 cst8 16 add load*(self+tc_next_token), cst8 102TC_FN ifne not_fn;
get 0 call tc_parse_fn(self); goto loop;

:not_fn
get 0 cst8 16 add load*(self+tc_next_token), cst8 115TC_STATIC ifne not_ ≀

≀static;
get 0 call tc_parse_static(self); goto loop;

:not_static
get 0 cst8 16 add load*(self+tc_next_token), cst8 99TC_CONST ifne end;
get 0 call tc_parse_const(self); goto loop;

:end
get 0 cst8 16 add load*(self+tc_next_token), cst_0 ifeq ok;
cst8 23 call panic(23);

:ok
get 0 cst8 36 add load cst_0 call tc_check_symbols(*(self+tc_symbols), 0 ≀

≀); ret;
}
fn tc_main 3(src_buffer, dst_buffer, flash_buffer) {

let fn_dst cst_0;
let flash_offset get 1 get 2 subdst_buffer - flash_buffer;
let symbols cst_0;
let heap get 1 cst 12288 adddst_buffer + 12288;
let dst get 1 cst8 4 adddst_buffer + 4;
let next_token_length cst_0;
let next_token_data cst_0;
let next_token cst_0;
let next_char_type cst_0;
let next_char cst_0;
let src_end get 0 cst8 4 add get 0 load addsrc_buffer + 4 + *src_buffer;
let src get 0 cst8 3 addsrc_buffer + 3;
let panic3 cst_0;
let panic2 cst_0;
let panic1 cst_0;
let panic0 cst_0;
let error cst_0;
ptr 22 call panic_result(&panic0) set 23error;
get 23error, cst_0 ifeq ok;
get 1dst_buffer, get 18 get 0 sub cst8 4 subsrc - src_buffer - 4 store;
get 23error retv;

:ok
ptr 18 call tc_read_char(&src) pop;
ptr 18 call tc_read_token(&src);
ptr 18 call tc_parse_program(&src);
get 1dst_buffer, get 11 get 1 sub cst8 4 subdst - dst_buffer - 4 store;
cst_0 retv;

}
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17.4 Compilation and tests
To compile the above source code proceed as follows (see also Figure 16.4). First
launch the command editor by typing “w000c1172”+Enter in the memory editor,
followed by “r”.

Edit v1 Type “F3”+“r” and “F4”+“r” to load and edit the current compiler version.
Then update it to the 1st version of the expressions compiler (that is, the above code
with the parts highlighted in red). For convenience, we also provide this code in the
expressions_compiler_v1.txt file in https://ebruneton.github.io/toypc/sources.
zip. When you are done, exit the text editor and type “F5”+“r” to save your work.
Alternatively, you can “cheat” by running the following command on an external
computer (see Section 16.4 for more details):
user@host:~$ python3 flash_helper.py < part3/expressions_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed.
If all goes well, after about 2 seconds, you should get a result equal to 0 (meaning
that no error was found). If this is not the case use Appendix D to get the error code
meaning, fix this error, save the program and compile it again. Repeat this process
until the compilation is successful. Then type “F7”+“r” to save the result.

Test v1 Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the
following small test program, which computes the factorial of 6:

fn factorial(n);
fn test() { factorial(6) retv; }
fn factorial(n) {

n, 0 ifne not_zero; 1 retv;
:not_zero factorial(n - 1) * n retv;

}

Then type “F9”+“r” to compile and run it. If the result is not 720 = 2D016 this means
that the compiler is wrong. In this case, type “F8”+“r” to restore the labels compiler.
Then repeat the previous steps and double check everything until this test passes.

Edit v2 Type “F3”+“r” to load the 1st version of the expression compiler and “F4”+“r”
to edit it. Then update it to the 2nd version (that is, the code in the previous section,
with the parts highlighted in green). For convenience, we also provide this code in
the expressions_compiler_v2.txt file. Then save this new version with the F5
command. Alternatively, run the following command on an external computer:
user@host:~$ python3 flash_helper.py < part3/expressions_compiler_v2.txt

Compile v2 Type“F6”+“r” to compile this new code. The result should be 0, meaning
“no error”. If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all
errors are fixed.

283

https://ebruneton.github.io/toypc/sources.zip
https://ebruneton.github.io/toypc/sources.zip


CHAPTER 17 Expressions Compiler

Test v2 The compilation of the 2nd version of the expressions compiler should give
the same code for each expression as the manually written code in the 1st version.
Consequently, the compiled code of the 2nd version should be identical to that of the
1st version. To check this type “F10”+“r”. The result should be 0. If this is not the
case, repeat the steps from “Edit v2” until this test passes.
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18
CHAPTER

Statements Compiler

We now have a compiler for a toy programming language which no longer requires
us to manually compute function addresses, instruction offsets or stack frame slot
indices. We also have a natural syntax for expressions. However, writing conditional
instructions or loops is still not very easy. The main reason is that one must still use
raw bytecode instructions for that, which have two main drawbacks. The first is an
unnatural syntax. For instance, one must write “x, y ifgt greater;” to implement
“if x > y jump to the greater label”. The second drawback is the use of labels.
Although they are much better than instruction offsets, their use is still not very natural.
For instance, to implement “if x ≤ y call f(x)”, one must put a label after the call
to jump to it if the condition is not true: “x, y ifgt greater; f(x); :greater”.
This chapter extends our toy programming language and its compiler in order to solve
these issues.

18.1 Requirements
This section introduces new grammar rules to replace the remaining bytecode instruc-
tions in our current programming language, namely iflt, ifeq, ifgt, ifle, ifne,
ifge, goto, store, set, pop, ret, and retv.

18.1.1 Assignment and return
To replace ret and retv we introduce the new “return” keyword. We then use
“return;” instead of “ret;”, and “return e;” instead of “e retv;” (where e is an
expression). To replace set we introduce the assignment syntax “x = e;”, where
x is a function parameter or local variable name, and e an expression. “x = e;” is
equivalent to “e set x;” (sometimes noted x← e). Similarly, to replace store, we
use the assignment syntax “*a = e;”, where a and e are expressions. “*a = e;” is
equivalent to “a, e store;” and means “store e at address a”.

18.1.2 Expression statements
To remove the pop instruction we make it implicit in all expression statements “e;”.
This syntax was already used in the previous chapter, but it now means “e pop;”.
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Note that this requires all functions to return a value. We remove this restriction in
Chapter 19. In the mean time, we redefine “return;” as a shorthand for “return 0;”.

18.1.3 Conditional statements
To implement cases such as “if x < y call f(x)” in a natural way we require our
programming language to support this kind of syntax directly. More precisely it
should be possible to write “if x < y { f(x); }” for this. The curly braces are
mandatory and allow several statements to be executed if the condition is true (as in a
function’s body). To call f(y) if the condition is false, it should be possible to write
“if x < y { f(x); } else { f(y); }”. We also require the possibility to chain
if statements, as in, for instance “if x == 0 {. . .} else if x == 1 {. . .} else
if x == 2 {. . .} . . .”.

Besides the new “<” operator, we also introduce “==”, “>”, “<=”, “!=”, and “>=”,
to implement x = y, x > y, x ≤ y, x ̸= y, and x ≥ y (respectively). Conditions can
be more complex than a single comparison. Calling f(x) if x ≥ 0 and x < 10 could
be done with “if x >= 0 { if x < 10 { f(x); } }”, but it is more natural to
use an explicit “and” operator, noted “&&”: “if x >= 0 && x < 10 { f(x); }”.
Similarly, calling f(x) if x < 5 or x = 7 could be done with “if x < 5 { f(x); }
else if x == 7 { f(x); }” but it is better to use an explicit “or” operator, noted
“||”: “if x < 5 || x == 7 { f(x); }”. It should also be possible to combine
these operators, as in the following example (which tests if x is a digit or a lowercase
letter): “if x >= ’0’ && x <= ’9’ || x >= ’a’ && x <= ’z’ { ... }”.

18.1.4 Loops
Executing several instructions repeatedly currently requires a goto after the last
instruction to go back at the beginning. To avoid this we introduce the new “loop”
keyword and the “loop { ... }” syntax. By definition, this executes the statements
inside the mandatory curly braces repeatedly, forever. To stop the loop one could use
a return statement, but this would return from the whole function. To avoid this we
introduce a “break” statement. By definition, it jumps to the next statement after the
“loop” block. For instance, in “loop { if x == 0 { break; } ... } f(y);”, the
break exits the loop and jumps to the f(y); statement. This pattern is actually quite
frequent. To make it easier to use, we introduce the new “while” keyword and the
“while b { ... }” syntax (where b is a boolean expression using the “<”, “==”, “>”,
“<=”, “!=”, “>=”, “&&”, and “||” operators defined above). By definition, this executes
the statements inside the curly braces while b is true. The above break example can
then by rewritten into the simpler form “while x != 0 { ... } f(y);”.

18.1.5 Grammar
In order to support the above requirements we extend the grammar of our programming
language as follows (unchanged parts are in gray):
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program: (fn | static | const)* END
fn: “fn” fn_name fn_parameters fn_body
fn_name: IDENTIFIER
fn_parameters: “(” (IDENTIFIER (“,” IDENTIFIER)*)? “)”
fn_body: “{” (let_stmt | stmt)* “}” | “;”
let_stmt: “let” IDENTIFIER “=” expr “;”
stmt: if_stmt | while_or_loop_stmt | break_stmt | return_stmt | expr_or_assign_stmt
if_stmt: “if” boolean_expr block_stmt (“else” (block_stmt | if_stmt))?
while_or_loop_stmt: (“while” boolean_expr | “loop”) block_stmt
break_stmt: “break” “;”
return_stmt: “return” expr? “;”
expr_or_assign_stmt: expression assigment? “;”
assignment: “=” expr
block_stmt: “{” stmt* “}”
boolean_expr: and_expr (“||” and_expr)*
and_expr: comparison_expr (“&&” comparison_expr)*
comparison_expr: expr (“<” | “==” | “>” | “<=” | “!=” | “>=”) expr
expr: bit_and_expr (“|” bit_and_expr)*
bit_and_expr: shift_expr (“&” shift_expr)*
shift_expr: add_expr ((“<<” | “>>”) add_expr)*
add_expr: mult_expr ((“+” | “-”) mult_expr)*
mult_expr: pointer_expr ((“*” | “/”) pointer_expr)*
pointer_expr: “*” pointer_expr | “&” IDENTIFIER | primitive_expr
primitive_expr: INTEGER | IDENTIFIER fn_arguments? | “(” expr “)”
fn_arguments: “(” (expr (“,” expr)*)? “)”
static: “static” IDENTIFIER “=” “[” INTEGER (“,” INTEGER)* “]” “;”
const: “const” IDENTIFIER “=” INTEGER ”;”

This grammar no longer uses any bytecode instruction. Indeed the “instruction”
rule has been removed, and replaced with several rules for statements. These new
rules should be self-explanatory, but two points should be noted:

• “let” statements cannot be used in conditional or loop statements. This is done
on purpose, so that they are executed in the same order as in the source code,
and exactly once (unless the function returns before). We assumed this without
verification in the previous chapter, but this is now enforced automatically.
• the assignment statement rule is merged with the expression statement rule and

allows invalid assignments such as “2 = 3;” (2 cannot be changed to be equal to
3!). This is because using separate rules would lead to an ambiguous grammar.
Indeed, after a “*” token, there would be no way to decide whether to parse an
expression statement or an assignment statement (this depends on the presence or
not of a “=” token, which could be arbitrarily far after the “*”). Invalid assignments
must thus be detected by using another method than grammar rules.

This grammar also introduces a new expression rule for the lsl and lsr instructions,

287



CHAPTER 18 Statements Compiler

which were not taken into account in the previous chapter. “e << n” (resp. “e >>
n”) means e shifted to the left (resp. right) by n bits. These new operators have an
intermediate precedence between the bit and “&” and the plus and minus operators.
Finally, for consistency with assignment statements, the “const”, “static” and “let_stmt”
rules are updated to use the assignment notation “=”.

18.2 Algorithms
18.2.1 Scanner
The above grammar adds several new keywords. We associate them with token values
starting at 128, in alphabetical order (values 128 + x for opcode x are no longer
used since we removed the opcode keywords). It also adds the “=”, “[”, and “]”
punctuation tokens, as well as the “<<”, “>>”, “<”, “==”, “>”, “<=”, “!=”, “>=”, “&&”,
and “||” operator tokens. We associate the former with their ASCII code (61, 91, and
93, respectively), and the latter with values from 10 to 19, respectively (the first 8 are
the lsl, lsr, iflt, ifeq, ifgt, ifle, ifne, and ifge opcodes, respectively).

The new operator tokens require a new algorithm to read them. Indeed, if the
next character is a “<”, for instance, the second next character must be inspected to
know if this is a “<”, “<<”, or “<=” token. The following table gives the token value
depending on these two characters, and defines new CHAR_TYPES for the first ones:

1st character ! & < = > |

CHAR_TYPES 10 11 12 13 14 15
any other case 1 and iflt ’=’ ifgt or

2nd character = 1st 1 18 lsl ifeq lsr 19
2nd character = = ifne 1 ifle ifeq ifge 1

We can then support the operator tokens by extending the algorithm to read a
token as follows (where (column, row) table cell coordinates are counted from 0):

1. if the next character’s CHAR_TYPES t is between 10 and 15
2. read this character c
3. if the next character is equal to c
4. read it and set the token value to the (t− 10, 1) cell’s content
5. if the next character is equal to =
6. read it and set the token value to the (t− 10, 2) cell’s content
7. in any other case, set the token value to the (t− 10, 0) cell’s content
8. otherwise continue with the current algorithm

18.2.2 Parser
Parsing the new grammar rules can be done with the recursive descent method, and is
not difficult. However, producing the corresponding compiled code is not as easy as
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for expressions. This section presents the main algorithms for doing this.

Assignments
Because the expression and assignment statements rules are merged, when a “=” token
is found after an expression e, e has already been parsed and compiled. Hence for
instance, for “x = 1;”, “get 0” has already been written in the dst buffer (assuming
that x is in the 0th stack frame slot). But this not what we want, since “x = 1;” should
produce “cst_1 set 0”. Similarly, for “*x = 1;”, “get 0 load” has already been
written, but this statement should produce “get 0 cst_1 store”.

To solve these issues, and to detect invalid assignments such as “2 = 3;”, we make
each expression parsing function return the origin of the value of this expression. By
definition, this origin is ADDRESS for a dereference expression such as “*x”, VARIABLE
for an identifier expression referring to a function argument or a local variable, such as
“x”, and OTHER for any other case. Then, when a “=” token is found after an expression
e, there are 3 cases:

• if e’s origin is ADDRESS we decrement dst by 1 to remove the “load” which has
already been written but is not wanted. We then parse and compile the right hand
side of the assignment, and finally write a “store” instruction.
• if e’s origin is VARIABLE we get the variable slot index i by reading the byte at
dst − 1 , and decrement dst by 2 to remove the “get i” which has already been
written but is not wanted. We then parse and compile the right hand side of the
assignment, and finally write a “set i” instruction.
• any other case is an invalid assignment.

Conditional statements and loops
Comparison expressions such as “e1 < e2” are compiled into the code for e1,
followed by the code for e2, followed by some if. . . instruction to conditionally
jump somewhere. However, the precise instruction to use and its target depend on
the context. Consider for instance the example in Figure 18.1, where each ci is a
comparison expression. If c1 is false there is no need to compute c2 and c3 to know
that their conjunction “c1 and c2 and c3” is false. We thus want to jump to the next
comparison which could impact the end result, namely c4. The same reasoning applies
to c2, c4, and c5. If c3 is true, we know at this point that c1 and c2 are true as well, and
thus that the disjunction of the 3 conjunctions is true. We thus want to jump directly
to “f(x)”. The same reasoning applies to c6. Finally, if any of c7, c8, or c9 is false,
the whole condition is false and we want to jump to “g(y)”.

In this example, c1 jumps to c4 when it is false, but c3, in a very similar context,
jumps to “f(x)” if it is true. In order to generate the correct jump instruction and
jump target for each comparison expression we use the following method:

• The function compiling a comparison expression only produces the code for its two
subexpressions. It does not generate a jump instruction, and returns instead the
token value corresponding to the comparison operator.
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c1 c2 c3 &&&& && && && &&|| ||if

if true

if false

f(x);{ g(y);} else { }c4 c5 c6 c7 c8 c9

FIGURE 18.1 The jump target of each comparison expression ci in a general if
statement, and whether to jump if the comparison is true or false.

• The function compiling conjunctions “c1 && c2 && . . . cn” takes as parameter a
label l where to jump if the conjunction is false, and generates after each ci except
the last an if. . . instruction jumping to l if ci is false. It returns the token value
corresponding to the comparison operator of cn.
• The function compiling disjunctions “c1 || c2 || . . . cn” takes as parameter a label
l where to jump if the disjunction is true. It compiles each conjunction ci except
the last by 1) creating a label li, 2) passing it to the above function, 3) generating
an if. . . instruction jumping to l if ci is true, 4) placing li just after. It compiles
the last conjunction cn with steps 1) and 2), then generates an if. . . instruction
jumping to ln if cn is false, and finally returns the ln label to the caller.

A whole “if e {. . .} else {. . .}” statement can then be compiled as follows:

• create a lthen label and pass it to the above function to parse and compile e. Store
the resulting label in an lelse variable.
• place the lthen label just before parsing and compiling the first block statement.
• create a lend label and generate a goto lend instruction.
• place the lelse label just before parsing and compiling the second block statement.
• place the lend label.

Similarly, a “while e {. . .}” statement can then be compiled as follows:

• create an lbody label and pass it to the above function to parse and compile e. Store
the resulting label in an lend variable.
• place the lbody label just before parsing and compiling the block statement.
• generate a goto instruction going back just before e’s code.
• place the lend label.

These algorithms generate code of the following form:

code[e], jumps to :then or :else
:then code[then_block] goto end;
:else code[else_block]
:end

:loop code[e], jumps to :body or :end
:body code[loop_block]

goto loop;
:end

To conclude this section, it should be noted that we no longer need to use symbols
for labels. Indeed, we used symbols so far because we needed to find labels from their
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name in the program, and to keep track of their resolved or unresolved status. Here we
no longer have label names, and we know for each label above when it is resolved or
not (each label is initially unresolved, and becomes resolved when it is “placed”). The
only remaining piece of data which is needed for each label is its placeholders list.
And this boils down to a single address, the one of the last placeholder (since each
placeholder contains the offset of the previous one – see Figure 16.2). Hence, in the
above algorithms, “creating a label l” simply means initializing a local variable “l” to
0, representing an empty list of placeholders. And “passing l” to a function means
passing “&l”, the local variable’s address, so that the callee can add placeholders
for l. Finally, “returning l” means returning “l” and “placing l” means filling the
placeholders starting at address “l” with l’s instruction offset.

Reachability analysis
The above algorithms are sufficient to compile statements, but we add one more in
order to detect more errors. One error in particular is a missing “return” at the
end of a function, e.g., “f(a) { *a = 0; } g(b) {. . .}”. In such cases execution
“falls through” the end of “f” and continues in “g”, which is wrong. To solve this we
could require a “return” at the end of every function, but this would be too strict, for
instance, for “h(x) { loop { if x == 0 { return; } x = x-1; } }”. Indeed,
execution cannot fall through the end of this function even if it does not end with a
“return”. This is because the end of its “loop” statement is not reachable, meaning
that a statement put immediately after its closing brace could never be executed. On
the other hand, the end of the above “*a = 0;” assignment is reachable. Hence, a
more precise test to detect a missing return is to check if the end of the function’s
body might be reachable. Computing this for a statement s can be done as follows:

• if s is an expression or assignment statement we conservatively assume that its end
might be reachable (this is not always the case: a function call may never return).
• if s is a “break” or “return” statement its end is never reachable.
• if s is a block statement “{ s1; . . . sn; }” its end might be reachable if sn’s end

might be. If the end of si for i < n is unreachable this probably means that s is not
doing what the user wants, and we thus raise an error (although s would execute
without any issue, unlike a function without return).
• if s is an “if” statement we conservatively assume that its end might be reachable

if the end of at least one of its branches might be reachable. Note that a missing
“else” branch is equivalent to “else {}”, whose end is reachable.
• if s is a “while” statement we conservatively assume that its condition might be

false at least once, and thus that its end might be reachable (this is not always the
case: “while 0 == 0 {}” never ends).
• finally, if s is a “loop” statement its end might be reachable only if it contains a

“break” statement.

To compute this we make each statement parsing function return whether the
statement’s end might be reachable or not. We then use this to detect missing
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returns, but also, as a small code size optimization in conditional statements, to avoid
generating a “goto” after a block whose end is not reachable (see Section 18.2.2).

18.3 Implementation
We can now extend the expressions compiler in order to support statements. As before,
we need to write it in two steps, first without using statements, then with them. To
save space, we give the two compiler versions at the same time (without statements in
red, with in green). The start of the compiler does not change in the 1st version, but
can be rewritten in a clearer way in the 2nd:

fn tc_main(src_buffer, dst_buffer, flash_buffer);
fn main(src_buffer, dst_buffer, flash_buffer) {

return tc_main(src_buffer, dst_buffer, flash_buffer) retv;
}

fn load8(ptr) { return (*ptr) & 255 retv; }
fn load16(ptr) { return (*ptr) & 65535 retv; }
fn store8(ptr, value) { *ptr, = (*ptr) & 4294967040 | value store; retretu ≀

≀rn; }
fn store16(ptr, value) { *ptr, = (*ptr) & 4294901760 | value store; retret ≀

≀urn; }

const PANIC_BUFFER = 1074666152;
fn panic_copy(src, dst) {

*dst, = *src store;
*(dst + 4), = *(src + 4) store;
*(dst + 8), = *(src + 8) store;
*(dst + 12), = *(src + 12) store;
retreturn;

}
fn panic_result(ptr) {

panic_copy(&ptr - 16, ptr);
*PANIC_BUFFER, = ptr store;
return 0 retv;

}
fn panic(error) {
panic_copy(*PANIC_BUFFER, &error - 16);
return error retv;

}

18.3.1 Shared constants
Here we add new constants for the new token values (changes are indicated with a ver-
tical bar in the margin). We rename SYM_RESOLVED to SYM_FN and SYM_UNRESOLVED
to SYM_FORWARD_FN since these values are now only used for functions – labels no
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longer use symbols. Finally, we add two new symbol kind values, SYM_CONST and
SYM_STATIC, for the symbols defined with the const X . . . and static X . . . syntax.
The value of a symbol is now defined as follows:

• for SYM_FN symbols: the call instruction argument to call the function.
• for SYM_FORWARD_FN symbols: the address of the last placeholder.
• for SYM_VARIABLE symbols: the stack frame slot index of the argument or variable.
• for SYM_CONST symbols: the numeric value of the constant.
• for SYM_STATIC symbols: the dst address of the first byte of data.

const TC_INTEGER = 2;
const TC_IDENTIFIER = 3;
const TC_ADD = 4;
const TC_SUB = 5;
const TC_MUL = 6;
const TC_DIV = 7;
const TC_BIT_AND = 8;
const TC_BIT_OR = 9;
const TC_SHIFT_LEFT = 10;
const TC_SHIFT_RIGHT = 11;
const TC_LT = 12;
const TC_GE = 17;
const TC_AND = 18;
const TC_OR = 19;
const TC_BREAK = 128;
const TC_CONST = 129;
const TC_ELSE = 130;
const TC_FN = 131;
const TC_IF = 132;
const TC_LET = 133;
const TC_LOOP = 134;
const TC_RETURN = 135;
const TC_STATIC = 136;
const TC_WHILE = 137;

const SYM_FN = 0;
const SYM_FORWARD_FN = 1;
const SYM_VARIABLE = 2;
const SYM_CONST = 3;
const SYM_STATIC = 4;

const sym_name = 0;
const sym_length = 4;
const sym_kind = 8;
const sym_value = 12;
const sym_next = 16;
const sizeof_symbol = 20;
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const tc_src = 0;
const tc_src_end = 4;
const tc_next_char = 8;
const tc_next_char_type = 12;
const tc_next_token = 16;
const tc_next_token_data = 20;
const tc_next_token_length = 24;
const tc_dst = 28;
const tc_heap = 32;
const tc_symbols = 36;
const tc_flash_offset = 40;
const tc_fn_dst = 44;
const sizeof_compiler = 48;

18.3.2 Scanner
The CHAR_TYPES and KEYWORDS tables are updated to take the new tokens into account,
and a new OPERATOR table is introduced, corresponding to the one in Section 18.2.1
(each column is stored one after the other). Note that the new grammar now requires
commas between each value.
static TC_CHAR_TYPES = [

1,1,1,1,1,1,1,1,1,32,32,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
32,10,1,1,1,1,11,39,40,41,6,4,44,5,1,7,2,2,2,2,2,2,2,2,2,2,58,59,12,13,
14,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,91,1,93,1,3,
1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,123,15,125,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

static TC_OPERATORS = [1,1,16,8,18,1,12,10,15,61,13,13,14,11,17,9,19,1];
static TC_KEYWORDS = [

5,'b','r','e','a','k',128,
5,'c','o','n','s','t',129,
4,'e','l','s','e',130,
2,'f','n',131,
2,'i','f',132,
3,'l','e','t',133,
4,'l','o','o','p',134,
6,'r','e','t','u','r','n',135,
6,'s','t','a','t','i','c',136,
5,'w','h','i','l','e',137,
0];

The first scanner functions are unchanged compared with the expressions compiler:
fn mem_compare(ptr1, ptr2, size) {

let i = 0;
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:step2while i, < size ifge step4;&& load8(ptr1 + i), == load8(ptr2 + i) ≀
≀ifne step4;{

i = i + 1 set i;
goto step2;}
:step4return size - i retv;

}

fn tc_get_keyword(start, length) {
let len = 0;
let ptr = TC_KEYWORDS;
:step2loop {
len = load8(ptr) set len;
if len, == 0 ifne step4;{ return TC_IDENTIFIER retv; }
:step4if length, == len ifne step7;&& mem_compare(start, ptr + 1, leng ≀

≀th), == 0 ifne step7;{
return load8(ptr + len + 1) retv;

}
:step7ptr = ptr + len + 2 set ptr;

goto step2;}
}

fn tc_read_char(self) {
let src = *(self+tc_src);
let src_end = *(self+tc_src_end);
if src, >= src_end iflt step2;{ panic(10); }
:step2src = src + 1 set src;
let c = 0;
let type = 0;
if src, < src_end ifge end;{
c = load8(src) set c;
type = load8(TC_CHAR_TYPES + c) set type;

}
:end*(self+tc_src), = src store;
*(self+tc_next_char), = c store;
*(self+tc_next_char_type), = type store;
return type retv;

}

fn tc_read_integer(self) {
let type = *(self+tc_next_char_type);
let v = 0;
:step2while type, == TC_INTEGER ifne step5;{
v = v * 10 + (*(self+tc_next_char) - '0') set v;
type = tc_read_char(self) set type;

goto step2;}
:step5*(self+tc_next_token_data), = v store;
return TC_INTEGER retv;
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}

fn tc_read_quoted_char(self) {
tc_read_char(self) pop;
let value = *(self+tc_next_char);
if value, < 32 iflt not_printable;|| value, >= 127 iflt printable;{ :not ≀

≀_printablepanic(11); }
:printableif tc_read_char(self), != ''' ifeq ok;{ panic(12); }
:oktc_read_char(self) pop;
*(self+tc_next_token_data), = value store;
return TC_INTEGER retv;

}

fn tc_read_identifier(self) {
let start = *(self+tc_src);
let type = *(self+tc_next_char_type);
:step2while type, == TC_IDENTIFIER ifeq step3;|| type, == TC_INTEGER ifn ≀

≀e step4;{
:step3type = tc_read_char(self) set type;

goto step2;}
:step4let length = *(self+tc_src) - start;
*(self+tc_next_token_data), = start store;
*(self+tc_next_token_length), = length store;
return tc_get_keyword(start, length) retv;

}

The next function implements the algorithm in Section 18.2.1. Note that, since the
OPERATORS table is stored one column after the other, the value of its (column, row)
cell is the byte at address OPERATORS+3.column + row . We then call this function
in tc_read_token, if the character type is between 10 and 20 (we only use types 10
to 15, but reserve 5 more for future use):

fn tc_read_operator(self, first_char_type) {
let second_char_type = tc_read_char(self);
let index = 3 * (first_char_type - 10);
if second_char_type, == first_char_type ifne step1;{
tc_read_char(self) pop;
index = index + 1 set index;

goto end;} else :step1if *(self+tc_next_char), == '=' ifne end;{
tc_read_char(self) pop;
index = index + 2 set index;

}
:endreturn load8(TC_OPERATORS + index) retv;

}

fn tc_read_token(self) {
let type = *(self+tc_next_char_type);
:step1while type, == ' ' ifne step3;{
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type = tc_read_char(self) set type;
goto step1;}
:step3let token = type;
if type, == TC_INTEGER ifne step4;{
token = tc_read_integer(self) set token;

goto end;} else :step4if type, == ''' ifne step5;{
token = tc_read_quoted_char(self) set token;

goto end;} else :step5if type, == TC_IDENTIFIER ifne step6;{
token = tc_read_identifier(self) set token;

goto end;} else :step6if type, >= 10 iflt step7;&& type, < 20 ifge step7 ≀
≀;{

token = tc_read_operator(self, type) set token;
goto end;} else :step7if type, != 0 ifeq end;{

tc_read_char(self) pop;
}
:end*(self+tc_next_token), = token store;
retreturn;

}

18.3.3 Backend
The backend is extended with new functions to write the new opcode instructions
needed by the parser. Its first functions are the same as in the expressions compiler:
fn mem_allocate(size, ptr_p) {

let ptr = *ptr_p;
*ptr_p, = ptr + size store;
return ptr retv;

}
fn tc_write8(self, value) {

store8(mem_allocate(1, self+tc_dst), value);
retreturn;

}
fn tc_write16(self, value) {

store16(mem_allocate(2, self+tc_dst), value);
retreturn;

}
fn tc_write32(self, value) {

*mem_allocate(4, self+tc_dst), = value store;
retreturn;

}
fn tc_write_insn(self, opcode, argument) {

tc_write8(self, opcode);
tc_write8(self, argument);
retreturn;

}

The tc_add_placeholder function is updated to write the placeholder instead of
just returning its value, and is renamed accordingly. The next function is unchanged. A
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new tc_fill_label_placeholders function fills the placeholders in the list starting
at placeholder , with the current instruction offset dst − fn_dst as value:
fn tc_write_placeholder(self, placeholder_p) {

let new_placeholder = *(self+tc_dst);
let last_placeholder = *placeholder_p;
*placeholder_p, = new_placeholder store;
if last_placeholder, == 0 ifne step4;{ last_placeholder = new_placeholde ≀

≀r set last_placeholder; }
:step4tc_write16(self, new_placeholder - last_placeholder);
retreturn;

}
fn tc_fill_placeholders(placeholder, value) {

let offset = 0;
:step2while placeholder, != 0 ifeq end;{
:step3offset = load16(placeholder) set offset;
store16(placeholder, value);
if offset, == 0 ifne step6;{ retbreak; }
:step6placeholder = placeholder - offset set placeholder;

goto step2;}
:endretreturn;

}
fn tc_fill_label_placeholders(self, placeholder) {

tc_fill_placeholders(placeholder, *(self+tc_dst) - *(self+tc_fn_dst));
retreturn;

}

The remaining functions write bytecode instructions and encapsulate the details
of their encoding. We only comment the new ones which are not completely trivial.
fn tc_write_cst_insn(self, value) {

if value, <= 1 ifgt not0_or_1;{
tc_write8(self, value);

ret;} else :not0_or_1if value, < 256 ifge not_byte;{
tc_write_insn(self, 2, value);

ret;} else :not_byte{
tc_write8(self, 3);
tc_write32(self, value);

}
retreturn;

}

The next function writes the instruction to push on the stack the final address of
some static data. This is its dst address minus flash_offset .
fn tc_write_static_insn(self, dst) {

tc_write_cst_insn(self, dst - *(self+tc_flash_offset));
retreturn;

}
fn tc_write_binary_insn(self, token) {
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tc_write8(self, token);
retreturn;

}

In the following function, token must be between TC_LT and TC_GE (included).
The next two functions write a goto instruction for a forward or backward jump.
fn tc_write_jump_insn(self, token, placeholder_p) {

tc_write8(self, token);
tc_write_placeholder(self, placeholder_p);
retreturn;

}
fn tc_write_goto_insn(self, placeholder_p) {

tc_write_jump_insn(self, 18, placeholder_p);
retreturn;

}
fn tc_write_loop_insn(self, loop_dst) {

tc_write8(self, 18);
tc_write16(self, loop_dst - *(self+tc_fn_dst));
retreturn;

}
fn tc_write_load_insn(self) {

tc_write8(self, 19);
retreturn;

}

The next function erases the last written instruction, supposed to be a load. It is
used for the algorithm in Section 18.2.2.
fn tc_erase_load_insn(self) {

*(self+tc_dst), = *(self+tc_dst) - 1 store;
retreturn;

}
fn tc_write_store_insn(self) {

tc_write8(self, 20);
retreturn;

}
fn tc_write_ptr_insn(self, variable) {

tc_write_insn(self, 21, variable);
retreturn;

}
fn tc_write_get_insn(self, variable) {

tc_write_insn(self, 22, variable);
retreturn;

}

Similarly, the following function erases the last written instruction, supposed to be
a get. It returns the argument of this instruction.
fn tc_erase_get_insn(self) {

let dst = *(self+tc_dst);
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*(self+tc_dst), = dst - 2 store;
return load8(dst - 1) retv;

}
fn tc_write_set_insn(self, variable) {

tc_write_insn(self, 23, variable);
retreturn;

}
fn tc_write_pop_insn(self) {

tc_write8(self, 24);
retreturn;

}
fn tc_write_fn_insn(self, arity) {

tc_write_insn(self, 25, arity);
retreturn;

}
fn tc_get_fn_value(self, fn_dst) {

return fn_dst - *(self+tc_flash_offset) - 786432 retv;
}
fn tc_write_call_insn(self, function) {

tc_write8(self, 26);
if *(function+sym_kind), == SYM_FORWARD_FN ifne resolved;{
tc_write_placeholder(self, function+sym_value);

ret;} else :resolved{
tc_write16(self, *(function+sym_value));

}
retreturn;

}
fn tc_write_return_insn(self) {

tc_write8(self, 30);
retreturn;

}

18.3.4 Parser
The parser starts with the same utility functions as before, mostly unchanged (we
rename tc_add_or_resolve_symbol to tc_add_or_resolve_fn_symbol since it
is now only used for functions).

fn sym_lookup(symbol, name, length) {
:step2while symbol, != 0 ifeq step7;{
if *(symbol+sym_length), == length ifne step6;&&

mem_compare(*(symbol+sym_name), name, length), == 0 ifne step6;{
return symbol retv;

}
:step6symbol = *(symbol+sym_next) set symbol;

goto step2;}
:step7return 0 retv;
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}

fn tc_add_symbol(self, name, length, kind, value) {
let symbol = mem_allocate(sizeof_symbol, self+tc_heap);
if sym_lookup(*(self+tc_symbols), name, length), != 0 ifeq ok;{ panic(30 ≀

≀); }
:ok*(symbol+sym_name), = name store;
*(symbol+sym_length), = length store;
*(symbol+sym_kind), = kind store;
*(symbol+sym_value), = value store;
*(symbol+sym_next), = *(self+tc_symbols) store;
*(self+tc_symbols), = symbol store;
return symbol retv;

}

fn tc_add_or_resolve_fn_symbol(self, name, length, value) {
let symbol = sym_lookup(*(self+tc_symbols), name, length);
if symbol, == 0 ifne found;{
return tc_add_symbol(self, name, length, SYM_FN, value) retv;

}
:foundif *(symbol+sym_kind), != SYM_FORWARD_FN ifeq ok;{ panic(31); }
:oktc_fill_placeholders(*(symbol+sym_value), value);
*(symbol+sym_kind), = SYM_FN store;
*(symbol+sym_value), = value store;
return symbol retv;

}

fn tc_parse_token(self, token) {
if *(self+tc_next_token), != token ifeq ok;{ panic(20); }
:oktc_read_token(self);
retreturn;

}

fn tc_parse_integer(self) {
if *(self+tc_next_token), != TC_INTEGER ifeq ok;{ panic(21); }
:oklet value = *(self+tc_next_token_data);
tc_read_token(self);
return value retv;

}

fn tc_parse_identifier(self, length_p) {
if *(self+tc_next_token), != TC_IDENTIFIER ifeq ok;{ panic(22); }
:oklet name = *(self+tc_next_token_data);
*length_p, = *(self+tc_next_token_length) store;
tc_read_token(self);
return name retv;

}
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fn tc_parse_symbol(self, symbol) {
let length = 0;
let name = tc_parse_identifier(self, &length);
symbol = sym_lookup(symbol, name, length) set symbol;
if symbol, == 0 ifne ok;{ panic(33); }
:okreturn symbol retv;

}

The tc_parse_const and tc_parse_static functions are updated in a trivial
way to match the new “const” and “static” rules (and to use the new CONST and STATIC
symbol kinds).

fn tc_parse_const(self) {
tc_parse_token(self, TC_CONST);
let length = 0;
let name = tc_parse_identifier(self, &length);
tc_parse_token(self, '=');
tc_add_symbol(self, name, length, SYM_CONST, tc_parse_integer(self)) pop;
tc_parse_token(self, ';');
retreturn;

}
fn tc_parse_static(self) {

tc_parse_token(self, TC_STATIC);
let length = 0;
let name = tc_parse_identifier(self, &length);
tc_add_symbol(self, name, length, SYM_STATIC, *(self+tc_dst)) pop;
tc_parse_token(self, '=');
tc_parse_token(self, '[');
tc_write8(self, tc_parse_integer(self));
:loopwhile *(self+tc_next_token), == ',' ifne end;{
tc_read_token(self);
tc_write8(self, tc_parse_integer(self));

goto loop;}
:endtc_parse_token(self, ']');
tc_parse_token(self, ';');
retreturn;

}

Here we delete the old tc_parse_argument and tc_parse_label functions, and
add constants for the possible origin of the value of an expression (see Section 18.2.2).
We update the next function to test the symbol kind in a better way, and to return
OTHER (note also the pop instructions, since tc_parse_expr now returns an origin):

const FROM_ADDRESS = 0;
const FROM_VARIABLE = 1;
const FROM_OTHER = 255;

fn tc_parse_expr(self);
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fn tc_parse_fn_arguments(self, function) {
if *(function+sym_kind), != SYM_FN ifeq ok;&& *(function+sym_kind), != S ≀

≀YM_FORWARD_FN ifeq ok;{
panic(34);

}
:oktc_parse_token(self, '(');
if *(self+tc_next_token), != ')' ifeq end;{
tc_parse_expr(self) pop;
:loopwhile *(self+tc_next_token), == ',' ifne end;{

tc_read_token(self);
tc_parse_expr(self) pop;

goto loop;}
}
:endtc_parse_token(self, ')');
tc_write_call_insn(self, function);
return FROM_OTHER retv;

}

Parsing a primitive expression is done as before, but we must now return the origin
of the expression value. This is VARIABLE for symbols referring to function parameter
or local variable names, OTHER for const and static symbols or integer constants,
or the origin returned by the function called to handle the other cases.
fn tc_parse_primitive_expr(self) {

let origin = FROM_OTHER;
let symbol = 0;
if *(self+tc_next_token), == TC_INTEGER ifne not_integer;{

tc_write_cst_insn(self, tc_parse_integer(self));
goto end;} else :not_integerif *(self+tc_next_token), == TC_IDENTIFIER i ≀

≀fne parentheses;{
symbol = tc_parse_symbol(self, *(self+tc_symbols)) set symbol;
if *(self+tc_next_token), == '(' ifne identifier;{

origin = tc_parse_fn_arguments(self, symbol) set origin;
goto end;} else :identifier{

if *(symbol+sym_kind), == SYM_VARIABLE ifne not_variable;{
tc_write_get_insn(self, *(symbol+sym_value));
origin = FROM_VARIABLE set origin;

goto end;} else :not_variableif *(symbol+sym_kind), == SYM_CONST ifn ≀
≀e not_const;{

tc_write_cst_insn(self, *(symbol+sym_value));
goto end;} else :not_constif *(symbol+sym_kind), == SYM_STATIC ifne ≀

≀error;{
tc_write_static_insn(self, *(symbol+sym_value));

goto end;} else :error{
panic(35);

}
}

} else :parentheses{
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tc_parse_token(self, '(');
origin = tc_parse_expr(self) set origin;
tc_parse_token(self, ')');

}
:endreturn origin retv;

}

Similarly, parsing a pointer expression is unchanged, but we must now return
ADDRESS for dereference expressions “*e” and OTHER for address-of expressions “&x”:

fn tc_parse_pointer_expr(self) {
let symbol = 0;
if *(self+tc_next_token), == TC_MUL ifne not_mul;{

tc_read_token(self);
tc_parse_pointer_expr(self) pop;
tc_write_load_insn(self);
return FROM_ADDRESS retv;

} else :not_mulif *(self+tc_next_token), == TC_BIT_AND ifne not_bit_and; ≀
≀{

tc_read_token(self);
symbol = tc_parse_symbol(self, *(self+tc_symbols)) set symbol;
if *(symbol+sym_kind), == SYM_VARIABLE ifne error;{

tc_write_ptr_insn(self, *(symbol+sym_value));
goto end;} else :error{

panic(36);
}

} else :not_bit_and{
return tc_parse_primitive_expr(self) retv;

}
:endreturn FROM_OTHER retv;

}

The remaining expression parsing functions are also updated to return the correct
origin. This is done with the same method for all of them: the origin of an expression
e1 op e2 op . . . en is the origin of e1 if n = 1, and OTHER otherwise. We also add a
new function to parse shift expressions, very similar to the others:

fn tc_parse_mult_expr(self) {
let origin = tc_parse_pointer_expr(self);
let next_token = *(self+tc_next_token);
:loopwhile next_token, == TC_MUL ifeq mul_or_div;|| next_token, == TC_DI ≀

≀V ifne end;{
:mul_or_divtc_read_token(self);
tc_parse_pointer_expr(self) pop;
origin = FROM_OTHER set origin;
tc_write_binary_insn(self, next_token);
next_token = *(self+tc_next_token) set next_token;

goto loop;}
:endreturn origin retv;
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}

fn tc_parse_add_expr(self) {
let origin = tc_parse_mult_expr(self);
let next_token = *(self+tc_next_token);
:loopwhile next_token, == TC_ADD ifeq add_or_sub;|| next_token, == TC_SU ≀

≀B ifne end;{
:add_or_subtc_read_token(self);
tc_parse_mult_expr(self) pop;
origin = FROM_OTHER set origin;
tc_write_binary_insn(self, next_token);
next_token = *(self+tc_next_token) set next_token;

goto loop;}
:endreturn origin retv;

}

fn tc_parse_shift_expr(self) {
let origin = tc_parse_add_expr(self);
let next_token = *(self+tc_next_token);
if next_token, == TC_SHIFT_LEFT ifeq shift;|| next_token, == TC_SHIFT_RI ≀

≀GHT ifne end;{
:shifttc_read_token(self);
tc_parse_add_expr(self) pop;
origin = FROM_OTHER set origin;
tc_write_binary_insn(self, next_token);

}
:endreturn origin retv;

}

fn tc_parse_bit_and_expr(self) {
let origin = tc_parse_shift_expr(self);
:loopwhile *(self+tc_next_token), == TC_BIT_AND ifne end;{

tc_read_token(self);
tc_parse_shift_expr(self) pop;
origin = FROM_OTHER set origin;
tc_write_binary_insn(self, TC_BIT_AND);

goto loop;}
:endreturn origin retv;

}

fn tc_parse_expr(self) {
let origin = tc_parse_bit_and_expr(self);
:loopwhile *(self+tc_next_token), == TC_BIT_OR ifne end;{

tc_read_token(self);
tc_parse_bit_and_expr(self) pop;
origin = FROM_OTHER set origin;
tc_write_binary_insn(self, TC_BIT_OR);
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goto loop;}
:endreturn origin retv;

}

The following functions are the main new part of the compiler. They implement
the grammar rules for statements and for the new boolean expressions, as described in
Section 18.2.2. Parsing a comparison expression is simple: we just need to parse the
two subexpressions, check that the token in between is actually a comparison operator,
and return it:
fn tc_parse_comparison_expr(self) {

tc_parse_expr(self) pop;
let token = *(self+tc_next_token);
if token, < TC_LT iflt error;|| token, > TC_GE ifle ok;{ :errorpanic(25) ≀

≀; }
:oktc_read_token(self);
tc_parse_expr(self) pop;
return token retv;

}

As explained in Section 18.2.2, the function parsing a conjunction c1 && c2
&& . . . cn takes as parameter the label where to jump if this expression is false.
This parameter is actually the address of some local variable containing the label’s
list of placeholders. It is named else_refs_p for brevity (for “pointer to a list of
placeholders for forward references to an else label”). In order to generate a jump
to this label when each ci except the last is false, we write a jump instruction for the
opposite operator of ci when a “&&” token is read. Note that the opposite operators of
”<”, ”==”, ”>”, ”<=”, ”!=”, and ”>=” are the same operators in reverse order. Since
their token value, equal to their opcode, are 12, 13, 14, 15, 16, and 17, respectively,
the opposite of token is simply 12 + 17− token . This gives the following function,
returning cn’s token:
fn tc_parse_and_expr(self, else_refs_p) {

let token = tc_parse_comparison_expr(self);
:loopwhile *(self+tc_next_token), == TC_AND ifne end;{
tc_read_token(self);
tc_write_jump_insn(self, TC_LT + TC_GE - token, else_refs_p);
token = tc_parse_comparison_expr(self) set token;

goto loop;}
:endreturn token retv;

}

The function parsing a disjunction c1 || c2 || . . . cn works in a similar way. It
is a bit longer because it creates a label li where each ci should jump if false, in the
else_refs local variable. Resetting this variable to 0 in the loop effectively discards
li, no longer needed, and “creates” li+1. Returning this variable at the end returns ln,
as described in Section 18.2.2:
fn tc_parse_boolean_expr(self, then_refs_p) {

let else_refs = 0;
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let token = tc_parse_and_expr(self, &else_refs);
:loopwhile *(self+tc_next_token), == TC_OR ifne end;{
tc_read_token(self);
tc_write_jump_insn(self, token, then_refs_p);
tc_fill_label_placeholders(self, else_refs);
else_refs = 0 set else_refs;
token = tc_parse_and_expr(self, &else_refs) set token;

goto loop;}
:endtc_write_jump_insn(self, TC_LT + TC_GE - token, &else_refs);
return else_refs retv;

}

We can now implement the functions parsing statements, one for each grammar
rule. We implement them in reverse order, starting with “block_stmt”. This rule
uses “stmt” but since tc_parse_stmt is implemented last, we need to declare it first.
The tc_parse_stmt function takes as parameter the label where any nested “break”
statement should jump. It is equal to 0 when parsing a statement which is not inside a
loop. Like all the statement parsing functions, it returns one of the following constants:
const END_UNREACHABLE = 0;
const END_REACHABLE = 1;

fn tc_parse_stmt(self, break_refs_p);

Parsing a “{ s1; . . . sn; }” block is very simple. As described in Section 18.2.2,
we return an error if any si is unreachable, and return the reachability of sn’s end:
fn tc_parse_block_stmt(self, break_refs_p) {

let state = END_REACHABLE;
tc_parse_token(self, '{');
:loopwhile *(self+tc_next_token), != '}' ifeq end;{
if state, == END_UNREACHABLE ifne ok;{ panic(37); }
:okstate = tc_parse_stmt(self, break_refs_p) set state;

goto loop;}
:endtc_read_token(self);
return state retv;

}

The following function parses and compiles the right hand side of an assignment
statement. As described in Section 18.2.2, it detects invalid assignments, erases the
unwanted code written while compiling the left hand side, compiles the right hand
side, and finally writes the correct assignment instruction:
fn tc_parse_assignment(self, origin) {

let location = 0;
if origin, == FROM_ADDRESS ifne not_address;{
tc_erase_load_insn(self);

goto ok;} else :not_addressif origin, == FROM_VARIABLE ifne error;{
location = tc_erase_get_insn(self) set location;

goto ok;} else :error{
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panic(38);
}
:oktc_parse_token(self, '=');
tc_parse_expr(self) pop;
if origin, == FROM_ADDRESS ifne variable;{
tc_write_store_insn(self);

goto end;} else :variable{
tc_write_set_insn(self, location);

}
:endreturn END_REACHABLE retv;

}

With this function, parsing an expression or assignment statement is simple.
Parsing a return or a break statement is simple too. As explained in Section 18.1.2,
a “return;” is actually compiled as a “return 0;” so that all expressions return a
value (the pop instruction written below with tc_write_pop_insn requires this):
fn tc_parse_expr_or_assign_stmt(self) {

let origin = tc_parse_expr(self);
if *(self+tc_next_token), == '=' ifne not_assign;{
tc_parse_assignment(self, origin) pop;

goto end;} else :not_assign{
tc_write_pop_insn(self);

}
:endtc_parse_token(self, ';');
return END_REACHABLE retv;

}

fn tc_parse_return_stmt(self) {
tc_parse_token(self, TC_RETURN);
if *(self+tc_next_token), == ';' ifne not_semicolon;{
tc_write_cst_insn(self, 0);

goto end;} else :not_semicolon{
tc_parse_expr(self) pop;

}
:endtc_parse_token(self, ';');
tc_write_return_insn(self);
return END_UNREACHABLE retv;

}

fn tc_parse_break_stmt(self, break_refs_p) {
tc_parse_token(self, TC_BREAK);
tc_parse_token(self, ';');
tc_write_goto_insn(self, break_refs_p);
return END_UNREACHABLE retv;

}

The next function parses a “while” or “loop” statement (the caller must make
sure that the next token is either “while” or “loop”). It does this with two body and
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end labels managed as described in Section 18.2.2. Note that the end label is passed
as a breaks_refs argument to parse the loop’s body, since this is where “break”
statement inside this loop should jump. The end of a “loop” is unreachable if its body
does not contain a “break”, which is the case if the end label has no placeholder.
fn tc_parse_while_or_loop_stmt(self) {

let loop_dst = *(self+tc_dst);
let body_refs = 0;
let end_refs = 0;
let token = *(self+tc_next_token);
tc_read_token(self);
if token, == TC_WHILE ifne body;{
end_refs = tc_parse_boolean_expr(self, &body_refs) set end_refs;

}
:bodytc_fill_label_placeholders(self, body_refs);
tc_parse_block_stmt(self, &end_refs) pop;
tc_write_loop_insn(self, loop_dst);
:end_iftc_fill_label_placeholders(self, end_refs);
if token, == TC_LOOP ifne end;&& end_refs, == 0 ifne end;{ return END_UN ≀

≀REACHABLE retv; }
:endreturn END_REACHABLE retv;

}

Similary, parsing an “if” statement is done with 3 then , else , and end labels man-
aged as described in Section 18.2.2. The “state = state | . . .” pattern ensures the
reachability rule for “if” statements (cf. Section 18.2.2) because END_UNREACHABLE
and END_REACHABLE are 0 and 1, respectively.
fn tc_parse_if_stmt(self, break_refs_p) {

tc_parse_token(self, TC_IF);
let then_refs = 0;
let else_refs = tc_parse_boolean_expr(self, &then_refs);
tc_fill_label_placeholders(self, then_refs);
let state = tc_parse_block_stmt(self, break_refs_p);
let end_if_refs = 0;
if *(self+tc_next_token), == TC_ELSE ifne not_else;{
tc_read_token(self);
if state, == END_REACHABLE ifne else;{

tc_write_goto_insn(self, &end_if_refs);
}
:elsetc_fill_label_placeholders(self, else_refs);
if *(self+tc_next_token), == '{' ifne not_block;{

state = state | tc_parse_block_stmt(self, break_refs_p) set state;
goto end_if;} else :not_block{

state = state | tc_parse_if_stmt(self, break_refs_p) set state;
}
:end_iftc_fill_label_placeholders(self, end_if_refs);

goto end;} else :not_else{
tc_fill_label_placeholders(self, else_refs);
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state = END_REACHABLE set state;
}
:endreturn state retv;

}

Finally, parsing an arbitrary statement is done by calling one of the above functions,
depending on the next token value:

fn tc_parse_stmt(self, break_refs_p) {
if *(self+tc_next_token), == TC_IF ifne step2;{
return tc_parse_if_stmt(self, break_refs_p) retv;

} else :step2if *(self+tc_next_token), == TC_WHILE ifne step3;{
return tc_parse_while_or_loop_stmt(self) retv;

} else :step3if *(self+tc_next_token), == TC_LOOP ifne step4;{
return tc_parse_while_or_loop_stmt(self) retv;

} else :step4if *(self+tc_next_token), == TC_BREAK ifne step6;{
if break_refs_p, == 0 ifne ok;{ panic(39); }
:okreturn tc_parse_break_stmt(self, break_refs_p) retv;

} else :step6if *(self+tc_next_token), == TC_RETURN ifne end;{
return tc_parse_return_stmt(self) retv;

}
:endreturn tc_parse_expr_or_assign_stmt(self) retv;

}

The next 3 functions are essentially unchanged compared with the expressions
compiler, besides an additional call in tc_parse_let_stmt to parse the “=” token
now required after the identifier:

fn tc_parse_let_stmt(self, variable) {
tc_parse_token(self, TC_LET);
let length = 0;
let name = tc_parse_identifier(self, &length);
tc_parse_token(self, '=');
tc_parse_expr(self) pop;
tc_parse_token(self, ';');
tc_add_symbol(self, name, length, SYM_VARIABLE, variable) pop;
return variable + 1 retv;

}

fn tc_parse_fn_name(self) {
let length = 0;
let name = tc_parse_identifier(self, &length);
let fn_dst = *(self+tc_dst);
*(self+tc_fn_dst), = fn_dst store;
let value = tc_get_fn_value(self, fn_dst);
return tc_add_or_resolve_fn_symbol(self, name, length, value) retv;

}

fn tc_parse_fn_parameters(self) {
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let i = 0;
let name = 0;
let length = 0;
tc_parse_token(self, '(');
:loopwhile *(self+tc_next_token), != ')' ifeq end;{
if i, > 0 ifle identifier;{ tc_parse_token(self, ','); }
:identifiername = tc_parse_identifier(self, &length) set name;
tc_add_symbol(self, name, length, SYM_VARIABLE, i) pop;
i = i + 1 set i;

goto loop;}
:endtc_read_token(self);
return i retv;

}

The function to parse a function body is extended to allow “let” statements, as
defined by the new “fn_body” rule. It is also updated to check that all the statements
are reachable, and to return an error if the end of the last one might be reachable.

fn tc_parse_fn_body(self, function, arity) {
if *(self+tc_next_token), == ';' ifne body;{
tc_read_token(self);
*(function+sym_kind), = SYM_FORWARD_FN store;
*(function+sym_value), = 0 store;
retreturn;

}
:bodytc_parse_token(self, '{');
tc_write_fn_insn(self, arity);
let next_variable = arity + 4;
let state = END_REACHABLE;
:loopwhile *(self+tc_next_token), != '}' ifeq end;{
if state, == END_UNREACHABLE ifne ok;{ panic(40); }
:okif *(self+tc_next_token), == TC_LET ifne stmt;{

next_variable = tc_parse_let_stmt(self, next_variable) set next_vari ≀
≀able;

goto loop;} else :stmt{
state = tc_parse_stmt(self, 0) set state;

}
goto loop;}
:endif state, == END_REACHABLE ifne valid;{ panic(41); }
:validtc_read_token(self);
retreturn;

}

The next function is unchanged, but is no longer called from tc_parse_fn,
otherwise unchanged too, since programs no longer use labels. tc_parse_program
is also unchanged.

fn tc_check_symbols(symbol, end_symbol) {
:loopwhile symbol, != end_symbol ifeq end;{
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if *(symbol+sym_kind), == SYM_FORWARD_FN ifne next;{ panic(32); }
:nextsymbol = *(symbol+sym_next) set symbol;

goto loop;}
:endretreturn;

}

fn tc_parse_fn(self) {
tc_parse_token(self, TC_FN);
let function = tc_parse_fn_name(self);
let heap = *(self+tc_heap);
let symbols = *(self+tc_symbols);
let arity = tc_parse_fn_parameters(self);
tc_parse_fn_body(self, function, arity);
*(self+tc_symbols), = symbols store;
*(self+tc_heap), = heap store;
retreturn;

}

fn tc_parse_program(self) {
:looploop {
if *(self+tc_next_token), == TC_FN ifne not_fn;{

tc_parse_fn(self);
goto loop;} else :not_fnif *(self+tc_next_token), == TC_STATIC ifne no ≀

≀t_static;{
tc_parse_static(self);

goto loop;} else :not_staticif *(self+tc_next_token), == TC_CONST ifne ≀
≀ end;{

tc_parse_const(self);
goto loop;} else :end{

if *(self+tc_next_token), != 0 ifeq ok;{ panic(23); }
:oktc_check_symbols(*(self+tc_symbols), 0);
retreturn;

}
}

}

Finally, the tc_main function is refactored to store the compiler variables between
the dst buffer and the heap (instead of on the stack). The advantage of this method is
that we can skip the initialization of the variables which don’t need to be.
fn tc_main(src_buffer, dst_buffer, flash_buffer) {

let error = 0;
let compiler = dst_buffer + 12288;
*(compiler+tc_src), = src_buffer + 3 store;
*(compiler+tc_src_end), = src_buffer + 4 + *src_buffer store;
*(compiler+tc_dst), = dst_buffer + 4 store;
*(compiler+tc_heap), = compiler + sizeof_compiler store;
*(compiler+tc_symbols), = 0 store;
*(compiler+tc_flash_offset), = dst_buffer - flash_buffer store;
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let panic3 = 0;
let panic2 = 0;
let panic1 = 0;
let panic0 = 0;
error = panic_result(&panic0) set error;
if error, != 0 ifeq ok;{
*dst_buffer, = *(compiler+tc_src) - src_buffer - 4 store;
return error retv;

}
:oktc_read_char(compiler) pop;
tc_read_token(compiler);
tc_parse_program(compiler);
*dst_buffer, = *(compiler+tc_dst) - dst_buffer - 4 store;
return 0 retv;

}

18.4 Compilation and tests
To compile the above source code proceed as follows (see also Figure 16.4).

Edit v1 In the command editor, type “F3”+“r” and “F4”+“r” to load and edit the
current compiler version. Then update it to the 1st version of the statements compiler.
For convenience, we also provide this code in the statements_compiler_v1.txt
file in https://ebruneton.github.io/toypc/sources.zip. When you are done, exit the text
editor and type “F5”+“r” to save your work. Alternatively, you can “cheat” by running
the following command on an external computer (see Section 16.4 for more details):
user@host:~$ python3 flash_helper.py < part3/statements_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed.
If all goes well, after about 3 seconds, you should get a result equal to 0 (meaning
that no error was found). If this is not the case use Appendix D to get the error code
meaning, fix this error, save the program and compile it again. Repeat this process
until the compilation is successful. Then type “F7”+“r” to save the result.

Test v1 Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the
following small test program, which computes the factorial of 6:
fn factorial(n);
fn test() { return factorial(6); }
fn factorial(n) {

if n == 0 { return 1; }
return factorial(n - 1) * n;

}

Then type “F9”+“r” to run it. If the result is not 720 = 2D016 this means that the
compiler is wrong. In this case, type “F8”+“r” to restore the expressions compiler.
Then repeat the previous steps and double check everything until this test passes.
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FIGURE 18.2 The memory content after each command in the “Compile v2” and “Test
v2” steps. White, blue and gray areas represent source code, bytecode and unused
memory, respectively (not to scale). See also Figure 16.4.

Edit v2 Type “F3”+“r” to load the 1st version of the statements compiler and “F4”+“r”
to edit it. Then update it to the 2nd version. For convenience, we also provide this
code in the statements_compiler_v2.txt file. Then save this new version with the
F5 command. Alternatively, run the following command on an external computer:
user@host:~$ python3 flash_helper.py < part3/statements_compiler_v2.txt

Compile v2 Type“F6”+“r” to compile this new code. The result should be 0, meaning
“no error”. If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all
errors are fixed.

Test v2 Unlike in the previous chapters, the compiled code of the 2nd version of the
statements compiler is not identical to that of the 1st version. One reason, in particular,
is that we used both ret and retv instructions in the 1st version, but the statements
compiler only produces retv instructions for return statements (see Section 18.1.2).

However, the two versions should produce the same compiled code for the same
input program, since they are supposed to be functionally equivalent. We can thus
use this property to test the 2nd version. For this we can use as input program the
2nd version itself (see Figure 18.2). We just compiled it with the 1st version in
the previous step. Type “F7”+“r” to store the result in flash memory. Then type
“F6”+“r” to compile the 2nd version with itself. At this stage we have the code of our
input program in flash memory (as compiled with the 1st version), and in RAM (as
compiled with the 2nd version). Type “F10”+“r” to compare them. The result should
be 0. If this is not the case, this means that the 2nd version is wrong1. Type “F8”+“r”
to restore the 1st version and repeat the steps from “Edit v2” until this test passes.

1It might also happen that the 1st version is wrong despite the “Test v1” step. In this case we are in
trouble because we no longer have any backup of the expressions compiler (which is necessary to retry the
“Compile v1” step). To avoid this we would need to do a backup of the backup compiler before “Test v2”.

314



19
CHAPTER

Types Compiler

We can now write programs in a simple syntax, and automatically obtain the corre-
sponding bytecode with our toy compiler. This avoids a lot of tedious and error-prone
manual tasks which would otherwise be needed to convert statements and expressions
into low level instructions, and to compute function addresses, instruction offsets,
or stack frame slot indices. However, many errors can still be made when writing
programs in our toy programming language. For instance, we may inadvertently use a
wrong number of arguments in a function call. We may also pass a pointer to some
value instead of the value itself, or vice versa. Or try to use the result of a function not
returning any value. This chapter extends our toy programming language so that our
compiler can detect the majority of these errors.

19.1 Requirements
19.1.1 Type declarations
The function parameters and local variables of our programs are all 32 bit values.
However, these values represent different things depending on each parameter and
local variable. For instance, a value can represent a character, a pointer to a character,
a pointer to a local variable itself storing a pointer to a character, etc. Other values
represent the address of a list of values, each with its own representation (e.g., in our
compiler, *(self+tc_src) is a pointer to a character, while *(self+tc_next_char)
is a character).

Passing a character to a function expecting a pointer to a character will almost
certainly lead to a crash. Storing a pointer to a character in a local variable representing
a character will likely have the same result. Unfortunately this kind of error can easily
happen if one forgets a “&” or “*” operator. And the compiler cannot detect them
since it does not “know” what each function parameter or local variable represents.
The solution is to “tell” it. For this we add a new requirement for our programming
language, namely a syntax to specify what a value represents, which is called its type.
We define one as follows.

The type of an integer value (such as a character, or a number of characters) is
noted “u32”, for “unsigned 32 bit value”. By analogy with the address-of operator “&”
the type of the address of an integer, i.e., of a pointer to an integer, is noted “&u32”.
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The type of a pointer to an integer pointer is noted “&&u32”. And so on. The type of a
list of values is defined with the syntax illustrated on the following example:

struct Symbol {
name: &u32,
length: u32,
next: &Symbol

}

This syntax defines a new type, here called Symbol. A value of this type is made of 3
consecutive words in memory, the first one representing an integer pointer, the second
one an integer, and the third one a pointer to a Symbol value. name, length and next
are called the fields of the Symbol data structure.

Thanks to this new syntax we can now require each function parameter and local
variable to declare its type, as illustrated in the following example:

fn load8(ptr: &u32) -> u32 { let value:u32 = (*ptr) & 255; return value; }

The new elements, in green, specify that load8 takes an integer pointer as parameter,
and returns an integer. They also specify that “value” represents an integer. Finally,
we require our compiler to use these declarations to keep track of the type of each
expression, and to check that they are correctly used. For instance, knowing that
ptr has type &u32, the compiler should deduce that *ptr, the value at address ptr,
has type u32. It should then confirm that combining it with the integer constant 255
and storing the result in value is valid. On the other hand, it should detect that
“load8(1)”, for instance, is incorrect, since it passes an integer to a function expecting
an integer pointer. We define these requirements in the next section.

Besides enabling the detection of more errors, the above requirements have two
additional benefits:

• Path expressions. So far we used structs without knowing it, with manually defined
constants such assym_length, used in expressions such as*(symbol+sym_length).
We can now replace this with a new “symbol.length” syntax and require the
compiler to compile it into the code corresponding to *(symbol+4). Like-
wise, we can replace *(symbol+sym_next)+sym_length with the new syntax
“&symbol.next.length” (a pointer to the length field of the symbol’s next sym-
bol). Indeed, it is easy to deduce, from the definition of Symbol, that name, length,
and next are offset by 0, 4, and 8 bytes, respectively, from the start of a symbol.
• Implicit return. Return type declarations, with the above “->” notation, enable the

compiler to check that return statements return values of the correct type. They
also enable it to check that functions without return type declaration, called void
functions, do not return any value. But we can go further by combining this with the
reachability analysis of the previous chapter. Indeed, we can require the compiler
to automatically generate a return; at the end of void functions, if it is missing.
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19.1.2 Type checking
We require our compiler to compute the type of an expression e, and whether it is
correct or not, as follows:

• if e is an INTEGER it is correct and has type u32.
• if e is an IDENTIFIER:

• referring to a const name: e is correct and has the constant’s declared type (we
require constants to declare their type with the “const X: type = x;” syntax).

• referring to a static name: e is correct and has type &u32.
• referring to a function parameter or a local variable: e is correct and has the

declared type of this parameter or variable.

• if e = e1.field: e1 must have a &S type, where S is a struct name, and field
must be a field of this struct. Then e’s type is the declared type of field.
• if e = *e1: e1 must have a pointer type &t, where t is a non-void type (see below).

Then e’s type is t, the type of the value at address e1.
• if e = &e1: e1 must have a non-void type t. Then e’s type is the pointer type &t.
• if e = e1*e2, e1/e2, e1<<e2, e1>>e2, e1&e2, or e1|e2: e1 and e2 must have type
u32, and e gets the same type.
• if e = f(e1, . . . , en): f must have n parameters, and e1, . . . , en must have the

declared type of these parameters. Then e’s type is the declared return type of f . If
f does not return any value, this type is the void type (for which there is no syntax).

Additions e1+e2 and subtractions e1-e2 are a special case. If e1 and e2 have type
u32 then e is correct and has the same type. But this is not the only valid case. If e1
has a pointer type &t and e2 has type u32 then e is correct too, and has type &t. This
allows expressions computing a pointer by adding a byte offset to another pointer,
such as TC_KEYWORDS+i (the address of the ith byte of TC_KEYWORDS). Finally, the
case where e1 and e2 have the same pointer type &t is also valid, for the subtraction
only. Then e has type u32. This allows expressions computing the offset in bytes
between two pointers.

The two sides of a comparison e1<e2, e1==e2, e1>e2, e1<=e2, e1!=e2, or e1>=e2
must have the same non-void type. This allows comparing integers but also addresses.
This rule also applies to the two sides of an assignment. Finally, as described above,
return statements must be consistent with the function’s return type.

With these rules the compiler can compute the type of any valid expression,
including the right hand side e of a “let x: t = e;” statement. It is therefore not
necessary to declare the type of a local variable, and it should be possible to omit
this declaration, as in “let x = e;”. In this case x’s “declared type” is e’s type.
However, if t is declared, then e’s type should be equal to it.

In some cases a value represents different things depending on the context. For
instance, in our compiler, the value of a SYM_CONST symbol is an integer, but the value
of a SYM_STATIC symbol is a pointer. To handle these cases we add a new “e as t”
syntax requirement. Such a cast expression has type t, whatever the type of e (provided
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it is not void). In the previous example, we can then declare the symbol’s value field
with type u32, and cast it to &u32 when dealing with a SYM_STATIC symbol.

In some other cases 0 is used as a special pointer value, for instance to represent
the end of a linked list or a “not found” symbol. The above rules no longer allow
this. For instance, passing 0 to a function expecting a Symbol pointer is incorrect.
A workaround is to use “0 as &Symbol” instead, but this is not really satisfactory.
Instead, we extend the above rules so that, anywhere an expression with a well-defined
pointer type is required, a new “null” keyword can be used instead. This expression,
compiled to cst_0, can thus be used in “f(null)” if f has a pointer parameter, “x !=
null” if x has a pointer type, “return null;” in a function returning a pointer, etc.
However, we do not allow “let x = null;” since this does not provide a well-defined
type for x (something like “let x: &u32 = null;” must be used instead).

Finally, in order to simplify the compiler, we add two important restrictions. The
first is that struct types must be defined before they can be used. The second is that
no function parameter, local variable or expression may have a struct type (only
struct pointer types are allowed). This ensures that any value still fits in a word, as
in the statements compiler.

19.1.3 Grammar
In order to support the above requirements we extend the grammar of our programming
language as follows (unchanged parts are in gray or not shown):

program: (fn | struct | static | const)* END
. . .
fn_parameters: “(” (IDENTIFIER “:” type (“,” IDENTIFIER “:” type)*)? “)”

(“->” type)?
fn_body: “{” (const | let_stmt | stmt)* “}” | “=” INTEGER “;” | “;”
let_stmt: “let” IDENTIFIER (“:” type)? “=” expr “;”
. . .
mult_expr: cast_expr ((“*” | “/”) cast_expr)*
cast_expr: pointer_expr (“as” type)?
pointer_expr: “*” pointer_expr | “&” path_expr | path_expr
path_expr: primitive_expr (“.” IDENTIFIER)*
primitive_expr: INTEGER | IDENTIFIER fn_arguments? | sizeof_expr | “null” |

“(” expr “)”
sizeof_expr: “sizeof” “(” IDENTIFIER “)”
fn_arguments: “(” (expr (“,” expr)*)? “)”
struct: “struct” IDENTIFIER

“{” (IDENTIFIER “:” type (“,” IDENTIFIER “:” type)*)? “}”
static: “static” IDENTIFIER “=” “[” INTEGER (“,” INTEGER)* “]” “;”
const: “const” IDENTIFIER “:” type “=” INTEGER ”;”
type: “&”* (“u32” | IDENTIFIER) ”;”
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The new “struct” and “type” rules correspond to type definitions. Expressions
rules are updated to allow cast expressions “e as t”, path expressions “e.f”, and
null expressions, but also a new “sizeof(S)” syntax. This expression evaluates to
the size in bytes of S, which must be a struct type name (the size of S is 4 times its
number of fields). The other rules are updated to take type declarations into account.

Note that the address-of operator “&” can now be followed by an arbitrary path
expression (previously only identifiers could be used). This allows valid expressions
such as “&symbol.next.length”. But this rule now also allows invalid expressions
such as “&1” or “&(1+2)” (numbers don’t have an address). As for assignments, the
compiler must then use another method than grammar rules to detect these errors.

Note also that two small changes unrelated to types are made in the “fn_body”
rule. The first one allows the definition of constants inside a function. We call them
local constants, because a constant defined in a function can only be used inside this
function. The second change allows an external function to be imported in a program.
For instance, “fn delay(millis: u32) = 651;” allows a program to call the delay
function at address C000016+651 (see Table 9.3).

Finally, we also require the possibility to add comments inside programs, anywhere
a space character is allowed. Comments must start with “/*” and end with “*/”, as in
“/* This is a comment. */”. The compiler must simply skip them, like spaces.

19.2 Algorithms
19.2.1 Scanner
The scanner must be updated to support the new keywords (“u32”, “struct”, etc) and
the new “.” and “->” tokens. It must also recognize comments and skip them, just
like spaces, tabs and “new line” characters are skipped.

Adding the new keywords is trivial. However, to introduce a very useful algorithm,
we define here a new method to find if an identifier x is equal to a keyword. The
current algorithm compares x with each keyword, one by one, until it finds a match or
all keywords have been tested. It thus takes more and more time, as new keywords are
added. In fact, if x has n characters we only need to compare it with the keywords
having n characters. Said otherwise, if length(x ) = n we only need to compare x
with the keywords k for which length(k) = n . And this applies to any function h
computing a number from an identifier. With a well chosen function, the keywords
verifying h(k) = h(x) can be reduced to at most one. Then we only need to compare
x with a single keyword at most, which is much faster than the current algorithm. In
practice h is called a hashing function, h(x) is called the hashcode of x, and the map
from keyword hashcodes h(k) to the list of keywords having this hashcode is called a
hash map or hash table.

In our compiler we compute h(x)with a similar method as the one used to compute
token values v and lsb(v) in Chapter 15. More precisely, for x=“cn−1 . . . c1c0”, we
initialize v to 0 and update v to 31v + ci for each character ci from left to right. We

319



CHAPTER 19 Types Compiler

then define h(x) as v modulo 64, also equal to v ∧ 63 or “v & 63”. With this choice
all our keywords have a unique hashcode, and we can store them in a table with 64
rows. The ith row is either empty, or contains the keyword k such that h(k) = i, and
its associated token value.

In order to support the new “->” token, that we associate with new token value
20, we extend the OPERATORS table with a new row and a new column, as follows:

1st character ! & < = > | -

CHAR_TYPES 10 11 12 13 14 15 16
any other case 1 and iflt ’=’ ifgt or sub

2nd character = 1st 1 18 lsl ifeq lsr 19 1
2nd character = = ifne 1 ifle ifeq ifge 1 1
2nd character = > 1 1 1 1 lsr 1 20

Finally, in order to read comments and skip them, we extend the loop reading and
skipping spacing characters in tc_read_token. If the next character is a “/”, this
loop now calls a new function which “looks ahead” at the second next character. If
it is a “*” this function reads and skips a comment. Otherwise, it returns without
reading any of these two characters, so that “/” is read as a normal token.

19.2.2 Backend
The only new grammar rules for which bytecode must be generated are the “null”,
“sizeof”, and path expression rules (including in address-of expressions). The first
two are trivial and can be compiled with the already existing tc_write_cst_insn
backend function. The third case is less simple. To simplify the compiler, we want to
compile all path expressions in the same way. As a consequence, when compiling
“&x”, for instance, compiling the path expression “x” produces a get instruction. To
get a ptr instruction instead, we use the same solution as for assignments: we erase
the last written instruction and write another instead (see Section 18.2.2). As for
assignments, this last instruction must either be a get (rewritten to ptr) or a load
(simply erased).

So far we reserved 12 KB in RAM for the code generated by the backend. Any
larger code would override the compiler’s variables and then the heap (see Figure 19.4),
which would most probably lead to a crash. To avoid this we add a new dst_limit
compiler variable, and we raise an error if any attempt is made to increase dst beyond
that. We also add a similar heap_limit variable for the heap.

19.2.3 Parser
Type declarations
In order to compute the type of each expression, and to check that all expressions have
a correct type, we first need a way to represent a type in memory. From the “type”
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struct Person {
parent: &Person,
name: &u32,
age: u32

}

"Person"
6

STRUCT
3

0

"parent"
6

FIELD
0

1

"age"
3

FIELD
2
0
0

"name"
4

FIELD
1
0
1

null

name
length

kind
value
type
dim
next

FIGURE 19.1 A struct with 3 fields, represented with 4 symbols. Symbols are rep-
resented more abstractly than in Figure 16.1 for clarity, but are actually stored one
after the other as in Figure 16.1, with name values pointing to the source code (left).

grammar rule we see that a type is made of some number n of “&”, followed either by
“u32” or by the name of a struct. Assuming for now that each struct name has an
associated symbol in the list of symbols (we define it below), this suggests a simple
way to represent a type t. Namely with two words, one storing n and the other being
either null (for u32) or a pointer to a symbol representing a struct. We call them the
dimension and the base type of t, respectively.

We can then store the declared type of a function parameter or of a local variable
by adding two new words in each symbol. Indeed, we already use one symbol per
parameter and local variable, storing their name and stack frame slot index. Hence,
storing their base type and dimension only requires two additional words. For brevity,
we note them type and dim, respectively.

The above discussion assumes that each struct name has an associated symbol.
This symbol should somehow contain an in-memory representation of each field of
the struct, including their name, type, and index. Indeed, this is needed to check and
compile a path expression such as “e.field”. First to check that field is indeed a
field of e, then to compute the type of this expression (equal to the field’s type), and
finally to produce the bytecode equivalent to *(e+4i) (where i is the field index). In
order to do this, we define the symbol of a struct as follows (see Figure 19.1):

• the symbol’s name is the struct name.
• the symbol’s kind is a new STRUCT kind value.
• the symbol’s value is the number of fields of the struct (this is used for sizeof).
• the symbol’s type is a list of symbols, one for each field, in reverse order1. Each

symbol contains a field name and has a new FIELD kind. Its value is the field index,
and its type and dim values are the base type and the dimension of the field’s
declared type.
• the symbol’s dim is unused and set to 0.

Currently our compiler uses one symbol per function, containing the function
name and the argument to use in call instructions to call it (or a list of placeholders).
This is not sufficient to check that a function is called with the correct number of

1This list should in theory be stored in the symbol’s value – a struct definition is a type, the type field is
thus here a “metatype”. In practice using the type field is easier because it avoids some casts.
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FIGURE 19.2 A “fn orphan(name: &u32, age: u32) -> &Person” function at address
C000016+a is represented with 4 symbols, for the function, its two parameters and
its return type (from left to right), linked in reverse order.

arguments, each with a correct type. Nor to compute the type of a function call
expression. In order to do this the symbol representing a function must contain an
in-memory representation of the parameter and return types of this function. To this
end, we store these types in the function’s symbol type, as follows (see Figure 19.2):

• the type of a function’s symbol is a symbol representing the function’s return type.
For functions returning a value it has a null name, a VARIABLE kind, a 0 value, and
its type and dim values are the base type and the dimension of the function’s return
type. For functions returning no value a new VOID kind is used instead; type and
dim are unused and set to 0.
• the next symbol of the above symbol is the start of a list of symbols, one per

function parameter, in reverse order. Each symbol contains a parameter name and
has the VARIABLE kind. Its value is the parameter index, and its type and dim
values are the base type and the dimension of the parameters’s declared type.

Type checking
We now have everything we need to compute the type of each expression, and to check
if it is correct or not. Each type checking rule in Section 19.1.2 can be implemented
in the corresponding expression parsing function. For instance, the rule stating that a
shift expression e=e1<<e2 is correct and has type u32 if and only if e1 and e2 have
type u32 can be implemented in the tc_parse_shift_expr function. For this we
could make each expression parsing function return the type of the parsed expression.
Then, for instance, tc_parse_shift_expr would get the types of e1 and e2 as a result
of parsing them with tc_parse_add_expr. Unfortunately, each expression parsing
function already returns a value, the origin of the expression’s value. And a function
cannot return several values. Our solution is to define a struct to store both the origin
and the type of a parsed expression, and to store these structs in a stack:

• we define a Value struct with an origin, a type and a dim field (storing the
origin of the expression value, and the base type and the dimension of its type,
respectively). We also add a slot field, used for expressions whose value comes
from a function parameter, a local variable, or a field. By definition, it contains the
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4
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0
0
0
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origin
slot
type
dim

2
6

...
24 SP
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heap

... ...

5

0

OTHER

FIGURE 19.3 Evaluating x<<y with x and y two local variables equal to 6 and 2 pushes
6, then 2, then pops 6 and 2 and pushes the result 6 ≪ 2 = 24 (left). Compiling it
pushes x’s Value on the heap, then y’s Value, pops these two values, checks them,
and pushes a result Value (right). Addresses increase towards the bottom.

dst_buffer heap_limitheap SPdst_limitdst

FIGURE 19.4 The compiler variables (in red) are between the compiled code (white)
and the heap in RAM. The heap contains global const, static, struct and fn symbols
(dark blue), local symbols (blue), and a stack of Values (light blue). Global symbols
are only added when there are no local symbols nor Values. Local symbols are only
added when the Value stack is empty. Unused memory is in gray. The native stack
and its Stack Pointer SP are shown on the right.

stack frame slot index of the function parameter or local variable, or the index of
the field in its struct.
• we store the Value struct data in the heap, after the symbols (see Figure 19.4), and

organize them in a stack. When the compiled code for an expression runs it uses the
“real” stack, managed with the Stack Pointer SP (see Section 7.2.3). For instance,
e1<<e2 pushes the value of e1, then the value of e2, pops these two values, and
pushes the result e1<<e2. We use a similar method for computing and checking the
type of expressions. For instance, we push the Value of e1 while compiling it with
tc_parse_add_expr, and do the same for e2. Then, in tc_parse_shift_expr,
we pop these two Values, check that their type is u32, and finally push a new Value
with the u32 type (see Figure 19.3).

null and void The null keyword is a special case in the type checking rules. To
handle it we define a new NULL origin value (this is easier than using a special type,
with some specific type and dim values). Similarly, we define a new VOID origin value
for expressions calling functions without return type. Compiling such an expression
pushes a Value with a VOID origin, unlike running the corresponding code (which
leaves the stack unchanged). This simplifies all the expression parsing functions,
which would otherwise have to check that the compilation of their subexpressions
produces as many values.
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19.3 Implementation
We can now extend the statements compiler in order to support types. As before,
we need to write it in two steps, first without using types, then with them. To save
space, we give the two compiler versions at the same time (without types in red, with
in green). The start of the compiler does not change in the 1st version, but can be
rewritten with types and implicit returns in the 2nd:

fn tc_main(src_buffer: &u32, dst_buffer: &u32, flash_buffer: &u32) -> u32;
fn main(src_buffer: &u32, dst_buffer: &u32, flash_buffer: &u32) -> u32 {
return tc_main(src_buffer, dst_buffer, flash_buffer);

}

fn load8(ptr: &u32) -> u32 { return (*ptr) & 255; }
fn load16(ptr: &u32) -> u32 { return (*ptr) & 65535; }
fn store8(ptr: &u32, value: u32) { *ptr = (*ptr) & 4294967040 | value; ret ≀

≀urn; }
fn store16(ptr: &u32, value: u32) { *ptr = (*ptr) & 4294901760 | value; re ≀

≀turn; }

const PANIC_BUFFER: &&u32 = 1074666152;
fn panic_copy(src: &u32, dst: &u32) {
*dst = *src;
*(dst + 4) = *(src + 4);
*(dst + 8) = *(src + 8);
*(dst + 12) = *(src + 12);
return;

}
fn panic_result(ptr: &u32) -> u32 {
panic_copy(&ptr as &u32 - 16, ptr);
*PANIC_BUFFER = ptr;
return 0;

}
fn panic(error: u32) -> u32 {
panic_copy(*PANIC_BUFFER, &error - 16);
return error;

}

19.3.1 Shared constants and data structures
Here we add new constants for the new token values and the new symbol kinds. We
also add the new symbol fields and compiler variables discussed above, plus a new
fn_return_type variable, storing the symbol corresponding to the return type of the
currently compiled function.

const TC_INTEGER: u32 = 2;
const TC_IDENTIFIER: u32 = 3;
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const TC_ADD: u32 = 4;
const TC_SUB: u32 = 5;
const TC_MUL: u32 = 6;
const TC_DIV: u32 = 7;
const TC_BIT_AND: u32 = 8;
const TC_BIT_OR: u32 = 9;
const TC_SHIFT_LEFT: u32 = 10;
const TC_SHIFT_RIGHT: u32 = 11;
const TC_LT: u32 = 12;
const TC_GE: u32 = 17;
const TC_AND: u32 = 18;
const TC_OR: u32 = 19;
const TC_ARROW: u32 = 20;
const TC_AS: u32 = 138;
const TC_BREAK: u32 = 128;
const TC_CONST: u32 = 129;
const TC_ELSE: u32 = 130;
const TC_FN: u32 = 131;
const TC_IF: u32 = 132;
const TC_LET: u32 = 133;
const TC_LOOP: u32 = 134;
const TC_NULL: u32 = 139;
const TC_RETURN: u32 = 135;
const TC_SIZEOF: u32 = 140;
const TC_STATIC: u32 = 136;
const TC_STRUCT: u32 = 141;
const TC_U32: u32 = 142;
const TC_WHILE: u32 = 137;

const SYM_FN: u32 = 0;
const SYM_FORWARD_FN: u32 = 1;
const SYM_VARIABLE: u32 = 2;
const SYM_CONST: u32 = 3;
const SYM_STATIC: u32 = 4;
const SYM_STRUCT: u32 = 5;
const SYM_FIELD: u32 = 6;
const SYM_VOID: u32 = 7;

struct Symbol {
const sym_name = 0;: &u32,
const sym_length = 4;: u32,
const sym_kind = 8;: u32,
const sym_value = 12;: u32,
const sym_type = 16;: &Symbol,
const sym_dim = 20;: u32,
const sym_next = 24;: &Symbol

}const sizeof_symbol = 28;
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struct Compiler {
const tc_src = 0;: &u32,
const tc_src_end = 4;: &u32,
const tc_next_char = 8;: u32,
const tc_next_char_type = 12;: u32,
const tc_next_token = 16;: u32,
const tc_next_token_data = 20;: u32,
const tc_next_token_length = 24;: u32,
const tc_dst = 28;: &u32,
const tc_dst_limit = 32;: &u32,
const tc_heap = 36;: &u32,
const tc_heap_limit = 40;: &u32,
const tc_symbols = 44;: &Symbol,
const tc_fn_dst = 48;: &u32,
const tc_fn_return_type = 52;: &Symbol,
const tc_flash_offset = 56;: u32

}const sizeof_compiler = 60;

19.3.2 Scanner
We start the scanner by setting the CHAR_TYPES of “.” to its ASCII code 46, by changing
the one of “-” to 16, and by updating the OPERATORS table (see Section 19.2.1):
static TC_CHAR_TYPES = [

1,1,1,1,1,1,1,1,1,32,32,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
32,10,1,1,1,1,11,39,40,41,6,4,44,16,46,7,2,2,2,2,2,2,2,2,2,2,58,59,12,13,
14,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,91,1,93,1,3,
1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,123,15,125,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

static TC_OPERATORS = [
1,1,16,1,8,18,1,1,12,10,15,1,61,13,13,1,14,11,17,11,9,19,1,1,5,1,1,20];

We then add the new keywords, but we insert before them 64 bytes. If there is
a keyword whose hashcode is i, then the ith byte is the offset of this keyword in
TC_KEYWORD. Otherwise it is 0. For instance, the 0th byte is 0 because no keyword
has hashcode 0. And the 8th byte is 88 because the “fn” keyword has hashcode 8
(’f’= 102, ’n’= 110 and 102 ∗ 31 + 110 mod 64 = 8) and starts at the 88th byte
(with its length, followed by its characters and its token value).
static TC_KEYWORDS = [

0,0,0,0,0,0,0,107,88,0,0,0,0,0,0,0,0,0,0,0,145,137,
0,0,121,0,0,96,0,92,0,0,0,0,0,75,101,0,0,0,0,0,0,0,
0,0,129,0,113,150,64,0,0,0,0,0,0,82,0,0,0,0,0,68,
2,'a','s',138,
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5,'b','r','e','a','k',128,
5,'c','o','n','s','t',129,
4,'e','l','s','e',130,
2,'f','n',131,
2,'i','f',132,
3,'l','e','t',133,
4,'l','o','o','p',134,
4,'n','u','l','l',139,
6,'r','e','t','u','r','n',135,
6,'s','i','z','e','o','f',140,
6,'s','t','a','t','i','c',136,
6,'s','t','r','u','c','t',141,
3,'u','3','2',142,
5,'w','h','i','l','e',137];

fn mem_compare(ptr1: &u32, ptr2: &u32, size: u32) -> u32 {
let i = 0;
while i < size && load8(ptr1 + i) == load8(ptr2 + i) {

i = i + 1;
}
return size - i;

}

Thanks to this hash table tc_get_keyword now only needs to compare the given
identifier with at most one keyword, the one with the identifier’s hashcode (which
must be computed by the caller):
fn tc_get_keyword(start: &u32, length: u32, hashcode: u32) -> u32 {

let keyword = load8(TC_KEYWORDS + hashcode);
if keyword != 0 &&
length == load8(TC_KEYWORDS + keyword) &&
mem_compare(start, TC_KEYWORDS + keyword + 1, length) == 0 {

return load8(TC_KEYWORDS + keyword + length + 1);
}
return TC_IDENTIFIER;

}

fn tc_read_char(self: &Compiler) -> u32 {
let src = *(self+.tc_src);
let src_end = *(self+.tc_src_end);
if src >= src_end { panic(10); }
src = src + 1;
let c = 0;
let type = 0;
if src < src_end {

c = load8(src);
type = load8(TC_CHAR_TYPES + c);

}
*(self+.tc_src) = src;
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*(self+.tc_next_char) = c;
*(self+.tc_next_char_type) = type;
return type;

}
fn tc_read_integer(self: &Compiler) -> u32 {
let type = *(self+.tc_next_char_type);
let v = 0;
while type == TC_INTEGER {

v = v * 10 + (*(self+.tc_next_char) - '0');
type = tc_read_char(self);

}
*(self+.tc_next_token_data) = v;
return TC_INTEGER;

}
fn tc_read_quoted_char(self: &Compiler) -> u32 {
tc_read_char(self);
let value = *(self+.tc_next_char);
if value < 32 || value >= 127 { panic(11); }
if tc_read_char(self) != ''' { panic(12); }
tc_read_char(self);
*(self+.tc_next_token_data) = value;
return TC_INTEGER;

}

We compute this hashcode with a few changes in the following function:
fn tc_read_identifier(self: &Compiler) -> u32 {

let hashcode = 0;
let start = *(self+.tc_src);
let type = *(self+.tc_next_char_type);
while type == TC_IDENTIFIER || type == TC_INTEGER {
hashcode = 31 * hashcode + *(self+.tc_next_char);
type = tc_read_char(self);

}
let length = *(self+.tc_src) - start;
*(self+.tc_next_token_data) = start as u32;
*(self+.tc_next_token_length) = length;
return tc_get_keyword(start, length, hashcode & 63);

}

The next function is updated to use the new OPERATORS table:
fn tc_read_operator(self: &Compiler, first_char_type: u32) -> u32 {

let second_char_type = tc_read_char(self);
let index = 4 * (first_char_type - 10);
if second_char_type == first_char_type {

tc_read_char(self);
index = index + 1;

} else if *(self+.tc_next_char) == '=' {
tc_read_char(self);
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index = index + 2;
} else if *(self+.tc_next_char) == '>' {
tc_read_char(self);
index = index + 3;

}
return load8(TC_OPERATORS + index);

}

We finish the scanner with a new function to read comments, used in the loop
skipping spacing characters in tc_read_token. This new function assumes that the
next character is a “/”. It returns 0 if it not followed by a “*”. Otherwise it “reads” the
comment and returns 1. In fact this function only increments src, without updating
the other scanner variables. This is why it does not “read” the last “/”, leaving this
to the caller. Note also how the end of the comment is found: by comparing two
characters at once with “*/” (’*’= 42, ’/’= 47 and 42 + 47 ∗ 256 = 12074).

fn tc_read_comment(self: &Compiler, src: &u32) -> u32 {
if src + 1 >= *(self+.tc_src_end) || load8(src + 1) != '*' { return 0; }
while src + 3 < *(self+.tc_src_end) && load16(src + 2) != 12074 {
src = src + 1;

}
*(self+.tc_src) = src + 3; /* The last '/' is NOT read. */
return 1;

}

fn tc_read_token(self: &Compiler) {
let type = *(self+.tc_next_char_type);
while type == ' ' || type == TC_DIV {
if type == TC_DIV && tc_read_comment(self, *(self+.tc_src)) == 0 { bre ≀

≀ak; }
type = tc_read_char(self);

}
let token = type;
if type == TC_INTEGER {

token = tc_read_integer(self);
} else if type == ''' {
token = tc_read_quoted_char(self);

} else if type == TC_IDENTIFIER {
token = tc_read_identifier(self);

} else if type >= 10 && type < 20 {
token = tc_read_operator(self, type);

} else if type != 0 {
tc_read_char(self);

}
*(self+.tc_next_token) = token;
return;

}
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19.3.3 Backend
In order to check that dst and heap do not grow beyond dst_limit and heap_limit ,
respectively, we add a new ptr_limit parameter in the following function. We then
check that ptr + size ≤ ptr_limit and panic otherwise. In fact ptr + size could
overflow the capacity of a word and thus incorrectly appear as less than ptr_limit .
The code below uses a reformulation of this test which avoids any possible overflow.

fn mem_allocate(size: u32, ptr_p: &&u32, ptr_limit: &u32) -> &u32 {
let ptr = *ptr_p;
if size > ptr_limit as u32 || ptr > ptr_limit - size { panic(1); }
*ptr_p = ptr + size;
return ptr;

}
fn tc_write8(self: &Compiler, value: u32) {
store8(mem_allocate(1, &self+.tc_dst, *(self+.tc_dst_limit)), value);
return;

}
fn tc_write16(self: &Compiler, value: u32) {
store16(mem_allocate(2, &self+.tc_dst, *(self+.tc_dst_limit)), value);
return;

}
fn tc_write32(self: &Compiler, value: u32) {
*mem_allocate(4, &self+.tc_dst, *(self+.tc_dst_limit)) = value;
return;

}
fn tc_write_insn(self: &Compiler, opcode: u32, argument: u32) {
tc_write8(self, opcode);
tc_write8(self, argument);
return;

}
fn tc_write_placeholder(self: &Compiler, placeholder_p: &&u32) {
let new_placeholder = *(self+.tc_dst);
let last_placeholder = *placeholder_p;
*placeholder_p = new_placeholder;
if last_placeholder == 0null { last_placeholder = new_placeholder; }
tc_write16(self, new_placeholder - last_placeholder);
return;

}
fn tc_fill_placeholders(placeholder: &u32, value: u32) {
let offset = 0;
while placeholder != 0null {
offset = load16(placeholder);
store16(placeholder, value);
if offset == 0 { break; }
placeholder = placeholder - offset;

}
return;
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}
fn tc_fill_label_placeholders(self: &Compiler, placeholder: &u32) {
tc_fill_placeholders(placeholder, *(self+.tc_dst) - *(self+.tc_fn_dst));
return;

}
fn tc_write_cst_insn(self: &Compiler, value: u32) {
if value <= 1 {

tc_write8(self, value);
} else if value < 256 {

tc_write_insn(self, /*cst8*/2, value);
} else {
tc_write8(self, /*cst*/3);
tc_write32(self, value);

}
return;

}
fn tc_write_static_insn(self: &Compiler, dst: u32) {
tc_write_cst_insn(self, dst - *(self+.tc_flash_offset));
return;

}
fn tc_write_binary_insn(self: &Compiler, token: u32) {
tc_write8(self, token);
return;

}
fn tc_write_jump_insn(self: &Compiler, token: u32, placeholder_p: &&u32) {
tc_write8(self, token);
tc_write_placeholder(self, placeholder_p);
return;

}
fn tc_write_goto_insn(self: &Compiler, placeholder_p: &&u32) {

tc_write_jump_insn(self, /*goto*/18, placeholder_p);
return;

}
fn tc_write_loop_insn(self: &Compiler, loop_dst: &u32) {
tc_write8(self, /*goto*/18);
tc_write16(self, loop_dst - *(self+.tc_fn_dst));
return;

}

The next function now writes the code to load the field of a struct, given by its
index. It loads the value starting 4 ∗ field bytes after the struct’s address.
fn tc_write_load_insn(self: &Compiler, field: u32) {

if field > 0 {
tc_write_cst_insn(self, field << 2);
tc_write8(self, /*add*/4);

}
tc_write8(self, /*load*/19);
return;
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}
fn tc_erase_load_insn(self: &Compiler) {

*(self+.tc_dst) = *(self+.tc_dst) - 1;
return;

}

A new field parameter is also added to the next function. It is introduced to
simplify the next chapter, although it is unused for now. For the same reason, a new
function, empty for now, is added to write the code computing the address of a field.

fn tc_write_store_insn(self: &Compiler, field: u32) {
tc_write8(self, /*store*/20);
return;

}
fn tc_write_address_of_insn(self: &Compiler, field: u32) {

return;
}
fn tc_write_ptr_insn(self: &Compiler, variable: u32) {

tc_write_insn(self, /*ptr*/21, variable);
return;

}
fn tc_write_get_insn(self: &Compiler, variable: u32) {
tc_write_insn(self, /*get*/22, variable);
return;

}

The following function no longer returns the argument of the erased instruction.
This is no longer necessary since we now keep track of the stack frame slot indices in
the Value’s slot field. In fact this field was added to simplify this function.

fn tc_erase_get_insn(self: &Compiler) {
*(self+.tc_dst) = *(self+.tc_dst) - 2;
return;

}
fn tc_write_set_insn(self: &Compiler, variable: u32) {

tc_write_insn(self, /*set*/23, variable);
return;

}
fn tc_write_pop_insn(self: &Compiler) {
tc_write8(self, /*pop*/24);
return;

}
fn tc_write_fn_insn(self: &Compiler, arity: u32) {
tc_write_insn(self, /*fn*/25, arity);
return;

}
fn tc_get_fn_value(self: &Compiler, fn_dst: u32) -> u32 {
return fn_dst - *(self+.tc_flash_offset) - 786432;

}
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fn tc_write_call_insn(self: &Compiler, function: &Symbol) {
tc_write8(self, /*call*/26);
if *(function+.sym_kind) == SYM_FORWARD_FN {
tc_write_placeholder(self, &function+.sym_value as &&u32);

} else {
tc_write16(self, *(function+.sym_value));

}
return;

}

Finally, the last backend function is updated to generate either a ret or a retv
instruction, depending on the return type of the currently compiled function.

fn tc_write_return_insn(self: &Compiler) {
if *(*(self+.tc_fn_return_type)+.sym_kind) == SYM_VOID {
tc_write8(self, /*ret*/29);

} else {
tc_write8(self, /*retv*/30);

}
return;

}

19.3.4 Parser
fn sym_lookup(symbol: &Symbol, name: &u32, length: u32) -> &Symbol {
while symbol != 0null {
if *(symbol+.sym_length) == length && mem_compare(*(symbol+.sym_name), ≀

≀ name, length) == 0 {
return symbol;

}
symbol = *(symbol+.sym_next);

}
return 0null;

}

The symbols represented in Figures 19.1 and 19.2 are not in the symbols list. To
create them we split tc_add_symbol in two, with new type and dim parameters:

fn tc_new_symbol(self: &Compiler, name: &u32, length: u32, kind: u32,
value: u32, type: &Symbol, dim: u32, next: &Symbol) -> &Symbol {

let symbol = mem_allocate(sizeof_symbol(Symbol), &self+.tc_heap, *(self+ ≀
≀.tc_heap_limit)) as &Symbol;

if sym_lookup(next, name, length) != 0null { panic(30); }
*(symbol+.sym_name) = name;
*(symbol+.sym_length) = length;
*(symbol+.sym_kind) = kind;
*(symbol+.sym_value) = value;
*(symbol+.sym_type) = type;
*(symbol+.sym_dim) = dim;
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*(symbol+.sym_next) = next;
return symbol;

}
fn tc_add_symbol(self: &Compiler, name: &u32, length: u32, kind: u32,

value: u32, type: &Symbol, dim: u32) -> &Symbol {
*(self+.tc_symbols) = tc_new_symbol(

self, name, length, kind, value, type, dim, *(self+.tc_symbols));
return *(self+.tc_symbols);

}
fn tc_add_or_resolve_fn_symbol(self: &Compiler, name: &u32, length: u32, v ≀

≀alue: u32) -> &Symbol {
let symbol = sym_lookup(*(self+.tc_symbols), name, length);
if symbol == 0null {

return tc_add_symbol(self, name, length, SYM_FN, value, 0null, 0);
}
if *(symbol+.sym_kind) != SYM_FORWARD_FN { panic(31); }
tc_fill_placeholders(*(symbol+.sym_value) as &u32, value);
*(symbol+.sym_kind) = SYM_FN;
*(symbol+.sym_value) = value;
return symbol;

}
fn tc_parse_token(self: &Compiler, token: u32) {
if *(self+.tc_next_token) != token { panic(20); }
tc_read_token(self);
return;

}
fn tc_parse_integer(self: &Compiler) -> u32 {
if *(self+.tc_next_token) != TC_INTEGER { panic(21); }
let value = *(self+.tc_next_token_data);
tc_read_token(self);
return value;

}
fn tc_parse_identifier(self: &Compiler, length_p: &u32) -> &u32 {
if *(self+.tc_next_token) != TC_IDENTIFIER { panic(22); }
let name = *(self+.tc_next_token_data) as &u32;
*length_p = *(self+.tc_next_token_length);
tc_read_token(self);
return name;

}
fn tc_parse_symbol(self: &Compiler, symbol: &Symbol) -> &Symbol {
let length = 0;
let name = tc_parse_identifier(self, &length);
symbol = sym_lookup(symbol, name, length);
if symbol == 0null { panic(33); }
return symbol;

}

The following function implements a corrected version of the “type” grammar
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rule. Indeed, a type declaration such as “&&&u32” is not read by the scanner as 3 “&”
tokens followed by “u32”, but as the 3 tokens “&&”, “&”, and “u32”. It is used in
tc_parse_const to parse the constant’s declared type.

fn tc_parse_type(self: &Compiler, dim: &u32) -> &Symbol {
*dim = 0;
while *(self+.tc_next_token) == TC_BIT_AND || *(self+.tc_next_token) == ≀

≀TC_AND {
*dim = *dim + 1;
if *(self+.tc_next_token) == TC_AND { *dim = *dim + 1; }
tc_read_token(self);

}
if *(self+.tc_next_token) == TC_U32 {
tc_read_token(self);
return 0null;

}
let symbol = tc_parse_symbol(self, *(self+.tc_symbols));
if *dim == 0 || *(symbol+.sym_kind) != SYM_STRUCT { panic(42); }
return symbol;

}

fn tc_parse_const(self: &Compiler) {
tc_parse_token(self, TC_CONST);
let length = 0;
let name = tc_parse_identifier(self, &length);
tc_parse_token(self, ':');
let dim = 0;
let type = tc_parse_type(self, &dim);
tc_parse_token(self, '=');
tc_add_symbol(self, name, length, SYM_CONST, tc_parse_integer(self), typ ≀

≀e, dim);
tc_parse_token(self, ';');
return;

}

fn tc_parse_static(self: &Compiler) {
tc_parse_token(self, TC_STATIC);
let length = 0;
let name = tc_parse_identifier(self, &length);
tc_add_symbol(self, name, length, SYM_STATIC, *(self+.tc_dst) as u32, 0n ≀

≀ull, 1);
tc_parse_token(self, '=');
tc_parse_token(self, '[');
tc_write8(self, tc_parse_integer(self));
while *(self+.tc_next_token) == ',' {
tc_read_token(self);
tc_write8(self, tc_parse_integer(self));

}
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tc_parse_token(self, ']');
tc_parse_token(self, ';');
return;

}

The next function implements the new “struct” rule. It first adds to symbols a
symbol for the struct itself (without fields), so that the symbols for its fields, collected
in fields, can use it as their type.

fn tc_parse_struct(self: &Compiler) {
tc_parse_token(self, TC_STRUCT);
let length = 0;
let name = tc_parse_identifier(self, &length);
let symbol = tc_add_symbol(self, name, length, SYM_STRUCT, 0, 0null, 0);
tc_parse_token(self, '{');
let dim = 0;
let type: &Symbol = 0null;
let fields: &Symbol = 0null;
let value = 0;
while *(self+.tc_next_token) != '}' {
if value > 0 { tc_parse_token(self, ','); }
name = tc_parse_identifier(self, &length);
tc_parse_token(self, ':');
type = tc_parse_type(self, &dim);
fields = tc_new_symbol(self, name, length, SYM_FIELD, value, type, dim ≀

≀, fields);
value = value + 1;

}
tc_read_token(self);
*(symbol+.sym_value) = value;
*(symbol+.sym_type) = fields;
return;

}

We then define the new NULL and VOID origins, and the new Value struct. The
next two functions check if the type of a value is equal to a required type, either given
directly or via a Symbol, and panic otherwise. They take the exception for null into
account (null can be used anywhere a pointer type is required).

const FROM_ADDRESS: u32 = 0;
const FROM_VARIABLE: u32 = 1;
const FROM_NULL: u32 = 2;
const FROM_VOID: u32 = 3;
const FROM_OTHER: u32 = 255;

struct Value {
const val_origin = 0;: u32,
const val_slot = 4;: u32,
const val_type = 8;: &Symbol,
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const val_dim = 12;: u32
}const sizeof_value = 16;

fn value_type_check(self: &Value, type: &Symbol, dim: u32) {
if *(self+.val_origin) == FROM_NULL && dim != 0 { return; }
if *(self+.val_type) != type || *(self+.val_dim) != dim { panic(43); }
return;

}
fn value_check(self: &Value, symbol: &Symbol) {

value_type_check(self, *(symbol+.sym_type), *(symbol+.sym_dim));
return;

}

The following new functions are used to manage the Value stack. The first one
pushes a new value given explicitly. It panics if its type is a struct type (recall that only
struct pointer types are allowed). The second one uses it to push a value corresponding
to a symbol. It computes the value’s origin from the symbol’s kind. The third returns
a pointer to the last pushed value. The last ones do the same but also pop this value.
Their result must be used before pushing a new value!

fn tc_push_value(self: &Compiler, origin: u32, slot: u32, type: &Symbol, d ≀
≀im: u32) -> &Value {

let value = mem_allocate(sizeof_value(Value), &self+.tc_heap, *(self+.tc ≀
≀_heap_limit)) as &Value;

if dim == 0 && type != 0null { panic(44); }
*(value+.val_origin) = origin;
*(value+.val_slot) = slot;
*(value+.val_type) = type;
*(value+.val_dim) = dim;
return value;

}
fn tc_push_symbol_value(self: &Compiler, symbol: &Symbol) -> &Value {

let origin = FROM_OTHER;
if *(symbol+.sym_kind) == SYM_FIELD { origin = FROM_ADDRESS; }
else if *(symbol+.sym_kind) == SYM_VARIABLE { origin = FROM_VARIABLE; }
else if *(symbol+.sym_kind) == SYM_VOID { origin = FROM_VOID; }
return tc_push_value(self, origin, *(symbol+.sym_value), *(symbol+.sym_t ≀

≀ype), *(symbol+.sym_dim));
}
fn tc_top_value(self: &Compiler) -> &Value {

return (*(self+.tc_heap) - sizeof_value(Value)) as &Value;
}
fn tc_pop_value_or_void(self: &Compiler) -> &Value {

*(self+.tc_heap) = *(self+.tc_heap) - sizeof_value(Value);
return *(self+.tc_heap) as &Value;

}
fn tc_pop_value(self: &Compiler) -> &Value {

let value = tc_pop_value_or_void(self);
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if *(value+.val_origin) == FROM_VOID { panic(45); }
return value;

}

fn tc_parse_expr(self: &Compiler);

The next function implements the type checking rule for function call expressions.
It checks that the number of arguments (argument_count) is equal to the number of
parameters, pops their types and check them against the parameter types of the callee
(function). It then pushes a value corresponding to the function’s return type. It is
called in the next function, refactored to compute argument_count.

fn tc_check_fn_arguments(self: &Compiler, function: &Symbol, argument_coun ≀
≀t: u32) {

let parameter = *(*(function+.sym_type)+.sym_next);
while parameter != 0null && argument_count != 0 {
value_check(tc_pop_value(self), parameter);
parameter = *(parameter+.sym_next);
argument_count = argument_count - 1;

}
if parameter != 0null || argument_count != 0 { panic(46); }
tc_push_symbol_value(self, *(function+.sym_type));
return;

}
fn tc_parse_fn_arguments(self: &Compiler, function: &Symbol) {

if *(function+.sym_kind) != SYM_FN && *(function+.sym_kind) != SYM_FORWA ≀
≀RD_FN {

panic(34);
}
tc_parse_token(self, '(');
let argument_count = 0;
while *(self+.tc_next_token) != ')' {
if argument_count > 0 { tc_parse_token(self, ','); }
tc_parse_expr(self);
argument_count = argument_count + 1;

}
tc_read_token(self);
tc_check_fn_arguments(self, function, argument_count);
tc_write_call_insn(self, function);
return;

}

Parsing and compiling a sizeof expression is very easy. The size of a struct is 4
times its number of fields, itself stored in the value field of the struct’s symbol.

fn tc_parse_sizeof_expr(self: &Compiler) {
tc_parse_token(self, TC_SIZEOF);
tc_parse_token(self, '(');
let symbol = tc_parse_symbol(self, *(self+.tc_symbols));

338



19.3 Implementation

if *(symbol+.sym_kind) != SYM_STRUCT { panic(47); }
tc_push_value(self, FROM_OTHER, 0, 0null, 0);
tc_write_cst_insn(self, *(symbol+.sym_value) << 2);
tc_parse_token(self, ')');
return;

}

The next function is updated to parse the new sizeof and null expressions, and
to push a value instead of returning the origin of the expression’s value.

fn tc_parse_primitive_expr(self: &Compiler) {
let symbol: &Symbol = 0null;
if *(self+.tc_next_token) == TC_INTEGER {

tc_push_value(self, FROM_OTHER, 0, 0null, 0);
tc_write_cst_insn(self, tc_parse_integer(self));

} else if *(self+.tc_next_token) == TC_IDENTIFIER {
symbol = tc_parse_symbol(self, *(self+.tc_symbols));
if *(self+.tc_next_token) == '(' {

tc_parse_fn_arguments(self, symbol);
} else {

tc_push_symbol_value(self, symbol);
if *(symbol+.sym_kind) == SYM_VARIABLE {
tc_write_get_insn(self, *(symbol+.sym_value));

} else if *(symbol+.sym_kind) == SYM_CONST {
tc_write_cst_insn(self, *(symbol+.sym_value));

} else if *(symbol+.sym_kind) == SYM_STATIC {
tc_write_static_insn(self, *(symbol+.sym_value));

} else {
panic(35);

}
}

} else if *(self+.tc_next_token) == TC_SIZEOF {
tc_parse_sizeof_expr(self);

} else if *(self+.tc_next_token) == TC_NULL {
tc_read_token(self);
tc_push_value(self, FROM_NULL, 0, 0null, 0);
tc_write_cst_insn(self, 0);

} else {
tc_parse_token(self, '(');
tc_parse_expr(self);
tc_parse_token(self, ')');

}
return;

}

Compiling a path expression e.f is done by checking that e’s value has a struct
pointer type, searching for the field symbol corresponding to f in the struct’s list of
fields (value.type.type), pushing a value corresponding to the type of f, and finally
writing the code to load its value.
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fn tc_parse_path_expr(self: &Compiler) {
let value: &Value = 0null;
let field: &Symbol = 0null;
tc_parse_primitive_expr(self);
while *(self+.tc_next_token) == '.' {
tc_read_token(self);
value = tc_pop_value(self);
if *(value+.val_type) == 0null || *(value+.val_dim) != 1 { panic(48); ≀

≀}
field = tc_parse_symbol(self, *(*(value+.val_type)+.sym_type));
tc_push_symbol_value(self, field);
tc_write_load_insn(self, *(field+.sym_value));

}
return;

}

The next function is updated to implement the type checking rules of dereference
and address-of expressions, as well as the new grammar rule for address-of expressions
(compiled by rewriting the last written instruction – see Section 19.2.2).

fn tc_parse_pointer_expr(self: &Compiler) {
let value: &Value = 0null;
if *(self+.tc_next_token) == TC_MUL {
tc_read_token(self);
tc_parse_pointer_expr(self);
value = tc_pop_value(self);
if *(value+.val_dim) == 0 { panic(49); }
tc_push_value(self, FROM_ADDRESS, 0, *(value+.val_type), *(value+.val_ ≀

≀dim) - 1);
tc_write_load_insn(self, 0);

} else if *(self+.tc_next_token) == TC_BIT_AND {
tc_read_token(self);
tc_parse_path_expr(self);
value = tc_pop_value(self);
if *(value+.val_origin) == FROM_ADDRESS {

tc_erase_load_insn(self);
tc_write_address_of_insn(self, *(value+.val_slot));

} else if *(value+.val_origin) == FROM_VARIABLE {
tc_erase_get_insn(self);
tc_write_ptr_insn(self, *(value+.val_slot));

} else {
panic(36);

}
tc_push_value(self, FROM_OTHER, 0, *(value+.val_type), *(value+.val_di ≀

≀m) + 1);
} else {
tc_parse_path_expr(self);

}
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return;
}

Compiling a cast expression only requires to pop a value and push it again with
the parsed type. The value’s origin stays the same, unless it was NULL (after a cast
a null expression can no longer be used anywhere a pointer types is expected). No
code needs to be generated.

fn tc_parse_cast_expr(self: &Compiler) {
tc_parse_pointer_expr(self);
if *(self+.tc_next_token) != TC_AS { return; }
tc_read_token(self);
let value = tc_pop_value(self);
if *(value+.val_origin) == FROM_NULL { *(value+.val_origin) = FROM_OTHER ≀

≀; }
let dim = 0;
let type = tc_parse_type(self, &dim);
tc_push_value(self, *(value+.val_origin), 0, type, dim);
return;

}

The next two functions implement the type checking rules for arithmetic and logic
expressions, including the special cases for additions and subtractions. They are used
in the next parsing functions, which are all updated in the same straightforward way.

fn tc_check_integer_expr(self: &Compiler) {
let right_value = tc_pop_value(self);
let left_value = tc_pop_value(self);
if *(left_value+.val_type) != 0null || *(left_value+.val_dim) != 0 { pan ≀

≀ic(50); }
if *(right_value+.val_type) != 0null || *(right_value+.val_dim) != 0 { p ≀

≀anic(51); }
tc_push_value(self, FROM_OTHER, 0, 0null, 0);
return;

}

fn tc_check_add_or_sub_expr(self: &Compiler, token: u32) {
let right_value = tc_pop_value(self);
let left_value = tc_pop_value(self);
if *(right_value+.val_dim) == 0 {
tc_push_value(self, FROM_OTHER, 0, *(left_value+.val_type), *(left_val ≀

≀ue+.val_dim));
} else if token == TC_SUB && *(left_value+.val_dim) != 0 {
if *(left_value+.val_type) != *(right_value+.val_type) { panic(52); }
if *(left_value+.val_dim) != *(right_value+.val_dim) { panic(52); }
tc_push_value(self, FROM_OTHER, 0, 0null, 0);

} else {
panic(53);

}
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return;
}

fn tc_parse_mult_expr(self: &Compiler) {
tc_parse_cast_expr(self);
let next_token = *(self+.tc_next_token);
while next_token == TC_MUL || next_token == TC_DIV {

tc_read_token(self);
tc_parse_cast_expr(self);
tc_check_integer_expr(self);
tc_write_binary_insn(self, next_token);
next_token = *(self+.tc_next_token);

}
return;

}
fn tc_parse_add_expr(self: &Compiler) {

tc_parse_mult_expr(self);
let next_token = *(self+.tc_next_token);
while next_token == TC_ADD || next_token == TC_SUB {

tc_read_token(self);
tc_parse_mult_expr(self);
tc_check_add_or_sub_expr(self, next_token);
tc_write_binary_insn(self, next_token);
next_token = *(self+.tc_next_token);

}
return;

}
fn tc_parse_shift_expr(self: &Compiler) {

tc_parse_add_expr(self);
let next_token = *(self+.tc_next_token);
if next_token == TC_SHIFT_LEFT || next_token == TC_SHIFT_RIGHT {

tc_read_token(self);
tc_parse_add_expr(self);
tc_check_integer_expr(self);
tc_write_binary_insn(self, next_token);

}
return;

}
fn tc_parse_bit_and_expr(self: &Compiler) {

tc_parse_shift_expr(self);
while *(self+.tc_next_token) == TC_BIT_AND {
tc_read_token(self);
tc_parse_shift_expr(self);
tc_check_integer_expr(self);
tc_write_binary_insn(self, TC_BIT_AND);

}
return;
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}
fn tc_parse_expr(self: &Compiler) {

tc_parse_bit_and_expr(self);
while *(self+.tc_next_token) == TC_BIT_OR {
tc_read_token(self);
tc_parse_bit_and_expr(self);
tc_check_integer_expr(self);
tc_write_binary_insn(self, TC_BIT_OR);

}
return;

}

The following function checks that the two sides of a comparison expression have
the same non-void type, unless the right hand side is null (in which case the left
hand side must have a pointer type). It is used to check comparison expressions and
assignment statements. Most of the following statement parsing functions don’t use
expressions directly and are thus unchanged.

fn tc_check_comparison_expr(self: &Compiler) {
let right_value = tc_pop_value(self);
let left_value = tc_pop_value(self);
if *(left_value+.val_dim) != 0 && *(right_value+.val_origin) == FROM_NUL ≀

≀L { return; }
if *(left_value+.val_type) != *(right_value+.val_type) ||

*(left_value+.val_dim) != *(right_value+.val_dim) {
panic(54);

}
return;

}

fn tc_parse_comparison_expr(self: &Compiler) -> u32 {
tc_parse_expr(self);
let token = *(self+.tc_next_token);
if token < TC_LT || token > TC_GE { panic(25); }
tc_read_token(self);
tc_parse_expr(self);
tc_check_comparison_expr(self);
return token;

}
fn tc_parse_and_expr(self: &Compiler, else_refs_p: &&u32) -> u32 {
let token = tc_parse_comparison_expr(self);
while *(self+.tc_next_token) == TC_AND {
tc_read_token(self);
tc_write_jump_insn(self, TC_LT + TC_GE - token, else_refs_p);
token = tc_parse_comparison_expr(self);

}
return token;

}
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fn tc_parse_boolean_expr(self: &Compiler, then_refs_p: &&u32) -> &u32 {
let else_refs: &u32 = 0null;
let token = tc_parse_and_expr(self, &else_refs);
while *(self+.tc_next_token) == TC_OR {
tc_read_token(self);
tc_write_jump_insn(self, token, then_refs_p);
tc_fill_label_placeholders(self, else_refs);
else_refs = 0null;
token = tc_parse_and_expr(self, &else_refs);

}
tc_write_jump_insn(self, TC_LT + TC_GE - token, &else_refs);
return else_refs;

}

const END_UNREACHABLE: u32 = 0;
const END_REACHABLE: u32 = 1;
fn tc_parse_stmt(self: &Compiler, break_refs_p: &&u32) -> u32;

fn tc_parse_block_stmt(self: &Compiler, break_refs_p: &&u32) -> u32 {
let state = END_REACHABLE;
tc_parse_token(self, '{');
while *(self+.tc_next_token) != '}' {
if state == END_UNREACHABLE { panic(37); }
state = tc_parse_stmt(self, break_refs_p);

}
tc_read_token(self);
return state;

}
fn tc_parse_assignment(self: &Compiler) -> u32 {

let value = tc_top_value(self);
let origin = *(value+.val_origin);
let slot = *(value+.val_slot);
if origin == FROM_ADDRESS {
tc_erase_load_insn(self);

} else if origin == FROM_VARIABLE {
tc_erase_get_insn(self);

} else {
panic(38);

}
tc_parse_token(self, '=');
tc_parse_expr(self);
tc_check_comparison_expr(self);
if origin == FROM_ADDRESS {
tc_write_store_insn(self, slot);

} else {
tc_write_set_insn(self, slot);

}
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return END_REACHABLE;
}
fn tc_parse_expr_or_assign_stmt(self: &Compiler) -> u32 {
tc_parse_expr(self);
if *(self+.tc_next_token) == '=' {
tc_parse_assignment(self);

} else if *(tc_pop_value_or_void(self)+.val_origin) != FROM_VOID {
tc_write_pop_insn(self);

}
tc_parse_token(self, ';');
return END_REACHABLE;

}
fn tc_parse_return_stmt(self: &Compiler) -> u32 {
tc_parse_token(self, TC_RETURN);
if *(self+.tc_next_token) == ';' {
if *(*(self+.tc_fn_return_type)+.sym_kind) != SYM_VOID { panic(55); }

} else {
if *(*(self+.tc_fn_return_type)+.sym_kind) == SYM_VOID { panic(56); }
tc_parse_expr(self);
value_check(tc_pop_value(self), *(self+.tc_fn_return_type));

}
tc_parse_token(self, ';');
tc_write_return_insn(self);
return END_UNREACHABLE;

}
fn tc_parse_break_stmt(self: &Compiler, break_refs_p: &&u32) -> u32 {
tc_parse_token(self, TC_BREAK);
tc_parse_token(self, ';');
tc_write_goto_insn(self, break_refs_p);
return END_UNREACHABLE;

}
fn tc_parse_while_or_loop_stmt(self: &Compiler) -> u32 {
let loop_dst = *(self+.tc_dst);
let body_refs: &u32 = 0null;
let end_refs: &u32 = 0null;
let token = *(self+.tc_next_token);
tc_read_token(self);
if token == TC_WHILE {

end_refs = tc_parse_boolean_expr(self, &body_refs);
}
tc_fill_label_placeholders(self, body_refs);
tc_parse_block_stmt(self, &end_refs);
tc_write_loop_insn(self, loop_dst);
tc_fill_label_placeholders(self, end_refs);
if token == TC_LOOP && end_refs == 0null { return END_UNREACHABLE; }
return END_REACHABLE;

}
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fn tc_parse_if_stmt(self: &Compiler, break_refs_p: &&u32) -> u32 {
tc_parse_token(self, TC_IF);
let then_refs: &u32 = 0null;
let else_refs = tc_parse_boolean_expr(self, &then_refs);
tc_fill_label_placeholders(self, then_refs);
let state = tc_parse_block_stmt(self, break_refs_p);
let end_if_refs: &u32 = 0null;
if *(self+.tc_next_token) == TC_ELSE {
tc_read_token(self);
if state == END_REACHABLE {

tc_write_goto_insn(self, &end_if_refs);
}
tc_fill_label_placeholders(self, else_refs);
if *(self+.tc_next_token) == '{' {

state = state | tc_parse_block_stmt(self, break_refs_p);
} else {

state = state | tc_parse_if_stmt(self, break_refs_p);
}
tc_fill_label_placeholders(self, end_if_refs);

} else {
tc_fill_label_placeholders(self, else_refs);
state = END_REACHABLE;

}
return state;

}
fn tc_parse_stmt(self: &Compiler, break_refs_p: &&u32) -> u32 {
if *(self+.tc_next_token) == TC_IF {
return tc_parse_if_stmt(self, break_refs_p);

} else if *(self+.tc_next_token) == TC_WHILE || *(self+.tc_next_token) = ≀
≀= TC_LOOP {

return tc_parse_while_or_loop_stmt(self);
} else if *(self+.tc_next_token) == TC_BREAK {

if break_refs_p == 0null { panic(39); }
return tc_parse_break_stmt(self, break_refs_p);

} else if *(self+.tc_next_token) == TC_RETURN {
return tc_parse_return_stmt(self);

}
return tc_parse_expr_or_assign_stmt(self);

}

A let statement can have an optional type declaration. If this is the case, the type
of the right hand side is checked with value_type_check against this declared type
(which becomes the type of the variable). Otherwise the variable gets the type of the
right hand side, which must not be null.
fn tc_parse_let_stmt(self: &Compiler, variable: u32) -> u32 {
tc_parse_token(self, TC_LET);
let length = 0;
let name = tc_parse_identifier(self, &length);
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let separator = *(self+.tc_next_token);
let type: &Symbol = 0null;
let dim = 0;
if separator == ':' {
tc_read_token(self);
type = tc_parse_type(self, &dim);

}
tc_parse_token(self, '=');
tc_parse_expr(self);
tc_parse_token(self, ';');
let value = tc_pop_value(self);
if separator == ':' {
value_type_check(value, type, dim);

} else {
if *(value+.val_origin) == FROM_NULL { panic(57); }
type = *(value+.val_type);
dim = *(value+.val_dim);

}
tc_add_symbol(self, name, length, SYM_VARIABLE, variable, type, dim);
return variable + 1;

}

fn tc_parse_fn_name(self: &Compiler) -> &Symbol {
let length = 0;
let name = tc_parse_identifier(self, &length);
let fn_dst = *(self+.tc_dst);
*(self+.tc_fn_dst) = fn_dst;
let value = tc_get_fn_value(self, fn_dst as u32);
return tc_add_or_resolve_fn_symbol(self, name, length, value);

}

When a function is declared before it is implemented, such as the tc_main function,
its parameter and return types are declared twice. These two type declarations must
be identical (the parameter names can differ). The following function checks this:

fn tc_check_fn_parameters(forward_parameters: &Symbol, parameters: &Symbol ≀
≀) {

if forward_parameters == 0null { return; }
while forward_parameters != 0null && parameters != 0null {
if *(forward_parameters+.sym_kind) != *(parameters+.sym_kind) ||

*(forward_parameters+.sym_type) != *(parameters+.sym_type) ||
*(forward_parameters+.sym_dim) != *(parameters+.sym_dim) {

panic(58);
}
forward_parameters = *(forward_parameters+.sym_next);
parameters = *(parameters+.sym_next);

}
if forward_parameters != 0null || parameters != 0null { panic(59); }
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return;
}

It is used in the next function, which is updated to parse the function parameter
and return types, and to build a corresponding list of symbols in symbols (as shown
in Figure 19.2). If the function was previously declared its function symbol’s type
already contains a list of parameter and return types, which are checked with the above
function.
fn tc_parse_fn_parameters(self: &Compiler, function: &Symbol) -> u32 {
let i = 0;
let name: &u32 = 0null;
let length = 0;
let type: &Symbol = 0null;
let dim = 0;
let symbols: &Symbol = 0null;
tc_parse_token(self, '(');
while *(self+.tc_next_token) != ')' {
if i > 0 { tc_parse_token(self, ','); }
name = tc_parse_identifier(self, &length);
tc_parse_token(self, ':');
type = tc_parse_type(self, &dim);
symbols = tc_new_symbol(self, name, length, SYM_VARIABLE, i, type, dim ≀

≀, symbols);
i = i + 1;

}
tc_read_token(self);
if *(self+.tc_next_token) == TC_ARROW {
tc_read_token(self);
type = tc_parse_type(self, &dim);
symbols = tc_new_symbol(self, 0null, 0, SYM_VARIABLE, 0, type, dim, sy ≀

≀mbols);
} else {
symbols = tc_new_symbol(self, 0null, 0, SYM_VOID, 0, 0null, 0, symbols ≀

≀);
}
tc_check_fn_parameters(*(function+.sym_type), symbols);
*(function+.sym_type) = symbols;
*(self+.tc_fn_return_type) = symbols;
return i;

}

The following function is updated to parse the new syntax for imported functions
and for local constants, and to generate a return at the end of void functions if it might
be reachable. Finally, since tc_parse_fn_parameters no longer adds symbols for
the function parameters in the symbols list (they are added to the function’s type
instead), a new loop is added to add a copy of these symbols in this list.
fn tc_parse_fn_body(self: &Compiler, function: &Symbol, arity: u32) {

if *(self+.tc_next_token) == ';' {

348



19.3 Implementation

tc_read_token(self);
*(function+.sym_kind) = SYM_FORWARD_FN;
*(function+.sym_value) = 0;
return;

}
if *(self+.tc_next_token) == '=' {
tc_read_token(self);
*(function+.sym_value) = tc_parse_integer(self) + 786432;
tc_parse_token(self, ';');
return;

}
let parameter = *(*(function+.sym_type)+.sym_next);
while parameter != 0null {
tc_add_symbol(self, *(parameter+.sym_name), *(parameter+.sym_length),

SYM_VARIABLE, *(parameter+.sym_value), *(parameter+.sym_type), *(p ≀
≀arameter+.sym_dim));

parameter = *(parameter+.sym_next);
}
tc_parse_token(self, '{');
tc_write_fn_insn(self, arity);
let next_variable = arity + 4;
let state = END_REACHABLE;
while *(self+.tc_next_token) != '}' {
if state == END_UNREACHABLE { panic(40); }
if *(self+.tc_next_token) == TC_CONST {

tc_parse_const(self);
} else if *(self+.tc_next_token) == TC_LET {

next_variable = tc_parse_let_stmt(self, next_variable);
} else {

state = tc_parse_stmt(self, 0null);
}

}
if state == END_REACHABLE {
if *(*(self+.tc_fn_return_type)+.sym_kind) != SYM_VOID { panic(41); }
tc_write_return_insn(self);

}
tc_read_token(self);
return;

}

fn tc_check_symbols(symbol: &Symbol, end_symbol: &Symbol) {
while symbol != end_symbol {

if *(symbol+.sym_kind) == SYM_FORWARD_FN { panic(32); }
symbol = *(symbol+.sym_next);

}
return;

}
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The next function is updated to save the heap and symbols variables after parsing
the function parameters. Indeed this step now adds symbols for the parameter and
return types, which must not be deleted after the function has been compiled.
fn tc_parse_fn(self: &Compiler) {
tc_parse_token(self, TC_FN);
let function = tc_parse_fn_name(self);
let arity = tc_parse_fn_parameters(self, function);
let heap = *(self+.tc_heap);
let symbols = *(self+.tc_symbols);
tc_parse_fn_body(self, function, arity);
*(self+.tc_symbols) = symbols;
*(self+.tc_heap) = heap;
return;

}

Finally, the last two functions are updated to take the new “program” rule into ac-
count, and to initialize the new dst_limit and heap_limit variables (fn_return_type
is set in tc_parse_fn_parameters and thus does not need to be initialized).
fn tc_parse_program(self: &Compiler) {

loop {
if *(self+.tc_next_token) == TC_FN {

tc_parse_fn(self);
} else if *(self+.tc_next_token) == TC_STRUCT {

tc_parse_struct(self);
} else if *(self+.tc_next_token) == TC_STATIC {

tc_parse_static(self);
} else if *(self+.tc_next_token) == TC_CONST {

tc_parse_const(self);
} else {

if *(self+.tc_next_token) != 0 { panic(23); }
tc_check_symbols(*(self+.tc_symbols), 0null);
return;

}
}

}

fn tc_main(src_buffer: &u32, dst_buffer: &u32, flash_buffer: &u32) -> u32 ≀
≀{

let error = 0;
let compiler = (dst_buffer + 12288) as &Compiler;
*(compiler+.tc_src) = src_buffer + 3;
*(compiler+.tc_src_end) = src_buffer + 4 + *src_buffer;
*(compiler+.tc_dst) = dst_buffer + 4;
*(compiler+.tc_dst_limit) = compiler as &u32;
*(compiler+.tc_heap) = *(compiler+.tc_dst_limit) + sizeof_compiler(Compi ≀

≀ler);
*(compiler+.tc_heap_limit) = *(compiler+.tc_heap) + 18432;
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*(compiler+.tc_symbols) = 0null;
*(compiler+.tc_flash_offset) = dst_buffer - flash_buffer;
let panic3 = 0;
let panic2 = 0;
let panic1 = 0;
let panic0 = 0;
error = panic_result(&panic0);
if error != 0 {
*dst_buffer = *(compiler+.tc_src) - src_buffer - 4;
return error;

}
tc_read_char(compiler);
tc_read_token(compiler);
tc_parse_program(compiler);
*dst_buffer = *(compiler+.tc_dst) - dst_buffer - 4;
return 0;

}

19.4 Compilation and tests
To compile the above source code proceed as follows (see also Figure 16.4).
Edit v1 In the command editor, type “F3”+“r” and “F4”+“r” to load and edit the
current compiler version. Then update it to the 1st version of the types compiler.
For convenience, we also provide this code in the types_compiler_v1.txt file in
https://ebruneton.github.io/toypc/sources.zip. When you are done, exit the text editor
and type “F5”+“r” to save your work. Alternatively, you can “cheat” by running the
following command on an external computer (see Section 16.4 for more details):
user@host:~$ python3 flash_helper.py < part3/types_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed.
If all goes well, after about 4 seconds, you should get a result equal to 0 (meaning
that no error was found). If this is not the case use Appendix D to get the error code
meaning, fix this error, save the program and compile it again. Repeat this process
until the compilation is successful. Then type “F7”+“r” to save the result.
Test v1 Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the
following small test program, which computes the factorial of 6:
fn factorial(n: u32) -> u32;
fn test() -> u32 { return factorial(6); }
fn factorial(n: u32) -> u32 {

if n == 0 { return 1; }
return factorial(n - 1) * n;

}

Then type “F9”+“r” to run it. If the result is not 720 = 2D016 this means that the
compiler is wrong. In this case, type “F8”+“r” to restore the statements compiler.
Then repeat the previous steps and double check everything until this test passes.
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Edit v2 Type “F3”+“r” to load the 1st version of the types compiler and “F4”+“r”
to edit it. Then update it to the 2nd version. For convenience, we also provide this
code in the types_compiler_v2.txt file. Then save this new version with the F5
command. Alternatively, run the following command on an external computer:
user@host:~$ python3 flash_helper.py < part3/types_compiler_v2.txt

Compile v2 Type“F6”+“r” to compile this new code. The result should be 0, meaning
“no error”. If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all
errors are fixed.

Test v2 As in the previous chapter, the compiled code of the 2nd version of the types
compiler is not identical to that of the 1st version. One reason, in particular, is that
the code of the 1st version, obtained with the statements compiler, does not use ret
instructions. Whereas the 2nd version uses such instructions for void functions.

However, the two versions should produce the same compiled code for the same
input program, since they are supposed to be functionally equivalent. We can thus use
this property to test the 2nd version, as in the previous chapter (see Section 18.4):

• Type “F7”+“r” to store the bytecode of 2nd version, produced by the 1st version.
• Type “F6”+“r” to compile the 2nd version with itself.
• Type “F10”+“r” to compare the results of the previous commands. If the result is

not 0 this means that the 2nd version is wrong2. Type “F8”+“r” to restore the 1st

version and repeat the steps from “Edit v2” until this test passes.

2As noted in the previous chapter, the 1st version might also be wrong despite the “Test v1” step.
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20
CHAPTER

Native Compiler

Our toy programming language is now quite usable. We could continue to add new
features to make it even more usable but at some point it would stop being a toy
language, and this is not our goal. Instead of improving the language, this chapter
improves its compiler in order to generate more efficient code.

All the programs we wrote before having the first version of our compiler use
bytecode instructions, because writing native Cortex M3 code manually is very hard.
Now that we have a compiler, we no longer need to write any bytecode or native
code manually. Thus, there is no reason to continue using bytecode instructions, in
particular for the code generated by our compiler. On the contrary, since bytecode
programs are about 10 times slower than native ones when run with our bytecode
interpreter, it would be better to generate native code. This chapter refactors our
compiler in order to do this.

20.1 Requirements
In this chapter we require our compiler to compile programs into native Cortex M3
instructions (see Section 7.3). We also require the generated code to be position
independent. As explained in Section 13.3, this means that this code should work
whatever the address at which it is run. This is not the case of the bytecode produced
by the current compiler, which only works at the flash_buffer address used to obtain
it (in particular because of the call instructions).

The above requirements can be achieved by using only a subset of the instructions
presented in Section 7.3. In some rare cases however, in particular in the next
part, some special Cortex M3 instructions are needed. To enable this we add a last
requirement, namely the possibility to write functions directly in native code. For this
we could define a syntax for Cortex M3 instructions, such as “MOV PC LR;” to denote
the instruction copying the Link Register into the Program Counter. But this would
greatly increase the size of our compiler, for a rare use case. Instead, to simplify,
we require these instructions to be given directly in encoded form, between square
brackets. For instance, compiling “fn do_nothing() [ 18167; ]” should produce
a function reduced to the single “MOV PC LR” instruction (whose encoding is 18167).
This syntax is not user friendly but it should rarely be used. Comments can also make
it easier to understand: “fn do_nothing() [ /*MOV_PC_LR*/18167; ]”.
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20.2 Algorithms
The above requirements do not introduce any new token. Hence no changes are needed
in the scanner. The new syntax can be specified with a simple grammar rule, used in
fn_body (unchanged parts of the grammar are in gray or not shown):

fn_body: “{” (const | let_stmt | stmt)* “}” | fn_asm_body | “;”
fn_asm_body: “[” (INTEGER “;”)* “]”

Note that we removed the syntax for imported functions. Indeed, it is no longer
possible to import, with a fixed address, a function from a program using position
independent code, which is not guaranteed to be at a fixed location.

The algorithm to parse and compile the fn_asm_body rule is trivial (by definition,
each instruction simply needs to written, as is, in the dst buffer). Hence, the only new
algorithms which are needed are in the backend part. They are presented below.

20.2.1 Register stack
The Cortex M3 instructions use registers to perform computations. Unfortunately
there is only a small number of registers. They can only store a very small subset of all
the values computed by a program. Hence, a native program needs to repeatedly copy
values from memory to registers, do some computation with them, and copy the results
back to memory. For instance, our bytecode interpreter does this for each bytecode
instruction. But copying values between memory and the registers is slow, and this is
a reason why our interpreter is inefficient. To reduce the number of copies we need to
keep values in registers as long as possible, and to use all the registers (our interpreter
uses only 2 registers for actual computations, namely R0 and R1). Unfortunately,
finding an optimal way to use registers in a function is a complex problem. The best
known algorithms to solve it take a time which increases exponentially with the size
of the function. This makes them impossible to use in practice. Instead, compilers
use fast algorithms, called heuristics, which compute a “good enough” solution.

In this section we define a very simple strategy to use the registers. It gives a
solution which is far from the optimal, and from the results of the best compiler
heuristics, but better than copying values back and forth for each arithmetic or logic
operation. The idea is to use the registers, other than the SP, LR, and PC, as a stack:

• at any point in time, only the first n registers, R0 to Rn− 1, contain actual values.
• new values are “pushed” by storing them in Rn, and incrementing n by 1.
• values which are no longer needed are “popped” by decrementing n by 1.

For instance, to compute (1 + 2) ∗ (3 + 4) we can push 1 in R0, push 2 in R1,
pop two values and push their sum in R0, push 3 in R1, 4 in R2, pop two values and
push their sum in R1, and finally pop two values and push their product in R0 (see
Figure 20.1). This idea works well for expressions, because intermediate results are
discarded in the reverse order of their creation. But this is not the case, in general, of
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FIGURE 20.1 Using the registers as a stack to compute (1 + 2) ∗ (3 + 4).

function parameters or local variables. We thus use the register stack only to compile
expressions. And we keep function parameters and local variables in the real stack.
As a consequence, the register stack is always empty at the start of each statement.

20.2.2 Stack frames
With the above strategy, a statement such as “let x = f(1, 2);” is compiled into
code “pushing” 1 and 2 in R0 and R1, before calling “f”. And, by hypothesis, the
effect of this call should be to “pop” R0 and R1 and to “push” the result in R0. On
the other hand, during f’s execution, its parameters must be on the stack, as defined
above. We deduce from this that the function arguments should be pushed on the real
stack at some point. Either the caller or the callee can do this, but doing this in the
callee saves code (there can be several call expressions for a single function).

In order to allow the callee to return at the correct instruction, the caller should
use a Branch with Link instruction, as explained in Section 7.2. And the callee should
copy the LR into the PC to return into the caller. As indicated in Section 7.2.4, this
can be done by pushing the LR on the stack at the beginning of each function, and by
popping it into the PC to return from this function.

We implement the above choices with a single PUSH instruction at the beginning
of each function. This instruction pushes the registers R0 to Ra− 1, and the LR, onto
the stack, where a is the function’s arity. This has several consequences:

• each stack frame contains, from bottom to top, the saved Link Register value, the
function parameters in reverse order, and the local variables in the order they are
declared (see Figure 20.2). The function parameters are in reverse order due to the
way the PUSH instruction works (see Figure 7.4).
• the stack frame slot index of the ith function parameter is a− i, instead of i in the

bytecode interpreter. And the stack frame slot index of the ith local variable is
a+ 1 + i, instead of a+ 4 + i in the interpreter (see Figure 20.2).
• function call expressions must always “push” their arguments in R0 to Ra− 1 and

not, for instance, in R1 to Ra. This is discussed in Section 20.2.4.

20.2.3 Function parameters and local variables
In order to use a function parameter or a local variable with stack frame slot index s
we first need to compute its address on the stack. For this two methods can be used.
We can either subtract 4s from the Frame Pointer, or add 4(frame_size − s) to the
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slot index s

0
1
2
3
4
5

address

FP-4*0
FP-4*1
FP-4*2
FP-4*3
FP-4*4
FP-4*5

address

SP+4*(5-0)
SP+4*(5-1)
SP+4*(5-2)
SP+4*(5-3)
SP+4*(5-4)
SP+4*(5-5)

LR
arg2
arg1
arg0
x0
x1

FP
...

SP

arity a = 3

frame_size = 5

FIGURE 20.2 Each stack frame contains the saved Link Register (blue), the function
parameters in reverse order (gray), and the local variables (light gray). The address
of each slot s can be computed with FP−4s or SP+4(frame_size − s) (left).

Stack Pointer, where frame_size is the number of slots in the stack frame, minus 1
(see Figure 20.2). The bytecode interpreter uses the first method because this avoids
updating frame_size each time a value is pushed or popped from the stack. Here
however we don’t need to update it during execution. Instead, the compiler can keep
track of its value during compilation. Indeed, frame_size is initially equal to the
function’s arity a, and increases by one after each let statement. We thus use the
second method, which has the advantage of not requiring a Frame Pointer register.

20.2.4 Function calls
As explained above, a function call must be compiled into code pushing the arguments
in the R0 to Ra− 1 registers, where a is the function’s arity. This is what naturally
happens for a statement such as “f(1, 2);”, but not for “f(1, g(2, 3));”. In this
case, before the call to g, 2 and 3 would be R1 and R2 instead of R0 and R1 (because
R0 contains 1). To solve this issue we emit code saving the register stack on the real
stack before compiling a call expression. And we emit code restoring these registers
after the call returns.

A consequence of the register stack algorithm is that a “return e;” statement is
always compiled into code pushing e’s value in R0. This works fine in a case such as
“let x = f(1, 2);”, which is supposed to pop 1 and 2 from R0 and R1, and to push
the result in R0. But this does not work for the nested call in “f(1, g(2, 3));”. In
this case, we want the result of g in R1, because the arguments of f must be in R0 and
R1. To solve this issue we emit code copying R0 into R1, before restoring R0’s value
from the real stack.

In summary, a function call is compiled as follows, where n is the size of the
register stack, t is the function’s return type, and a its arity (see Figure 20.3):

1. set n0 to n
2. if n > 0 emit code to PUSH R0. . .Rn− 1; increase frame_size by n; set n to 0
3. emit code to compute and “push” the arguments in R0. . .Ra− 1
4. emit a Branch with Link instruction to call the function
5. if t is void set n to n0. Otherwise write code to copy R0 in Rn0; set n to n0 + 1
6. if n0 > 0 generate code to POP R0. . .Rn0 − 1; decrease frame_size by n0

356



20.2 Algorithms

...

R0
1 2

R1 R2 R3 R0 R1 R2 R3 R0 R1 R2 R3 R0 R1 R2 R3 R0 R1 R2 R3 R0 R1 R2 R3

2
1

...
2
1

...
2
1

...
2
1

... ...

3 4 7 7 7 1 2 7

st
ep

2

st
ep

3

st
ep

4

st
ep

5

st
ep

6

FIGURE 20.3 From left to right, the call to g in f(1, 2, g(3, 4)) saves f’s arguments
on the stack, evaluates g’s arguments in R0 and R1, calls g, copies its result from R0
to R2, and restores f’s arguments from the stack.

Note that this algorithm does not work if a is larger than the number of available
registers. More generally, the register stack algorithm does not work for complex
expressions requiring more registers than available. In such cases, to simplify the
compiler, we simply raise an error. The user should then refactor their code to avoid it.

In theory there are 13 available registers (the other 3 are used for the SP, LR, and
PC). In practice, however, we restrict ourselves to only 8, because using registers R8
to R12 generally requires 32 bits instructions with complex encodings.

20.2.5 Label and function placeholders and symbols
An ifeq instruction is encoded as one byte for the opcode, and 2 bytes for the jump
offset. When this offset is not yet known, a 16 bits placeholder is used instead. The
equivalent native code requires a “CMP IT B” instruction sequence, the last one
containing an 11 bits offset. To simplify we keep 16 bits placeholders, which are thus
now filled with a complete B instruction (instead of its offset only).

Similarly, a call instruction is encoded as one byte for the opcode, and 2 bytes
for the argument. When this argument is not yet known, a 16 bits placeholder is used
instead. The equivalent native code requires a 32 bits BL instruction, containing a 22
bits offset split in two parts. Here again, to simplify, we use 32 bits placeholders for
complete BL instructions. This allows us to store, in each placeholder, the previous
placeholder’s address, instead of its offset.

Currently the value of a function name symbol is the argument to use in a call
instruction to call this function. This cannot be generalized to the argument to use
in a BL instruction, because this argument depends on the instruction’s address (see
Section 7.3.3). Hence we redefine the value of a function name symbol as the dst
address of the function’s first instruction.

20.2.6 Error handling
The current implementation of the panic and panic_result functions assumes that
each stack frame contains 4 saved register values. Since this is not the case of the
layout depicted in Figure 20.2, we need to re-implement these functions. The general
idea stays the same: panic_result should save everything which is needed for panic
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to return directly in the panic_result caller. This includes the LR, the SP (which
replaces the FP), and nothing else. Saving the LR and the SP values is easy, but
restoring the SP is not possible unless panic is written directly in native code. To
simplify we implement both functions in native code, and we save the SP and LR
registers in R11 and R12, respectively (they are not used anywhere else since the
register stack is restricted to R0. . .R7).

20.3 Implementation
We can now extend our compiler in order to generate native code. As usual, this must
be done in two steps, first without using native code, then with it. To save space, we
give the two compiler versions at the same time.

Since the compiler must generate position independent code it no longer needs the
flash_buffer parameter, which is thus removed from the main function (we keep it,
unused, in the 1st version, to simplify the compilation steps in Section 20.4):
fn tc_main(src_buffer: &u32, dst_buffer: &u32) -> u32;
fn main(src_buffer: &u32, dst_buffer: &u32, flash_buffer: &u32) -> u32 {

return tc_main(src_buffer, dst_buffer);
}

The following functions are rewritten in native code in the 2nd version. This
is not necessary but it illustrates how native functions can be implemented. An
important thing to note is that native functions do not have a stack frame by default.
This is because they don’t have a PUSH instruction to create this stack frame (see
Section 20.2.2), unless one is added explicitly. Most of the time this is not necessary.
Consider for instance the load8 function. When it is called its argument is in R0 by
hypothesis, and the LR contains the return address. The result must be put in R0,
which can be done with a single LDRB instruction (see Section 7.3.2). Returning
to the caller is then done by copying the LR into the PC. The 3 other functions are
implemented in the same way.
fn load8(ptr: &u32) -> u32 { return (*ptr) & 255; }
fn load16(ptr: &u32) -> u32 { return (*ptr) & 65535; }
fn store8(ptr: &u32, value: u32) { *ptr = (*ptr) & 4294967040 | value; }
fn store16(ptr: &u32, value: u32) { *ptr = (*ptr) & 4294901760 | value; }
fn load8(ptr: &u32) -> u32 [ /*LDRB_R0_R0_0*/30720; /*MOV_PC_LR*/18167; ]
fn load16(ptr: &u32) -> u32 [ /*LDRH_R0_R0_0*/34816; /*MOV_PC_LR*/18167; ]
fn store8(ptr: &u32, value: u32) [ /*STRB_R1_R0_0*/28673; /*MOV_PC_LR*/181 ≀

≀67; ]
fn store16(ptr: &u32, value: u32) [ /*STRH_R1_R0_0*/32769; /*MOV_PC_LR*/18 ≀

≀167; ]

As explained above, panic_result copies the SP and the LR in R11 and R12.
Since it does not have its own stack frame, this copies the correct SP value, i.e., the one
from the caller. It then returns 0 in R0. When panic is called error is in R0, which is
where the panic_result caller expects it. Hence panic only needs to restore the SP
from R11, and to return in the panic_result caller by copying R12 into the PC.
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const PANIC_BUFFER: &&u32 = 1074666152;
fn panic_copy(src: &u32, dst: &u32) {

*dst = *src;
*(dst + 4) = *(src + 4);
*(dst + 8) = *(src + 8);
*(dst + 12) = *(src + 12);

}
fn panic_result(ptr: &u32) -> u32 {

panic_copy(&ptr as &u32 - 16, ptr);
*PANIC_BUFFER = ptr;
return 0;

}
fn panic(error: u32) -> u32 {

panic_copy(*PANIC_BUFFER, &error - 16);
return error;

}
fn panic_result() -> u32 [

/*MOV_R11_SP*/18155;
/*MOV_R12_LR*/18164;
/*MOV_R0_0*/8192;
/*MOV_PC_LR*/18167;

]
fn panic(error: u32) [ /*MOV_SP_R11*/18141; /*MOV_PC_R12*/18151; ]

20.3.1 Shared constants and data structures
This part is unchanged except at the very end, where flash_offset is removed
from the Compiler struct, and replaced with next_register and frame_size. The
former contains the register stack size noted n in Section 20.2.1. The latter holds the
frame_size variable defined in Section 20.2.3. Unchanged parts are not shown.

fn_return_type: &Symbol,
next_register: u32,
frame_size: u32

}

20.3.2 Backend
The scanner is completely unchanged and is not shown. The first 4 backend functions,
from mem_allocate to tc_write32, are unchanged and not shown. But the rest of
the backend is almost entirely rewritten. We start with low level functions to encode
and write individual instructions. Native instructions must always be stored at even
addresses. The following function writes a 0 byte if dst is odd, to make it even:
fn tc_write_padding(self: &Compiler) {

if self.dst as u32 & 1 == 1 { tc_write8(self, 0); }
}
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If top = 0 the following function writes a MOVW: Rz ← c3:c2:c1:c0 instruction
to store the 16 least significant bits of c in Rz. If top = 1 is writes a MOVT instruction
instead. It computes the subparts c0, c1, c2, and c3 of c as described in Section 7.3.1,
and shifts them to their correct location. For instance, “(c >> 8) & 7” computes c1,
which is then shifted by 28 bits (“& 1”, “& 7”, “& 15”, and “& 255” keep only the 1,
3, 4 and 8 least significant bits of the left hand side, respectively).

fn tc_write_move16_insn(self: &Compiler, z: u32, c: u32, top: u32) {
tc_write32(self, /*MOVW_RZ_C*/62016 | (((c >> 8) & 7) << 28) |

(z << 24) | ((c & 255) << 16) | (((c >> 11) & 1) << 10) |
(top << 7) | ((c >> 12) & 15));

}

The next function writes an ADD: Rz ← Rx + Ry or SUB: Rz ← Rx − Ry
instruction with x = z. op must be the instruction’s encoding for x = y = z = 0.

fn tc_write_add_or_sub_insn(self: &Compiler, op: u32, z: u32, y: u32) {
tc_write16(self, op | (y << 6) | (z << 3) | z);

}

This function writes an ADD: Rz ← Rz+c or ADD: Rz ← SP+4∗c instruction.
op must be the instruction’s encoding for z = c = 0.

fn tc_write_add_const_insn(self: &Compiler, op: u32, z: u32, c: u32) {
if c > 255 { panic(100); }
tc_write16(self, op | (z << 8) | c);

}

The following function is similar. It can be used to write a MUL: Rz ← Rz ∗Rx,
AND: Rz ← Rz ∧ Rx, ORR: Rz ← Rz ∨ Rx, LSL: Rz ← Rz ≪ (Rx mod 32) or
LSR: Rz ← Rz ≫ (Rx mod 32) instruction:

fn tc_write_math_insn(self: &Compiler, op: u32, z: u32, x: u32) {
tc_write16(self, op | (x << 3) | z);

}

The next function is intended to be used for LDR: Rz ← mem32[SP + 4 ∗ c]
and STR: Rz → mem32[SP + 4 ∗ c]. The following one is designed for the LDR:
Rz ← mem32[Rx+ 4 ∗ c] and STR: Rz → mem32[Rx+ 4 ∗ c] instructions.

fn tc_write_stack_insn(self: &Compiler, op: u32, z: u32, c: u32) {
if c > 255 { panic(101); }
tc_write16(self, op | (z << 8) | c);

}
fn tc_write_heap_insn(self: &Compiler, op: u32, z: u32, x: u32, c: u32) {

if c > 31 { panic(102); }
tc_write16(self, op | (c << 6) | (x << 3) | z);

}

The following function returns the encoding of a B: PC← PC+ signed12(2 ∗ c)
instruction jumping to target , to be written at dst . For this it uses c = (target−pc)/2 ,
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where pc = dst + 4 is the PC value when the instruction is executed. The next one
does the same for a BL: PC← PC + signed23(2 ∗ c1:c0),LR← a+ 5 instruction.
Note that these functions return position independent code, because the offset between
dst and target does not change if the code is moved elsewhere.

fn tc_get_branch_insn(dst: &u32, target: &u32) -> u32 {
let pc = dst + 4;
if target >= pc + 2048 || pc > target + 2048 { panic(103); }
return /*B_2C*/57344 | (((target - pc) & /*(1<<12)-1*/4095) >> 1);

}
fn tc_get_branch_with_link_insn(dst: &u32, target: &u32) -> u32 {

let pc = dst + 4;
if target >= pc + 4194304 || pc > target + 4194304 { panic(104); }
let offset = (target - pc) & /*(1<<23)-1*/8388607;
return /*BL_2C*/4160811008 | ((offset & 4095) << 15) | (offset >> 12);

}

The next function is unchanged, but tc_fill_placeholders is rewritten for
function call placeholders only. As described above, these placeholders are now 32
bits wide, contain the address of the previous placeholder (or null for the first one),
and are filled with a complete BL instruction.

fn tc_write_placeholder(self: &Compiler, placeholder_p: &&u32) {
let new_placeholder = self.dst;
let last_placeholder = *placeholder_p;
*placeholder_p = new_placeholder;
if last_placeholder == null { last_placeholder = new_placeholder; }
tc_write16(self, new_placeholder - last_placeholder);

}
fn tc_fill_placeholders(placeholder: &u32, value: u32) {
let previous: &u32 = null;
while placeholder != null {
previous = *placeholder as &u32;
*placeholder = tc_get_branch_with_link_insn(placeholder, value as &u32 ≀

≀);
placeholder = previous;

}
}

As a consequence, tc_fill_label_placeholders, which was calling the above
function, is rewritten to keep 16 bits placeholders. However, it now fills them with
complete B instructions, as explained above.

fn tc_fill_label_placeholders(self: &Compiler, placeholder: &u32) {
let offset = 0;
while placeholder != null {
offset = load16(placeholder);
store16(placeholder, tc_get_branch_insn(placeholder, self.dst));
if offset == 0 { break; }
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placeholder = placeholder - offset;
}

}

We then add two functions related to the register stack. The first one increments the
register stack size and returns its previous value. The second one writes code to push
on the stack the first n registers, R0 to Rn− 1, and the LR if link_register = 1.
It then increments frame_size by n and clears the register stack.
const MAX_REGISTERS: u32 = 8;
fn tc_new_register(self: &Compiler) -> u32 {

let register = self.next_register;
if register >= MAX_REGISTERS { panic(105); }
self.next_register = register + 1;
return register;

}
fn tc_save_registers(self: &Compiler, n: u32, link_register: u32) {

tc_write16(self, /*PUSH*/46080 | (link_register << 8) | ((1 << n) - 1));
self.frame_size = self.frame_size + n;
self.next_register = 0;

}

The remaining functions are not new but are rewritten in order to generate native
code, thanks to the above functions. The first one writes code to push value on the
register stack, while trying to minimize the size of the generated code.
fn tc_write_cst_insn(self: &Compiler, value: u32) {

let register = tc_new_register(self);
if value < 256 {
tc_write16(self, /*MOV_RZ_C*/8192 | (register << 8) | value);

} else {
tc_write_move16_insn(self, register, value, 0);
if (value >> 16) != 0 {

tc_write_move16_insn(self, register, value >> 16, 1);
}

}
}

The next function generates code to push dst on the register stack. In order to
get position independent code, an ADR: Rz ← ⌊PC⌋4 − c2:c1:c0 instruction is used
with the offset between itself and dst as argument (which does not change if the code
is moved). As required by ADR, offset is computed as ⌊PC⌋4 − dst , where PC is
the instruction’s address plus 4.
fn tc_write_static_insn(self: &Compiler, dst: u32) {

let z = tc_new_register(self);
let offset = (((self.dst as u32 + 4) >> 2) << 2) - dst;
if offset > 4095 { panic(106); }
tc_write32(self, /*ADR_RZ_C*/62127 | (((offset >> 8) & 7) << 28) |

(z << 24) | ((offset & 255) << 16) | (((offset >> 11) & 1) << 10));
}
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The next function writes code which pops the top 2 registers Rz and Ry, combines
them with the operation corresponding to token , and pushes the result back in Rz.

fn tc_write_binary_insn(self: &Compiler, token: u32) {
let y = self.next_register - 1;
let z = y - 1;
if token == TC_ADD {
tc_write_add_or_sub_insn(self, /*ADD_RZ_RX_RY*/6144, z, y);

} else if token == TC_SUB {
tc_write_add_or_sub_insn(self, /*SUB_RZ_RX_RY*/6656, z, y);

} else if token == TC_MUL {
tc_write_math_insn(self, /*MUL_RZ_RZ_RX*/17216, z, y);

} else if token == TC_DIV {
tc_write32(self, /*UDIV_RZ_RX_RY*/4042324912 | z << 24 | y << 16 | z);

} else if token == TC_BIT_AND {
tc_write_math_insn(self, /*AND_RZ_RZ_RX*/16384, z, y);

} else if token == TC_BIT_OR {
tc_write_math_insn(self, /*ORR_RZ_RZ_RX*/17152, z, y);

} else if token == TC_SHIFT_LEFT {
tc_write_math_insn(self, /*LSL_RZ_RZ_RX*/16512, z, y);

} else {
tc_write_math_insn(self, /*LSR_RZ_RZ_RX*/16576, z, y);

}
self.next_register = y;

}

A conditional jump requires 3 instructions in native code. A CMP and an IT
instruction are needed to skip a B instruction (here a placeholder) if the top 2 registers
do not meet the jump condition (these registers are necessarily R0 and R1 since boolean
expressions can’t be used in other expressions). IF_THEN_CONDITION contains the IT
arguments corresponding to the <, =, >, ≤, ̸=, and ≥ conditions, respectively (see
Section 7.3.4).

static IF_THEN_CONDITION = [48, 0, 128, 144, 16, 32];
fn tc_write_jump_insn(self: &Compiler, token: u32, placeholder_p: &&u32) {

tc_write16(self, /*CMP_R0_R1*/17032);
tc_write16(self, /*IT*/48904 | load8(IF_THEN_CONDITION + token - TC_LT));
tc_write_placeholder(self, placeholder_p);
self.next_register = 0;

}
fn tc_write_goto_insn(self: &Compiler, placeholder_p: &&u32) {
tc_write_placeholder(self, placeholder_p);

}
fn tc_write_loop_insn(self: &Compiler, loop_dst: &u32) {
tc_write16(self, tc_get_branch_insn(self.dst, loop_dst));

}

On the other hand, loading the value of a field can be done with a single native
instruction, instead of 3 bytecode instructions. Indeed a single LDR instruction can
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add 4.field to the struct’s address, popped from the register stack, and push back the
value at the resulting address.
fn tc_write_load_insn(self: &Compiler, field: u32) {

let z = self.next_register - 1;
tc_write_heap_insn(self, /*LDR_RZ_RX_4C*/26624, z, z, field);

}

Erasing a load instruction was previously erasing only the 3rd instruction written
by tc_write_load_insn. This was leaving the field’s address on the stack which,
consequently, didn’t have to be recomputed to store a value in it. Erasing a load
instruction now deletes it completely. The field address must thus be recomputed in the
following function. This is done with a STR instruction, adding 4.field to the struct’s
address in Rx, and storing Rz at the resulting address. Since tc_write_store_insn
is only used to compile assignments, and since the register stack is always empty at
the start of a statement, we necessarily have x = 0 and z = 1.
fn tc_erase_load_insn(self: &Compiler) { self.dst = self.dst - 2; }
fn tc_write_store_insn(self: &Compiler, field: u32) {

tc_write_heap_insn(self, /*STR_RZ_RX_4C*/24576, 1, 0, field);
self.next_register = 0;

}

For the same reason the following function, called after tc_erase_load_insn,
and which previously had nothing to do, must now write an instruction adding 4.field
to the top register:
fn tc_write_address_of_insn(self: &Compiler, field: u32) {
let z = self.next_register - 1;
if field != 0 {
tc_write_add_const_insn(self, /*ADD_RZ_RZ_C*/12288, z, field << 2);

}
}

As explained in Section 20.2.3 a function parameter or local variable is now ac-
cessed by adding 4(frame_size−variable) to the SP, where variable is its stack frame
slot index. Note that the register stack size is always 1 when tc_write_set_insn
and tc_write_pop_insn are called (they are only used to compile assignment and
expression statements, respectively).
fn tc_write_ptr_insn(self: &Compiler, variable: u32) {

tc_write_add_const_insn(self, /*ADD_RZ_SP_4C*/43008,
tc_new_register(self), self.frame_size - variable);

}
fn tc_write_get_insn(self: &Compiler, variable: u32) {

tc_write_stack_insn(self, /*LDR_RZ_SP_4C*/38912,
tc_new_register(self), self.frame_size - variable);

}
fn tc_erase_get_insn(self: &Compiler) {

self.dst = self.dst - 2;
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self.next_register = self.next_register - 1;
}
fn tc_write_set_insn(self: &Compiler, variable: u32) {
tc_write_stack_insn(self, /*STR_RZ_SP_4C*/36864, 0, self.frame_size - va ≀

≀riable);
self.next_register = 0;

}
fn tc_write_pop_insn(self: &Compiler) { self.next_register = 0; }

The next function writes a PUSH instruction at the beginning of a function to create
its stack frame, initially containing the function parameters and the saved Link Register
value. The value of a function name symbol is now fn_dst (see Section 20.2.5).

fn tc_write_fn_insn(self: &Compiler, arity: u32) {
if arity > MAX_REGISTERS { panic(107); }
self.frame_size = 0;
tc_save_registers(self, arity, 1);

}
fn tc_get_fn_value(self: &Compiler, fn_dst: u32) -> u32 { return fn_dst; }

The next function implements steps 4 to 6 of the algorithm in Section 20.2.4 (the
new saved_registers parameter corresponds to n0; steps 1 to 3 are done by the caller).

fn tc_write_call_insn(self: &Compiler, function: &Symbol, saved_registers: ≀
≀ u32)

{
let dst = self.dst;
if function.kind == SYM_FORWARD_FN {
tc_write32(self, function.value);
function.value = dst as u32;

} else {
tc_write32(self, tc_get_branch_with_link_insn(dst, function.value as & ≀

≀u32));
}
if function.type.kind != SYM_VOID {
if saved_registers != 0 {

tc_write16(self, /*MOV_RZ_R0*/17920 | saved_registers);
}
if saved_registers >= MAX_REGISTERS { panic(108); }
self.next_register = saved_registers + 1;

} else {
self.next_register = saved_registers;

}
if saved_registers != 0 {
tc_write16(self, /*POP*/48128 | ((1 << saved_registers) - 1));
self.frame_size = self.frame_size - saved_registers;

}
}
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In order to return from a function the first step is to adjust the SP to point to the
saved LR value, at the bottom of the function’s stack frame. Popping this value into
the PC then returns to the caller.
fn tc_write_return_insn(self: &Compiler) {

let offset = self.frame_size;
if offset > 127 { panic(109); }
if offset != 0 { tc_write16(self, /*ADD_SP_SP_4C*/45056 | offset); }
tc_write16(self, /*POP_PC*/48384);
self.next_register = 0;

}

20.3.3 Parser
The parser is extended in order to support native functions. We also add the possibility
to use function names in expressions, which evaluate to their address. Finally, a few
parser functions need to be updated due to the changes in the backend. The first
one is tc_parse_static. Native instructions must be stored at even addresses, but
a static block may add an odd number of bytes between instructions. To fix this
we add some padding if necessary (unchanged functions are not shown; an ellipsis
replaces some unchanged statements):
fn tc_parse_static(self: &Compiler) {

tc_parse_token(self, TC_STATIC);
...
tc_parse_token(self, ';');
tc_write_padding(self);

}

In order to support function names as u32 expressions we add a special case for
SYM_FN symbols in the following function:
fn tc_push_symbol_value(self: &Compiler, symbol: &Symbol) -> &Value {
...

if symbol.kind == SYM_FN {
return tc_push_value(self, origin, symbol.value, null, 0);

}
return tc_push_value(self, origin, symbol.value, symbol.type, symbol.dim ≀

≀);
}

The function below is updated to write code saving the register stack on the real
stack (steps 1 and 2 in Section 20.2.4) before compiling the function arguments:
fn tc_parse_fn_arguments(self: &Compiler, function: &Symbol) {
...

tc_parse_token(self, '(');
let next_register = self.next_register;
if next_register != 0 {
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tc_save_registers(self, next_register, 0);
}
let argument_count = 0;
while self.next_token != ')' {

if argument_count > 0 { tc_parse_token(self, ','); }
tc_parse_expr(self);
argument_count = argument_count + 1;

}
tc_read_token(self);
tc_check_fn_arguments(self, function, argument_count);
tc_write_call_insn(self, function, next_register);

}

Another change is needed in the following function in order allow SYM_FN symbols
in expressions (which can be compiled in the same way as SYM_STATIC symbols).

fn tc_parse_primitive_expr(self: &Compiler) {
let symbol: &Symbol = null;

...
} else if symbol.kind == SYM_STATIC || symbol.kind == SYM_FN {

tc_write_static_insn(self, symbol.value);
...
}

The function compiling a let statement must also be updated, in order to generate
code pushing on the stack the right hand side value, in R0 (this value was previously
produced directly on the stack).

fn tc_parse_let_stmt(self: &Compiler, variable: u32) -> u32 {
tc_parse_token(self, TC_LET);

...
tc_add_symbol(self, name, length, SYM_VARIABLE, variable, type, dim);
tc_save_registers(self, 1, 0);
return variable + 1;

}

A new function is added just before tc_parse_fn_body. It parses and compiles
the new syntax for native functions. Each integer simply needs to be written in the
dst buffer, using either 16 or 32 bits depending on its value (32 bits instructions have
bits 11 to 15 greater than 111002 = 28 – see Section A5.3 pA5-137 of [17]).

fn tc_parse_fn_asm_body(self: &Compiler) {
let value = 0;
tc_parse_token(self, '[');
while self.next_token != ']' {
value = tc_parse_integer(self);
if (value >> 11) & 31 > 28 {

tc_write32(self, value);
} else {

tc_write16(self, value);
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}
tc_parse_token(self, ';');

}
tc_read_token(self);

}

It is used in the next function, which is also updated to compute the function
parameter and local variable slot indices as described in Section 20.2.2.
fn tc_parse_fn_body(self: &Compiler, function: &Symbol, arity: u32) {

if self.next_token == ';' {
...
}
if self.next_token == '[' {
tc_parse_fn_asm_body(self);
return;

}
let parameter = function.type.next;
while parameter != null {

tc_add_symbol(self, parameter.name, parameter.length, SYM_VARIABLE,
arity - parameter.value, parameter.type, parameter.dim);

parameter = parameter.next;
}
tc_parse_token(self, '{');
tc_write_fn_insn(self, arity);
let next_variable = arity + 1;

...
}

Finally, the 4 panic variables are removed from the main function, since they are
no longer needed by the native panic_result function. The flash_buffer parameter
is also removed, and a test is added to make sure that dst_buffer is word aligned, i.e.,
is a multiple of 4. Indeed the generated code is not fully position independent: it can
only be moved by ±4n bytes, due to the ADR instruction. We assume here that it will
be run at a word aligned address, which requires it to generated at such an address.
fn tc_main(src_buffer: &u32, dst_buffer: &u32) -> u32 {
...

compiler.symbols = null;
let panic3 = 0;
let panic2 = 0;
let panic1 = 0;
let panic0 = 0;
error = panic_result(&panic0);

...
if (dst_buffer as u32) & 3 != 0 { panic(110); }
tc_read_char(compiler);

...
}
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20.4 Compilation and tests
To compile the above source code proceed as follows (see also Figure 16.4).

Edit v1 In the command editor, type “F3”+“r” and “F4”+“r” to load and edit the
current compiler version. Then update it to the 1st version of the native compiler.
For convenience, we also provide this code in the native_compiler_v1.txt file in
https://ebruneton.github.io/toypc/sources.zip. When you are done, exit the text editor
and type “F5”+“r” to save your work. Alternatively, you can “cheat” by running the
following command on an external computer (see Section 16.4 for more details):
user@host:~$ python3 flash_helper.py < part3/native_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed.
If all goes well, after about 4 seconds, you should get a result equal to 0 (meaning
that no error was found). If this is not the case use Appendix D to get the error code
meaning, fix this error, save the program and compile it again. Repeat this process
until the compilation is successful. Then type “F7”+“r” to save the result.

Test v1 Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the
following small test program, which computes the factorial of 6:

fn factorial(n: u32) -> u32;
fn test() -> u32 { return factorial(6); }
fn factorial(n: u32) -> u32 {

if n == 0 { return 1; }
return factorial(n - 1) * n;

}

Compiling this program with the native compiler is easy, but running it is harder
since its compiled code is using native instructions. One issue is that this code uses
some registers also used by the bytecode interpreter. Another is that it returns the
result in R0, but a command must return it on the stack. To solve these issues we need
a small adapter subroutine using native code:

PUSH R0..R6 LR→ stack 1111111010101101 B57F 000

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000000010010 4802 002

BLX PC← R0− 1,LR← a+ 3 0000000111100010 4780 004

LDR R1← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000010010010 4902 006

STR R0→ mem32[R1 + 4 ∗ 0] 0001000000000110 6008 008

POP R0..R6 PC ← stack 1111111010111101 BD7F 00A
data (program address) 00000000 00C
data (result address) 00000000 010

00000000 00000000 BD7F6008 49024780 4802B57F 000

This subroutine saves the registers used by the bytecode interpreter (and the LR),
loads the interworking address of the test program in R0, calls it, loads an address
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where to store the result in R1, and stores it here. Finally, it restores the saved registers
and returns. It is followed by two placeholders for the program and result addresses.
To run it we can store it on the stack, as we did for the page_flash function. For this,
type “F9”+“e” to edit this command and change its code to the following:
fn 0

cst 537330176 cst 537379328 cst 803328 call 4612
get 4 cst_0 ifne 53
ptr 4 cst 537379333 cst 3179241480 cst 1224886144 cst 1208137087
ptr 9 cst_1 add blx
get 4 retv

d TEST_COMPILER

Then type Escape and “s” to save it. The 3rd line of the function’s body pushes
each word of the subroutine code on the stack, in reverse order (i.e., starting with the
result address, and the test program interworking address 2007C20016+4+1). The
next line computes the interworking address of this subroutine and calls it. Note that
we run the test program directly in RAM, instead of at the flash_buffer address used
to compile it (which is in fact ignored). This is possible because its native code is
position-independent.

Finally, type “r” to run this command. If the result is not 720 = 2D016 this means
that the compiler is wrong. In this case, type “F8”+“r” to restore the types compiler.
Then repeat the previous steps and double check everything until this test passes.

Edit v2 Type “F3”+“r” to load the 1st version of the native compiler and “F4”+“r”
to edit it. Then update it to the 2nd version. For convenience, we also provide this
code in the native_compiler_v2.txt file. Then save this new version with the F5
command. Alternatively, run the following command on an external computer:
user@host:~$ python3 flash_helper.py < part3/native_compiler_v2.txt

Compile v2 Type“F6”+“r” to compile this new code. The result should be 0, meaning
“no error”. If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all
errors are fixed.

Test v2 As in the previous chapter, the compiled code of the 2nd version of the native
compiler is not identical to that of the 1st version. The obvious reason is that the
former (produced by the native compiler) uses native instructions, while the latter
(produced by the types compiler) uses bytecode instructions.

To test the 2nd version we can check that it produces the same native code as the
1st for the same input program, namely the 2nd version of the native compiler itself.
We already have the 2nd version compiled by the 1st. To get the 2nd version compiled
by itself we need a small adapter subroutine, as in the “Test v1” step:

PUSH R0..R6 LR→ stack 1111111010101101 B57F 000

LDR R0← mem32[⌊PC⌋4 + 4 ∗ 4 ] 0010000000010010 4804 002

LDR R1← mem32[⌊PC⌋4 + 4 ∗ 4 ] 0010000010010010 4904 004

LDR R2← mem32[⌊PC⌋4 + 4 ∗ 2 ] 0100000001010010 4A02 006
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BLX PC← R2− 1,LR← a+ 3 0000100111100010 4790 008

LDR R1← mem32[⌊PC⌋4 + 4 ∗ 4 ] 0010000010010010 4904 00A

STR R0→ mem32[R1 + 4 ∗ 0] 0001000000000110 6008 00C

POP R0..R6 PC ← stack 1111111010111101 BD7F 00E
data (program address) 00000000 010
data (src buffer) 00000000 014
data (dst buffer) 00000000 018
data (result address) 00000000 01C

00000000 00000000 BD7F6008 49044790 4A024904 4804B57F 000
00000000 00000000 018

This subroutine saves the registers used by the bytecode interpreter (and the LR).
It then loads the native compiler’s parameters in R0 and R1, and its interworking
address in R2, calls this compiler, loads an address where to store its result in R1, and
stores it here. Finally, it restores the saved registers and returns. It is followed by
placeholders for the program address, its arguments, and a result address. To run it
type “F9”+“e” to edit this command and change its code to the following:

fn 0
cst_0
ptr 4 cst 537391616 cst 537330176 cst 537379333
cst 3179241480 cst 1225017232 cst 1241663748 cst 1208268159
ptr 12 cst_1 add blx
get 4 retv

d TEST_COMPILER

Then type Escape and “s” to save it. The first line of the function’s body initializes
the result value to 0. The next two lines push the subroutine data and instructions,
in reverse order. We use as program address the interworking address of the 2nd

version of the native compiler (2007C20016+4+1), as src_buffer its source code
(2007020016), and as dst_buffer a RAM region 12 KB after the program address
(2007F20016).

Finally, type “r” to run this command, i.e., to compile the 2nd version with itself.
The result should be zero. You should also get it in a fraction of a second, instead
of about 4 seconds in the “Compile v2” step. This is because native code is much
faster than our bytecode interpreter. If the result is not 0 repeat the previous steps
from “Edit v2” and double check everything.

To check if the generated code, at address 2007F20016, is identical to that
produced with the 1st version (at address 2007C20016) we need to update the “F10”
command first (this command currently compares the buffers at addresses C120016
and 2007C20016). Type “F10”+“e” to edit it and change its second line as follows:

fn 0
cst 537379328 cst 537391616
get 4 load cst8 4 add
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cst_0
get 7 get 6 ifge 50
get 4 get 7 add call 960 get 5 get 7 add call 960 ifne 50
cst_1 add goto 19
get 6 get 7 sub retv

d COMPARE_COMPILED_CODE

Then type Escape and “s” to save it. Finally, type “r” to run it. The result should be
0, indicating that the two compiler versions produced the same compiled code. If
this is not the case, repeat the steps from “Edit v2” until this test passes. It might
also happen that the 1st version is wrong despite the “Test v1” step. In this case type
“F8”+“r” to restore the types compiler and restart from the “Edit v1” step.

In the next part we need both the types compiler and the native compiler, to produce
either bytecode or native code. We currently have a backup of the former at address
E000016, and two copies of the latter at addresses 2007C20016 and 2007F20016.
However, the types compiler code is not position independent and cannot be used
from address E000016. To copy it to its original address, restore its backup by
typing “F8”+“r”. We can then replace this backup, starting at page 512, with the
native compiler. For this type “F8”+“e” to edit this command and replace it with the
following:

fn 0
cst 537379328 cst 512 call 2836
cst_0 retv

d STORE_COMPILED_CODE

The type Escape and “r” to run it. At this stage the flash memory content is the
one depicted in Figure 20.4.
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Conclusion

A compiler transforms a program written in a well defined programming language
into instructions for a real or virtual machine. For this it decomposes the program
into a sequence of tokens, checks that these tokens follow the language’s grammar,
and finally generates instructions based on the program’s grammatical structure. In
this part we built a very basic compiler, for a very simple language, via successive
improvements. Starting from a simple “text to binary converter” written in binary
form1, we progressively added support for labels, expressions, statements, and types.

The resulting language is much easier to use than machine code instructions, but
can still be improved in many ways. For instance, we could introduce new u8 and
u16 types to represent 8 and 16 bit numbers. Then the compiler could automatically
use LDRB, STRB, LDRH, and STRH instructions to load and store values of these
types in memory. This would be more efficient, and more practical for the user, than
the current load8, store8, load16, and store16 functions. As an another example,
we could introduce a new type to represent a sequence of characters, called a string.
This would be more practical than using a pointer to the first character, plus a variable
containing the total number of characters.

Even without improving the language, the compiler itself can be improved in many
ways, to produce smaller and more efficient code. For instance, an expression such as
(1 << 12) - 1 is currently compiled into instructions to load 1 and 12 into registers,
to shift the former with the latter, to load 1 again in a register, and to subtract it from
the previous result. Instead, the compiler could compute all this during compilation,
and produce a single instruction to load the result (4095) in a register. This would
give both smaller and more efficient code. As another example, already mentioned
in the previous chapter, the compiler could make better use of the registers, to avoid
many instructions copying values between registers and the memory.

Further readings
To learn how these improvements can be implemented, as well as many others, you
can read one of the following books:

• “Compilers: Principles, Techniques, and Tools (2nd Edition)” [2]. This is a classic
textbook about compilers for students in computer science. It covers all parts of a

1We used this starting point because the goal was to program a compiler from scratch. This is more or
less how the very first assembler was written. Nowadays, a new compiler for a new language is written in
an existing language, and compiled with an existing compiler (at least for its first version; it can then be
rewritten in this new language and compiled with itself).
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compiler (scanner, parser, type checking, code generation, code optimization, etc)
and presents for each part the relevant theory and algorithms.
• “Engineering a Compiler” [6]. This book is similar but more recent. Some methods,

such as the Static Single Assignment form, are presented in more details in this
book than in [2]. Others, on the hand, are presented more extensively in [2] (such
as interprocedural analysis).

In addition to these books, it is useful to have some basic knowledge about some
generic algorithms and data structures, and their computational complexity (i.e., how
much time and space they need to run). For this “Introduction to Algorithms, Third
Edition” [7] is a great book.
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Introduction

We now have a toy programming language, hereafter called Toy, which makes it much
easier to program our computer (compared to what it was at the end of Part 2). In
particular, we no longer need to manually keep track of function addresses, instruction
offsets, local variable indices, etc. However, we still need to manually keep track of
the flash memory content with maps such as the one in Figure 20.4. This is necessary
to find unused memory regions where new programs can be stored, without overriding
existing programs or data. Likewise, we need to manually keep track of the RAM
content with maps such as the one in Figure 15.3. This is necessary to find unused
RAM regions where programs can store their data, without overriding the data of
other programs. This manual work is quite tedious and error prone. The main goal of
this part is thus to implement a program which can do it for us. Such a program is
called an operating system.

In the previous part we removed the need of function addresses and local variable
indices by using symbolic names for functions and local variables, and by letting the
compiler maintain a map between the two. We can do the same for programs or other
data stored in flash memory. More precisely, we can use file names to refer to pieces
of data stored in flash memory, hereafter called files, and let the operating system
maintain a map between file names and flash memory addresses. This map must
obviously be stored in flash memory too, otherwise it would be lost after a reset. The
precise way of storing it, as well as the files themselves, is called a file system.

In summary, the main goal of this part is to implement a toy operating system,
based on a file system. Another goal is to eventually get rid of our bytecode interpreter,
since we can now compile programs into native code, which is much faster than
bytecode. This implies rewriting the drivers and programs from the previous parts,
written directly in binary bytecode form, into Toy source code. We achieve these
goals in seven steps, presented in as many chapters:

• Chapter 21 defines of a toy file system and provides corresponding functions to
create, read, write, and delete files. We use them at the end to initialize a new,
empty file system in the Flash0 memory bank (so far we only used the Flash1 bank
– see Figures 6.2 and 6.3).
• Chapter 22 provides a new implementation, in Toy, of the clock, graphics card, and

keyboard drivers from Part 2. We test them at the end with a small program which
simply displays on the screen each key typed on the keyboard, as in Chapter 11.
This time, however, we compile it in native code, and we store it in our file system.
We also implement a boot loader to start it directly after reset, without going
through the memory editor.
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• Chapter 23 provides functions to start and stop programs stored in the file system,
while keeping track of the RAM used by each running program, called processes.
Together with the file system and driver functions, they constitute the first version
of a program called the operating system kernel. This chapter also provides a way
for processes to use services provided by the kernel.
• Chapter 24 extends the kernel with new services providing a simple, unified, and

safe way to use the computer resources. These include the keyboard, the graphics
card, and the files. All these resources are used via byte sequences called streams.
• Chapter 25 provides a better and easier to use version of the command editor, called

a command-line interpreter, or shell. This program is automatically started by the
kernel after a reset. Its role is to start other programs, with commands typed by
the user. This chapter also provides a new implementation of the text editor from
Chapter 14, in Toy. Together with the Toy compiler and the shell, stored in the
file system, this gives an autonomous, self-hosted operating system. This means
that we can edit and recompile its entire source code with itself, without needing
the bytecode interpreter, the memory editor, or any other program written in the
previous parts.
• Chapter 26 illustrates this self-hosting property by using the shell, the text editor,

and the compiler, running with the operating system, to replace its kernel with a new
version. This new version uses the Memory Protection Unit from the microcontroller
to protect the kernel and each program from bugs in other programs.
• Chapter 27 completes our operating system with a few small utility programs, in

particular to list, copy, and delete files. It also provides a better shell version.

Finally, just for fun, we conclude this book with a small game implemented with
our toy computer, in Chapter 28.
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21
CHAPTER

File System

As explained in introduction, the first step to build our toy operating system is to
implement a file system. The goal is to remove the need to manually keep track of
the flash memory content. This chapter defines the requirements for this file system,
presents the data structures used to achieve them, and provides some functions based
on these data structures to create, read, write, and delete files. We test them at the end
with a small program and a test file in a previously initialized file system.

21.1 Requirements
The basic requirements of our file system are the ability to create an empty file with a
given name, to write data in an existing file, to read data from a file, and to delete a
file. We also require the possibility to get the size of a file, and to get a list of all the
existing files.

Flash memory is larger than the RAM, and it should be possible to use files which
fit in flash but not in RAM. For this we require the possibility to read only a small
piece of a file, and to write data in a file piece by piece. More precisely, it should be
possible to append new data at the end of an existing file. To simplify, we do not
require the possibility to insert new data in the middle of a file, nor even to partially
override existing data.

Standard file systems generally support grouping files into a hierarchy of folders.
To simplify, and since we expect to have less than a hundred files in our final system,
we require a flat file system (i.e., non hierarchical). A consequence is that each file
must have a globally unique name. For instance, we cannot have two files named
help.txt. Instead, we need to use names such as text_editor_help.txt and
compiler_help.txt. For this we require the possibility to use “long” file names, up
to 128 characters at least. However, to simplify the implementation:

• file names should only contain printable ASCII characters other than Space.
• file names cannot be changed. To rename a file from x to y, one must thus create a

new file y, copy x’s data into y, and finally delete x.

Standard file systems also generally keep track of the creation and modification
dates of each file, and of which users can read, write or execute it. Here again, to
simplify, we do not require any of these features.
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A B C D E

A B C’D E

FIGURE 21.1 A file system with 5 files stored as contiguous sequences of bytes, one
after the other (top). Adding new bytes to C requires moving it to a new address
(bottom). Gray areas represent unused memory.

A B C D E F G H

A B D E G H

A B D E G H I

FIGURE 21.2 When files are stored as contiguous sequences of bytes, next to each
other (top), and some files are deleted (C, F, middle), the unused memory (gray) can
be too fragmented to store a new file (I). In this case files must be moved to merge
these regions (bottom).

21.2 Data structures
So far each program that we saved in flash memory was stored as a contiguous sequence
of bytes. This is the easiest method when one has to manually store data while keeping
track of the memory content. However, this method has several drawbacks:

• when programs are stored compactly, one after the other, a program cannot be
updated to a larger version without moving it elsewhere (see Figure 21.1).
• if some unused memory is left between each program, to mitigate the above problem,

then this memory is wasted and reduces the total storage capacity.
• even if programs are never updated, and no space is left between them, after some

programs are deleted we can get a lot of small unused memory regions between
them. This can prevent the storage of a new large program, unless the existing ones
are moved next to each other to merge these small regions (see Figure 21.2).

To avoid these issues, most file systems divide the storage into many small blocks
of equal capacity, split each file into “chunks”, and store each chunk in a block (see
Figure 21.3). With this method, contiguous chunks of a file do not need to be stored
in contiguous blocks, nor even in blocks in increasing address order. This solves the
above problems. Indeed:

• as long as there are enough free blocks (i.e., not used by any files), files can be
extended, and new files can be created, without having to move existing data.
• no memory is wasted between files. The only wasted memory is in the last block

of each file whose size is not an exact multiple of the block size. For instance, if
each block contains 200 bytes, a 1250 bytes file uses 6 full blocks and 50 bytes in a
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A0A1 B1 B2A2C0 C1D0 D1D2 D3E4E2 E0 E1 E3 E5B3B0

A0A1 B1 B2A2C0 C1D0 D1D2 D3E4E2 E0 E1 E3 E5 C2C3B3B0

FIGURE 21.3 The same files as in Figure 21.1, stored in a block based file system (top).
Each file is divided in chunks which can be stored in any block, in any order (e.g., A
is divided in 3 chunks A0, A1 and A2). Bottom: adding bytes to a file can be done by
putting them in any free block (in gray), without moving existing data (e.g., chunks
C2 and C3 are added in free blocks on the right).

seventh block, leaving 150 unused bytes (these bytes are not used to store data from
another file, to avoid re-introducing the above issues). On average, we thus get only
one half block of wasted memory per file.

However, this method creates a new problem. Indeed, while an address and a size
were sufficient to keep track of the location of a file (with the first method), we now
need a list of the blocks containing its data. This is a bit more complex, but the pros
outweigh the cons. We therefore use blocks for our toy file system.

21.2.1 File blocks
Block capacity
Our file system is designed to store files in flash memory, which is divided in pages
of 256 bytes each. Moreover, writing into flash memory can only be done one full
page at a time. The most convenient way to build our file system is thus to use blocks
whose capacity is a multiple of 256 bytes. To minimize the wasted memory per file
(one half block on average), we use blocks of exactly 256 bytes.

Block structure
In order to know which blocks contain the data of a file, and in which order, we use a
linked list stored in the blocks themselves. For this we divide each block in two parts
called header and payload, used as follows (see Figure 21.4, where these parts are
shown in white and blue, respectively):

• in each block of a file, except the last one, the first header word stores the address of
the block containing the next file chunk, noted next_block. The payload contains
a 256− h bytes chunk of the file, where h is the header size.

• in the last block the first header word contains the block size s, defined as the header
size plus the payload size. The payload contains the last file chunk (s− h bytes by
definition). The remaining 256− s bytes are unused.

Note that block addresses are larger than or equal to 8000016, the start address of
the flash memory (see Figure 6.3). On the other hand, the size s of a block is less
than or equal to 256. Hence, the value v of the first word of a block unambiguously
indicates if this block has a next block (v > 256) or is the last one (v ≤ 256).
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FIGURE 21.4 The data structures of our file system, illustrated with 6 blocks of 7
words each. The superblock (left) points to the first file and the first free block. The
first block of each file starts with a pointer to the next block (blue arrows), a pointer
to the next file (black arrows), the length of its name, and the name itself (white
background). Here there are 2 files, “A” containing “lorem ipsum” in one block (light
blue), and “Cat” containing “lorem ipsum dolor sit amet” in two blocks (blue). The
last block of each file starts with the total number of bytes used in this block (here
24 and 17). Each free block points to the next one (gray arrows).

File list
In order to maintain the map between file names and flash memory addresses, which
is the main goal of our file system, we use another linked list, also stored in the blocks
themselves. More precisely, we use the header of the first block of each file to store
the following data (after the next_block address, see Figure 21.4):

• the address of the next file’s first block, noted next_file.
• the length of the file name, noted name_length.
• the name_length bytes of the name itself.

With this data structure, finding the address of the first block of a file can be done
by following the next_file links from one file to the next, until the block’s name
matches the one we are looking for. The other blocks of the file can then be found by
following the next_block links.

By definition, the first block of a file has a header sizeh equal to 12+ name_length:
4 bytes each for next_block, next_file, and name_length, and name_length bytes
for the file name. The header of the other file blocks only contain a next_block link
and thus has size h = 4.

Note that we implicitly assumed above that file names fit in the first file block. To
ensure this we restrict them to 256− 12 = 244 characters at most.

21.2.2 Free blocks
In order to create new files, or to append data to an existing file, we need to find blocks
not yet used by any file, called free blocks. For this we use a linked list of all the free
blocks, once again stored in the free blocks themselves. More precisely, we store in

382



21.3 Implementation

nullnull

FIGURE 21.5 The initial state of the file system. All blocks are free and simply point
to the next block in increasing address order. The super block’s first_file pointer
is null because there are initially no files.

the first word of each free block the address of the next free block (or 0 if this is the
last free block – see Figure 21.4).

21.2.3 Super block
In order to use the above linked list of files we need to know where it starts. More
precisely, we need the address of the first block of the first file in this list. Similarly,
for the same reason, we need the address of the first free block in the list of free
blocks. We store these two addresses, noted first_file and first_free_block
respectively, in a special block called the super block (see Figure 21.4). This block
only contains these two addresses, and is stored at a fixed, predefined address.

21.2.4 Initial state
Initially each bit of the flash memory is equal to 1. The first word of each page is
thus initially equal to FFFFFFFF16, which is not a valid next_block or first_file
address. In other words, the flash memory does not initially contain a valid file system
data structure. To solve this we need to explicitly initialize it to a valid state. For
this the simplest is to use a state without any file, where all blocks are free (see
Figure 21.5). This initialization process is called disk formatting.

21.3 Implementation
We can now implement some functions to create, read, write and delete files stored as
described above. These functions have several goals. In this chapter we use some
of them to format the Flash0 memory bank, hereafter called the “disk”. We also
test them by creating a small file, writing data in it, reading it back, and deleting the
file. In the next chapters we use these functions to copy some programs edited and
compiled in the Flash1 memory bank as files on the disk. Finally, we also copy them
in our operating system kernel to implement a disk driver (in addition to the clock,
graphics card and keyboard drivers).

In order to use the above functions we need to put them in some program. We thus
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start a new program here. As in our compiler, we start by declaring a main function,
implemented at the very end, but called from the first function, here called entry
(both return 0 if and only if no error occurred):
fn main() -> u32;
fn entry() -> u32 {
const NVIC_INTERRUPT_SET_ENABLE_REGISTER: &u32 = 3758153984;
const NVIC_INTERRUPT_CLEAR_ENABLE_REGISTER: &u32 = 3758154112;
const USART_ID: u32 = 131072;
*NVIC_INTERRUPT_CLEAR_ENABLE_REGISTER = USART_ID;
let result = main();
*NVIC_INTERRUPT_SET_ENABLE_REGISTER = USART_ID;
return result;

}

Since this program will write data in the Flash0 memory bank, which cannot be
read while writing in it (see Section 6.5.1), the entry function temporarily disables
USART interrupts before calling main (see Section 11.3 and Table 11.2). Otherwise,
a key press during this time would read the Vector Table to find the USART handler
address, which would trigger a Hard Fault since our Vector Table is at address 8000016
in the Flash0 memory bank (see Section 9.6)1.

We continue with two small functions to load and store bytes, copied from the
types compiler, which are needed later on:
fn load8(ptr: &u32) -> u32 { return (*ptr) & 255; }
fn store8(ptr: &u32, value: u32) { *ptr = (*ptr) & 4294967040 | value; }

21.3.1 Data structures
The following types correspond to the data structures defined in the previous section:
struct DiskBlock {

next_block: &DiskBlock
}
struct FileBlock {
next_block: &DiskBlock,
next_file: &FileBlock,
name_length: u32,
name: u32

}
struct SuperBlock {
first_file: &FileBlock,
first_free_block: &DiskBlock

}

A DiskBlock represents either a free block or a file block other than a first file
block. In the first case next_block is either null or points to the next free block. In

1Another solution is to move the Vector Table in RAM. We do this in the next chapter.
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the second case next_block points to the next file block, if its value is larger than 256.
Otherwise it contains the block size (header size plus payload size). The following
functions make it easier to work with this rule:

fn block_next(self: &DiskBlock) -> &DiskBlock {
if self.next_block as u32 <= 256 { return null; }
return self.next_block;

}
fn block_size(self: &DiskBlock) -> &u32 {
return &self.next_block as &u32;

}

The first one returns the next block of a block, or null if there is none. The second
one returns a pointer to the size of a block, assuming that it does not have a next block.

A FileBlock represents the first block of a file. Its name field contains the first
4 characters of the file name (at most). If file is a FileBlock pointer, then the file
name’s ith character is at address &file.name + i.

The SuperBlock points to the first file and the first free block. We store it in page
1 of the Flash0 memory bank, at address 8010016 = 524544 (page 0 must contain a
valid Vector Table in order to boot from flash memory – cf. Section 7.4):

const SUPER_BLOCK: &SuperBlock = 524544;

21.3.2 Reading functions
We can now implement some functions using these block data structures. We start in
this section with functions which only read them, because they are simpler than those
modifying blocks.

We first need a function to find the FileBlock of a file, given its name. Here we
assume that the linked list of files is sorted in alphabetical order, because it is more
convenient for users than an unsorted list. We can thus find a file with a given name n
by comparing it with the name of each file in this list, until a match is found or the file
name is greater than n (by hypothesis the next file names are greater than n too). This
requires the ability to compare two names. The following function does this:

const EQUAL: u32 = 0;
const SMALLER: u32 = 1;
const GREATER: u32 = 2;
fn disk_compare_file_name(file: &FileBlock, name: &u32, length: u32) -> u3 ≀

≀2 {
let file_name_length = file.name_length;
let file_name = &file.name;
let i = 0;
while i < file_name_length && i < length {

if load8(file_name + i) < load8(name + i) { return SMALLER; }
if load8(file_name + i) > load8(name + i) { return GREATER; }
i = i + 1;
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}
if file_name_length < length { return SMALLER; }
if file_name_length > length { return GREATER; }
return EQUAL;

}

It returns EQUAL, SMALLER, or GREATER if the name of file is equal, smaller, or
greater than name, respectively (more precisely than the name starting at address name
and with length characters). Its while loop compares the characters of these names
from left to right, and stops when a difference is found or the end of one name is
reached. If no difference is found names are compared based on their length.

The following function uses it to find a file, with the algorithm described above:
fn disk_find_file(name: &u32, length: u32, previous_file: &&FileBlock) -> ≀

≀&FileBlock {
let file = SUPER_BLOCK.first_file;
let file_name = SMALLER;
while file != null {

file_name = disk_compare_file_name(file, name, length);
if file_name == EQUAL { return file; }
if file_name == GREATER { return null; }
if previous_file != null { *previous_file = file; }
file = file.next_file;

}
return null;

}

If returns the file’s FileBlock, or null if no file was found. If previous_file
is not null it also stores at this address a pointer to the FileBlock immediately
preceding the returned file in the linked list of files (we assume that *previous_file
is initialized to null by the caller).

Once we have a FileBlock we can use it to compute the size of this file, as
follows:
fn disk_get_file_size(file: &FileBlock) -> u32 {

let file_size = 0;
let block = file as &DiskBlock;
let header_size = 12 + file.name_length;
loop {

if block_next(block) == null {
return file_size + *block_size(block) - header_size;

}
file_size = file_size + 256 - header_size;
block = block.next_block;
header_size = 4;

}
}

This function simply adds the payload size of each block of the file, found by
following the next_block links. As described in Section 21.2.1, the payload size is
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256− h for all blocks except the last one, where the header size h is 12 plus the file
name length for the first block, and 4 otherwise. The payload size of the last block is
the block size minus h.

To read the content of a file into some buffer we need to copy memory. We already
have a mem_copy function in our flash memory driver (see Section 13.2), but only in
bytecode form. Since we want to eventually get rid of the bytecode interpreter we
re-implement it here. Actually we only need it to copy data between memory regions
which do not overlap. We thus implement a simpler version instead:
fn mem_copy_non_overlapping(src: &u32, dst: &u32, size: u32) {

let i = 0;
while i < size {

store8(dst + i, load8(src + i));
i = i + 1;

}
}

We use it to implement the following function, which copies up to size bytes,
starting *offset bytes from the file block *block, into dst:
fn disk_read_file(block: &&DiskBlock, offset: &u32, dst: &u32, size: u32) ≀

≀-> u32 {
let available = 0;
loop {

if block_next(*block) == null {
available = *block_size(*block) - *offset;

} else {
available = 256 - *offset;

}
if available >= size {

mem_copy_non_overlapping((*block) as &u32 + *offset, dst, size);
*offset = *offset + size;
return 0;

}
mem_copy_non_overlapping((*block) as &u32 + *offset, dst, available);
if block_next(*block) == null {

return size - available;
}
*block = (*block).next_block;
*offset = 4;
dst = dst + available;
size = size - available;

}
}

This function first computes the number of available bytes in *block, after
*offset, which depends on whether it is the last block or not. If there are more bytes
available than requested, it copies size bytes from this block into dst and returns 0,
meaning that all the requested bytes have been copied. Otherwise it copies all the
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available bytes into dst, and then checks if there is a next block. If not it returns
the number of bytes that were requested but could not be copied because the end of
the file was reached. If there is a next block it repeats the above steps after updating
*block to this next block (whose header size is necessarily 4), and after updating the
destination address and the number of bytes to copy (since available bytes have just
been copied).

Note that if this function returns 0, meaning that the file may have more bytes that
those just read, then *block and *offset contain the correct values to read these
additional bytes with a new call to this function.

21.3.3 Writing functions
This section provides functions to create a file, append data to a file, and delete a file.
This requires the ability to modify blocks, i.e., to modify data in flash memory pages.
We therefore start with some low level functions to do this.

Low level functions
As explained in Section 6.5.1, writing a flash memory page requires storing a value in
the 64 words of this page first, even if we only need to change a single word. Hopefully
the value of these words can be overridden several times before actually writing the
page. This suggests the following strategy to change some words in a page:

1. load the current value of each page word and store it back unchanged.
2. store new value(s) in the desired page word(s).
3. send a “write page” command to flash the page.

The following functions implement steps 1 and 3 of this process (block_write
works as explained in Section 6.5.1; address must be in [8000016,C000016[ =
[524288,786432[):

fn block_read(ptr: &u32) {
let end = ptr + 256;
while ptr < end {

*ptr = *ptr;
ptr = ptr + 4;

}
}
fn block_write(address: u32) {
const EEFC0_COMMAND_REGISTER: &u32 = 1074661892;
const EEFC0_STATUS_REGISTER: &u32 = 1074661896;
const WRITE_PAGE_COMMAND: u32 = 1509949443;
let page = (address - 524288) >> 8;
*EEFC0_COMMAND_REGISTER = WRITE_PAGE_COMMAND | (page << 8);
while *EEFC0_STATUS_REGISTER & 1 != 1 {}

}
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Step 2 depends on each use case, but the important point is that only 32-bit
values can be stored in the page, and only at addresses which are a multiple of 4 (see
Section 6.5.1). In particular, the native STRH and STRB instructions cannot be used
here. The store8 function does not use them but cannot be used either, because loads
do no “see” the effect of stores until the page is flashed (see Section 6.5.1). If it was
called several times to store the bytes of a word, only the last call would have any
effect.

Unfortunately, the payload of a block does not always start and end at a word-
aligned address, as shown in Figure 21.4. We thus sometimes need to store individual
bytes in a block. The following function solves this issue by using an intermediate
buffer word to copy size bytes from src to dst:

fn block_copy_bytes(src: &u32, dst: &u32, size: u32) {
let buffer_size = ((dst as u32) & 3) << 3;
dst = dst - (buffer_size >> 3);
let buffer = *dst & ((1 << buffer_size) - 1);
let i = 0;
while i < size {

if buffer_size == 32 {
*dst = buffer;
dst = dst + 4;
buffer = 0;
buffer_size = 0;

}
buffer = buffer | (load8(src + i) << buffer_size);
buffer_size = buffer_size + 8;
i = i + 1;

}
if buffer_size != 0 { *dst = buffer; }

}

The while loop copies each source byte in buffer, one by one. When this buffer
is full (i.e., when buffer_size is equal to 32 bits), it is stored at dst and cleared.
Otherwise each byte is copied in buffer after the buffer_size bits already used,
and the buffer size is incremented by 8. If the buffer is not empty when the while
loop ends, it is stored at dst too.

The beginning of the function is the most complex part. It initializes the buffer
and rounds dst down to a multiple of 4, as required by the rest of the function. More
precisely, if dst is equal to 4k + r with 0 ≤ r < 4 then this part rounds dst down to
4k and initializes buffer with the first r bytes of the word at 4k:

• the 1st line computes r with (dst as u32) & 3, and buffer_size as 8r = r ≪ 3.
• the 2nd line rounds dst down to 4k (buffer_size >> 3 = buffer_size / 8).
• the 3rd line copies the least significant buffer_size bits of the word at dst into
buffer (1≪ n = 2n and 2n − 1 = a number with n ones in base 2).
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FIGURE 21.6 To create a file the first free block (left) is turned into a FileBlock (right,
in green), removed from the list of free blocks (c), and inserted in the alphabetically
sorted list of files (a, b).

Create file function
In order to create an empty file we need to find a free block, turn it into a properly
initialized FileBlock, insert it in the linked list of files, and remove it from the linked
list of free blocks (see Figure 21.6). If the file name is invalid, if a file with this name
already exists, or if there is no free block the creation fails. We define some error
codes for these cases:

const OK: u32 = 0;
const INVALID_ARGUMENT: u32 = 1;
const ALREADY_EXISTS: u32 = 2;
const OUT_OF_MEMORY: u32 = 3;

and we start a function to create a file by returning them if one of these cases happens:

fn disk_create_file(name: &u32, length: u32, result: &&FileBlock) -> u32 {
if length == 0 || length > 244 { return INVALID_ARGUMENT; }
let i = 0;
while i < length {

if load8(name + i) <= 32 || load8(name + i) >= 127 {
return INVALID_ARGUMENT;

}
i = i + 1;

}
let super_block = SUPER_BLOCK;
let previous_file: &FileBlock = null;
let file = super_block.first_file;
let file_name = SMALLER;
while file != null {

file_name = disk_compare_file_name(file, name, length);
if file_name == EQUAL { return ALREADY_EXISTS; }
if file_name == GREATER { break; }
previous_file = file;
file = file.next_file;

}
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let new_file = super_block.first_free_block as &FileBlock;
if new_file == null { return OUT_OF_MEMORY; }

At this point we have a block for the new file, in new_file, and we know that it
must be inserted between previous_file and file to keep the list in alphabetic order.
We start by updating the next_file link of previous_file (link (a) in Figure 21.6 –
if previous_file is null we update the first_file link instead):

let new_first_file = super_block.first_file;
if previous_file != null {

block_read(previous_file as &u32);
previous_file.next_file = new_file;
block_write(previous_file as u32);

} else {
new_first_file = new_file;

}

We continue by initializing the new file block, after saving in a temporary variable
the address of the second free block, which will become the new first free block:

let new_first_free_block = new_file.next_block;
block_read(new_file as &u32);
*block_size(new_file as &DiskBlock) = 12 + length;
new_file.next_file = file;
new_file.name_length = length;
block_copy_bytes(name, &new_file.name, length);
block_write(new_file as u32);

Finally, we update the super block and store the address of the new file in *result:

block_read(super_block as &u32);
super_block.first_file = new_first_file;
super_block.first_free_block = new_first_free_block;
block_write(super_block as u32);
*result = new_file;
return OK;

}

Write file function
The next function appends size bytes from src to the file whose last block is *block.
It returns OK if the operation succeeds, or OUT_OF_MEMORY if there are not enough free
blocks for this:

fn disk_write_file(block: &&DiskBlock, src: &u32, size: u32) -> u32 {
let super_block = SUPER_BLOCK;
let new_first_free_block = super_block.first_free_block;
let used = *block_size(*block);
let free = 256 - used;
let result = OK;
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loop {
if size <= free {

block_read((*block) as &u32);
*block_size(*block) = used + size;
block_copy_bytes(src, (*block) as &u32 + used, size);
block_write((*block) as u32);
break;

}
if new_first_free_block == null {

result = OUT_OF_MEMORY;
break;

}
block_read((*block) as &u32);
(*block).next_block = new_first_free_block;
block_copy_bytes(src, (*block) as &u32 + used, free);
block_write((*block) as u32);
*block = new_first_free_block;
new_first_free_block = new_first_free_block.next_block;
src = src + free;
size = size - free;
used = 4;
free = 252;

}
if new_first_free_block != super_block.first_free_block {

block_read(super_block as &u32);
super_block.first_free_block = new_first_free_block;
block_write(super_block as u32);

}
return result;

}

It first computes the number of bytes already used in *block, and the number of
free bytes to store new data. If the number of bytes to copy is less than free then it
appends them to *block, updates its header to reflect its new payload size, and returns
OK. Otherwise, at least one free block b is necessary to store the bytes which cannot
be stored in *block. If there is none then it returns OUT_OF_MEMORY. Otherwise it
appends as many bytes as possible to *block (i.e., free bytes), and uses b for the
next_block of *block. It then repeats the above steps with this next block (which
has 4 used bytes and 252 free bytes), after updating the source address and the number
of bytes to write (since free bytes have just been written).

The function always ends by updating the super block, if some free blocks were
used. Note that if it returns OK, then *block contains the new last block of the file, i.e.,
the correct value to append more bytes to this file (with a new call to this function).

Clear and delete file functions
The last disk functions delete a file, or clear all its data without deleting it (yielding
an empty file). Both need a way to recycle some file blocks into free blocks. The
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FIGURE 21.7 To delete the list of blocks starting at block (left) we just need to link
the last one to the first free block (a), and to update first_free_block to block
(right).

following function does this. It adds all the file blocks starting at block (included) to
the list of free blocks, and returns the new first free block (see Figure 21.7):

fn disk_delete_file_blocks(block: &DiskBlock) -> &DiskBlock {
let last_block = block;
while block_next(last_block) != null {

last_block = last_block.next_block;
}
block_read(last_block as &u32);
last_block.next_block = SUPER_BLOCK.first_free_block;
block_write(last_block as u32);
return block;

}

For this it finds the last block of the list starting at block, and sets its next_block
to the current first free block. The first free block then becomes block, but the super
block is not updated to reflect this (the caller must do this instead).

With this function it is easy to clear a file: we just need to delete all its block except
the first one (if there is more than one) and to update the super block accordingly. In
any case we also need to reset the payload size of the first block to 0:

fn disk_clear_file(file: &FileBlock) {
let super_block = SUPER_BLOCK;
let new_first_free_block: &DiskBlock = null;
if block_next(file as &DiskBlock) != null {

new_first_free_block = disk_delete_file_blocks(file.next_block);
block_read(super_block as &u32);
super_block.first_free_block = new_first_free_block;
block_write(super_block as u32);

}
block_read(file as &u32);
*block_size(file as &DiskBlock) = 12 + file.name_length;
block_write(file as u32);

}
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FIGURE 21.8 To remove a file from the list of files (middle left) we just need to
change the next_file link of the previous file to the next file (right, green arrow).

To completely delete a file we need to delete all its blocks, including the first one,
and to remove it from the list of files. For this we need to set the next_file link of
the previous file (given as parameter) to the next file of file (see Figure 21.8 – if there
is no previous file then the super block’s first_file link must be updated instead):
fn disk_delete_file(file: &FileBlock, previous_file: &FileBlock) {

let next_file = file.next_file;
let super_block = SUPER_BLOCK;
let new_first_file = super_block.first_file;
let new_first_free_block = disk_delete_file_blocks(file as &DiskBlock);
if previous_file != null {

block_read(previous_file as &u32);
previous_file.next_file = next_file;
block_write(previous_file as u32);

} else {
new_first_file = next_file;

}
block_read(super_block as &u32);
super_block.first_file = new_first_file;
super_block.first_free_block = new_first_free_block;
block_write(super_block as u32);

}

21.3.4 Disk formatting
In order to use the above functions we first need to format the disk, as illustrated in
Figure 21.5. For this we finally implement the main function as follows:
fn gpu_draw_char(c: u32) = 1125;
fn main() -> u32 {

let super_block = SUPER_BLOCK;
let free_block = (super_block + 256) as &DiskBlock;
let last_free_block = (super_block + 1022 * 256) as &DiskBlock;
block_read(super_block as &u32);
super_block.first_file = null;
super_block.first_free_block = free_block;
block_write(super_block as u32);
while free_block <= last_free_block {
block_read(free_block as &u32);
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if free_block == last_free_block {
free_block.next_block = null;

} else {
free_block.next_block = free_block + 256;

}
block_write(free_block as u32);
free_block = free_block + 256;
gpu_draw_char('.');

}
return 0;

}

After the super block initialization, the while loop initializes 1022 free blocks by
setting their next_block link to the next block, or to null for the last one (the disk
contains 1024 blocks but the first one is reserved for the Vector Table, and the second
one is the super block). Since writing a page takes a few milliseconds this process
takes some time. To monitor its progress we draw a dot on the screen for each free
block, with the gpu_draw_char function.

21.4 Compilation and tests
To type this program we first need to decide where to save it. Indeed, we don’t have a
file system yet. We thus still need to manually keep track of the flash memory content.
We choose to store the source code at address F000016 = 983040 = page 768, and the
compiled code at address C320016 = 799232 = page 50 (8 KB after the start of the
types compiler, which is about 6 KB – see Figure 20.4).

We then need to update the command editor commands to use these new addresses.
In the memory editor, type “w000c1172”+Enter, followed by “r”, to start the command
editor. Then type “F3” and “e” to edit the “load source code” command and update
its code to the following (we call our new program the “builder” since its purpose is
to build our operating system; see also Section 15.4.4):
fn 0

cst 983040 cst 537330176 call 2708
cst_0 retv

d LOAD_BUILDER_SOURCE_CODE

When done, type Escape and “s” to save it. In the same way, update the “save
source code” command (F5) to:
fn 0

cst 537330176 cst 768 call 2836
cst_0 retv

d SAVE_BUILDER_SOURCE_CODE

the “compile source code” command (F6) to:
fn 0
cst 983040 cst 537379328 cst 799232 call 4612 retv

d COMPILE_BUILDER_SOURCE_CODE
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and the “store compiled code” command (F7) to:

fn 0
cst 537379328 cst 50 call 2836
cst 799236 calld retv

d STORE_AND_RUN_COMPILED_BUILDER_CODE

The first line stores the compiled code of the builder in flash memory. The second
line runs it and returns its result (the entry function starts after the 4 bytes header of
the compiled code data buffer).

21.4.1 Disk formatting
We now have everything we need to type our program, compile it and run it. Type
“F2”+“r” to initialize a new text buffer, and “F4”+“r” to edit it. Then type the source
code listed in the previous section. For reference, we also provide this code in the
disk_formatter.txt file in https://ebruneton.github.io/toypc/sources.zip. When
done, type “F5”+“r” to save it, and “F6”+“r” to compile it. The result should be 0,
meaning that the compilation was successful. If not, type “F4”+“r” to fix the error.
The text editor should open right at the error location. Fix the error indicated by the
error code returned by the compiler (see Appendix D), save the program and compile
it again. Repeat this process until the compilation is successful.

Finally, type “F7”+“r” to run it, i.e., to format the disk. You should see dots
appearing on the screen, eventually replaced with 0, meaning that the formatting is
done. To check this you can type “Escape” to exit the command editor and then type
“w00080100”+Enter, “w00080200”+Enter, “w00080300”+Enter, etc to have a look at
the super block and the first few free blocks. The super block should start with 0 and
8020016, and each free block should start with the address of the next one.

21.4.2 Tests
The above steps have only tested that the low level block reading and writing functions
actually work. To test that the other functions work too, we can try to create a file in
our new file system, append data to it, read it back, and finally delete the file. This can
be done with the following code, which starts by creating a file, and returns 1 if the
creation fails:

static NAME = ['m','y','_','f','i','l','e'];
const NAME_LENGTH: u32 = 7;

fn main() -> u32 {
let file: &FileBlock = null;
if disk_create_file(NAME, NAME_LENGTH, &file) != OK { return 1; }

It then initializes 300 bytes in RAM to some known values, starting at address
2008000016 = 537395200, and appends them to the file in two steps. If any step fails
it returns a non-zero value:
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let block = file as &DiskBlock;
let src = 537395200 as &u32;
const SIZE: u32 = 300;
let i = 0;
while i < SIZE {

store8(src + i, i);
i = i + 1;

}
if disk_write_file(&block, src, 150) != OK { return 2; }
if disk_write_file(&block, src + 150, 150) != OK { return 3; }

The following code checks that the file has the expected size, and reads its data
back in RAM, starting 300 bytes after src, in chunks of 64 bytes:

if disk_get_file_size(file) != SIZE { return 4; }
block = file as &DiskBlock;
let offset = 12 + NAME_LENGTH;
let dst = src + SIZE;
while disk_read_file(&block, &offset, dst, 64) == 0 {

dst = dst + 64;
}

It then tests that the data that was read is equal to the data that was written, and
returns a non-zero result if this is not the case:

i = 0;
while i < SIZE {

if *(src + SIZE + i) != *(src + i) {
return 5;

}
i = i + 4;

}

The rest of the code does a few more tests to check that creating another file with
the same name fails, but that deleting it and recreating it works. It finally checks that
the file can be found by its name, and deletes it:

let unused: &FileBlock = null;
if disk_create_file(NAME, NAME_LENGTH, &unused) == OK { return 6; }
disk_delete_file(file, null);
if disk_create_file(NAME, NAME_LENGTH, &unused) != OK { return 7; }
let previous_file: &FileBlock = null;
file = disk_find_file(NAME, NAME_LENGTH, &previous_file);
if file == null { return 8; }
disk_delete_file(file, previous_file);
return 0;

}

To run this test:

• start the command editor, if it is not already running, by typing “w000c1172”+Enter,
followed by “r” in the memory editor.
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• type “F3”+“r” to load the builder source code and “F4”+“r” to edit it. Then delete
all the code after fn gpu_draw_char (included), and type the above code instead.
• when done, type “F5”+“r” to save it, “F6”+“r” to compile it, and finally “F7”+“r”

to run it. The result should be 0, meaning that all tests passed.
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22
CHAPTER

Boot Loader and Drivers

Thanks to our file system we can now store data in flash memory without having to
manually keep track of used and unused regions. Unfortunately, programs stored in
the file system can no longer be run directly from flash memory. Indeed, a program
split in several chunks stored in any order is completely broken, for many reasons.
For instance, execution could “fall through” the end of a chunk, instructions might be
split across chunks, and jump instruction targets might no longer be at their expected
address. We thus need to reassemble a program into a contiguous sequence of bytes
before we can run it. This is called loading a program.

A program can be loaded with disk_read_file, but this means that we need a
“program loader” using this function to run a program. This loader could be stored in
the file system, but then we would need another loader to load and run it. Ultimately,
we need a loader which is not stored in the file system, or which can fit in a single
block. This is called a boot loader, and we provide one in the first part of this chapter.
We use it in the second part to load a very first version of our operating system kernel,
containing only some “foundations”. Namely the clock, graphics card and keyboard
drivers, re-implemented in Toy, as well as the “disk driver” functions from the previous
chapter.

22.1 Boot loader
22.1.1 Requirements
Our boot loader must be able to load and run a program stored in the file system under
a predefined name. It should fit in a page and should run automatically upon reset.

Several errors could occur in the boot loader, for instance because the program
to load does not exist or is invalid, or because the file system is corrupted. In such
cases restarting the boot loader would likely trigger the same error again. The only
solution would then be to fully erase the flash memory, in order to reboot with the
Boot Assistant in ROM. To avoid this potential loss of data, we require our boot loader
to change the boot mode to “boot from ROM” if an error occurs. A simple reboot is
then sufficient to enter the Boot Assistant, which can then be used to try to repair the
system, or at least to backup important data.
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22.1.2 Implementation
To meet the above requirements we write a small program in Toy, compile it to native
code, and store it in page 0 of the Flash0 memory bank, after the Vector Table.

Vector Table As described in Section 7.4, words 0, 1, and 3 of page 0 define the
initial Stack Pointer, the Reset handler address, and the Hard Fault handler address,
respectively (when booting from flash memory). The next words are used for exception
and interrupt handlers, but they are not needed until the corresponding exceptions and
interrupts are enabled. We thus store the boot loader code just after word 3.

The boot loader should provide a Reset handler, and a Hard Fault handler to
change the boot mode in case of error. These handlers could be implemented in
separate functions, but then we would need two function addresses to setup the Vector
Table. Unfortunately, there is no easy and robust way to get the address of a function
other than the first one. To solve this issue we implement both handlers in the same
function. But this introduces a new problem: how can we know if this function is
called because an error occurred? For this we take advantage of the fact that page 0,
which starts at address 8000016, is also mapped at address 0 (see Figure 6.4). Hence
the main boot loader function, which by hypothesis starts after the 16 bytes of the
Vector Table, is available both at interworking address 17 and 8000016 + 17. And, as
shown below, it can easily detect at which address it is running. We thus set the Reset
handler to 17, and the Hard Fault handler to 8000016 + 17.

To complete the Vector Table we set the initial Stack Pointer to 2008800016 (whose
4 bytes are 00, 8016 = 128, 08, and 2016 = 32 in little endian order), as in Section 9.6.1.
Finally, to save space, we store in the 3rd entry, otherwise unused, the name of the
program to load, i.e., of the kernel. We use the name “toys” because we are building
a toy operating system, and because this name has exactly 4 characters:

static VECTOR_TABLE = [
0, 128, 8, 32, /* Initial Stack Pointer */
17, 0, 0, 0, /* Reset handler */
't', 'o', 'y', 's',
17, 0, 8, 0 /* Hard Fault handler */

];

Main function To implement the main boot loader function we first need to some
definitions related to the file system, copied from the previous chapter:

struct DiskBlock {
next_block: &DiskBlock

}
struct FileBlock {
next_block: &DiskBlock,
next_file: &FileBlock,
name_length: u32,
name: u32

}
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struct SuperBlock {
first_file: &FileBlock,
first_free_block: &DiskBlock

}
const SUPER_BLOCK: &SuperBlock = 524544;

We also need the following functions, implemented later on. copy_block copies
size bytes from src to dst and returns dst + size. run calls a function with the
same parameters at the interworking address code:

fn copy_block(src: &u32, dst: &u32, size: u32) -> &u32;
fn run(code: &u32, heap: &u32, stack: &u32);

We start the main function by checking if it is called because an error occurred. In
this case it is running from address 8000016 + 16, and the VECTOR_TABLE expression,
which computes the address of this data by subtracting an offset from the Program
Counter, thus evaluates to 8000016. Otherwise it is running from address 16, and the
same expression thus evaluates to 0, i.e., to null. If an error occurred we change the
boot mode as described in Section 9.6.2, and then loop forever:

fn main() {
const EEFC0_COMMAND_REGISTER: &u32 = 1074661892;
if VECTOR_TABLE != null {

*EEFC0_COMMAND_REGISTER = 1509949708; /*Clear Boot Mode Selection Bit*/
loop {}

}

Otherwise we iterate over the list of files, until we find the one named “toys”.
Thanks to the fact that “toys” has exactly 4 bytes (stored at address 8), we can compare
it to another name with a single comparison between two 32 bit words:

const KERNEL_NAME: &u32 = 8;
let file = SUPER_BLOCK.first_file;
while file.name_length != 4 || file.name != *KERNEL_NAME {

file = file.next_file;
}

To reduce code size we do not check if the file exists. If not the code will most
likely trigger a Hard Fault at some point, which is fine thanks to the above code.
Once the file is found we use another loop to copy all its blocks into a contiguous
sequence of bytes, starting at address 2007010016 = 537329920 (we reserve the
range [2007000016,2007010016[ for a new Vector Table, with proper handlers for the
enabled exceptions and interrupts – see Figure 22.2):

const KERNEL_ADDRESS: &u32 = 537329920;
let dst = KERNEL_ADDRESS;
let block = file as &DiskBlock;
let offset = sizeof(FileBlock);
while block as u32 > 256 {

dst = copy_block(block as &u32 + offset, dst, 256 - offset);
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block = block.next_block;
offset = 4;

}

Note that the while loop does not check if block has a next block, but whether
block is a valid block address. In the former case a separate copy_block call would
be needed to copy the last block, which would increase code size. The above code
avoids this but copies the unused bytes at the end of the last block. This is actually
fine, and it guarantees that copy_block is always used to copy a number of bytes
which is a multiple of 4.

Once the kernel is loaded we run its main function, with the initial Stack Pointer
2008800016 = 537427968, with the following call (see below and Figure 22.2):

const STACK_POINTER: &u32 = 537427968;
run(KERNEL_ADDRESS + 1, dst, STACK_POINTER);

}

The copy_block function is a simple variant of the “memory copy” functions
already implemented. It copies memory word by word, and assumes that the source
and destination regions do not overlap (which is true):

fn copy_block(src: &u32, dst: &u32, size: u32) -> &u32 {
let end = src + size;
while src < end {

*dst = *src;
src = src + 4;
dst = dst + 4;

}
return dst;

}

The last boot loader function is used to run the kernel. Here we assume that its
main function has the same parameters as the run function. Namely the interworking
address of the main function itself, the start address of a RAM region where the kernel
can store its data, and its initial Stack Pointer. Since there is no way to call a function
at a given address with a Toy expression, we implement run with native instructions.

When run starts executing, its arguments are in registers R0, R1 and R2. The
function we want to call, at interworking address code, also expects its arguments in
these registers. Hence, to call it, we just need to jump to it. This can be done with
a native BX instruction (the called function is not expected to return, hence a BLX
instruction is not needed). Before this, we set the Stack Pointer to stack with a MOV
instruction (since the called function is not expected to return, we don’t need to save
the current Stack Pointer to restore it later):

fn run(code: &u32, heap: &u32, stack: &u32) [
/*MOV_SP_R2*/18069;
/*BX_R0*/18176;

]
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FIGURE 22.1 The Flash1 memory bank content at the end of Chapter 22. White,
blue, red and gray areas represent source code, bytecode, native code, and unused
memory, respectively (not to scale). See Figure 20.4 for the content before the Types
Compiler.

22.2 Compilation and storage
We now need to type this program, compile it, and save it. Thanks to our file system
we can store the source code as a file. However, this would make it harder to compile
since our compiler can not work with files (yet). Instead, we use two steps:

1. we store the source code as a data buffer in the Flash1 memory bank, compile it,
and store the compiled code in the same way.

2. we copy the source code into the file system.

For step 1 we choose to store the source code after the builder’s source code,
at address F400016 = 999424 = page 832, and the compiled code after the native
compiler code, at address E300016 = 929792 = page 560 (see Figure 22.1).

To load and save the boot loader source code, edit the F8 and F10 commands as
follows. In the memory editor, type “w000c1172”+Enter, followed by “r”, to start the
command editor. Then type “F8” and “e” to edit this command, and replace its code
with the following (similar to the F3 command; see also Section 15.4.4):

fn 0
cst 999424 cst 537330176 call 2708
cst_0 retv

d LOAD_BOOT_LOADER_SOURCE_CODE

When done, type Escape and “s” to save it. In the same way, replace the F10
command with the following code (similar to the F5 command):

fn 0
cst 537330176 cst 832 call 2836
cst_0 retv

d SAVE_BOOT_LOADER_SOURCE_CODE
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To compile the boot loader code, or in fact whatever source code has just been
edited in RAM, update the F9 command as follows (see Section 20.4):

fn 0
cst_0
ptr 4 cst 537379328 cst 537330176 cst 917509
cst 3179241480 cst 1225017232 cst 1241663748 cst 1208268159
ptr 12 cst_1 add blx
get 4 cst_0 ifne 64
cst 537379328 cst 560 call 2836
get 4 retv

d COMPILE_AND_STORE_EDITED_SOURCE_CODE

The second line is updated in order to compile the edited source code in RAM,
at src_buffer = 2007020016 = 537330176 (see Figure 15.3), into dst_buffer =
2007C20016 = 537379328 (idem), with the native compiler (at interworking address
E000016 + 4 + 1 = 917509 – see Figure 22.1). The added lines store the result in flash
memory at E300016 = page 560, with buffer_flash, if the compilation is successful.

Compilation We can now type the boot loader source code and compile it. For this
type “F2”+“r” to start a new program, and “F4”+“r” to edit it. Then type the source
code listed in the previous section. For reference, we also provide this code in the
boot_loader.txt file in https://ebruneton.github.io/toypc/sources.zip. When done,
type “F10”+“r” to save it, and “F9”+“r” to compile it. The result should be 0, meaning
that the compilation was successful. If not, type “F4”+“r” to fix the error, save the
program and compile it again. Repeat this process until the compilation is successful.

Storage At this stage we can check if the boot loader code fits in a page by looking
at its compiled code data buffer header, at address 2007C20016 (with the memory
editor). The result is 246, which is indeed smaller than 256.

We can now copy its source code on disk, but it is too soon to copy its compiled
code in page 0 of the Flash0 memory bank, hereafter called the boot page. Indeed,
we still need the current content of this page to start the command editor and run its
commands (to continue building our operating system in the next chapters). Instead,
we copy the boot loader code in page 766 (at address EFE0016), and we make a copy
of the current boot page, hereafter called the BIOS Vector Table1, in the next one (see
Figure 22.1). For this type “F11”+“e” to define a new command as follows:

fn 0
cst 929796 cst 766 cst 256 call 2724
cst 524288 cst 767 cst 256 call 2724
cst_0 retv

When done, type Escape and “r” to run it (we don’t need to save it). The first line
copies the boot loader (without its data buffer header, i.e., starting at E300016 + 4 =

1Since this page contains the Vector Table of our Basic Input Output System.
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929796) in page 766 with page_flash. The second lines copies the BIOS Vector Table,
at address 8000016 = 524288, in the next page (both copy a full page).

Storing the boot loader source code on disk can’t be done with a command editor
command since we don’t have the addresses of the functions written in the previous
chapter. But we can use the builder program instead, which is easier anyway. For
this, type “F3”+“r” to load it, and “F4”+“r” to edit it. Then delete the code after the
disk_delete_file function (starting with static NAME = . . .), and replace it with
the following:

fn buffer_write(buffer: &u32, name: &u32, length: u32) -> u32 {
let result = OK;
let file = disk_find_file(name, length, null);
if file == null {
result = disk_create_file(name, length, &file);

} else {
disk_clear_file(file);

}
let block = file as &DiskBlock;
let size = *buffer;
if result == OK {
result = disk_write_file(&block, buffer + 4, size);

}
return result;

}

static NAME = ['b','o','o','t','.','t','o','y'];
fn main() -> u32 {

const BOOT_LOADER_SOURCE: &u32 = 999424;
return buffer_write(BOOT_LOADER_SOURCE, NAME, 8);

}

The buffer_write function writes a data buffer in a file with the given name,
and returns OK if the operation succeeds. For this it creates the file if it does not exist,
or clears its content otherwise. It then appends the content of buffer, without its 4
bytes header, to this file. The main function uses it to save the boot loader source
code, at address F400016 = 999424, in a “boot.toy” file.

When done, return in the command editor and type “F5”+“r” to save this code,
“F6”+“r” to compile it, and “F7”+“r” to run it. The result of each step should be 0,
meaning that no error occurred. Otherwise repeat the steps before the failure.

22.3 Drivers
In order to test our boot loader we first need to write a program to load. We can then
try to run it with the boot loader but, to check that this process works, the loaded
program must do something that we can verify. A simple option is to blink a LED. A
more complex option is to display on screen each character typed on the keyboard.
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This requires the clock, graphics card, and keyboard drivers. We already have them,
but only in bytecode form. And since we want to eventually get rid of the bytecode
interpreter, we need to re-implement them in Toy at some point. We thus choose
the second option, which gives us the opportunity to write a very first version of our
operating system kernel, containing the drivers re-implemented in Toy.

22.3.1 Clock driver
We start the kernel with an entry function having the same parameters as the boot
loader’s run function, as required. This function simply calls an os_init function,
declared here but implemented at the very end. We also include the native load8 and
store8 functions, copied from Section 20.3, which are always useful:

fn os_init(code: &u32, heap: &u32, stack: &u32);
fn entry(code: &u32, heap: &u32, stack: &u32) {

os_init(code, heap, stack);
}

fn load8(ptr: &u32) -> u32 [ /*LDRB_R0_R0_0*/30720; /*MOV_PC_LR*/18167; ]
fn store8(ptr: &u32, value: u32) [ /*STRB_R1_R0_0*/ 28673; /*MOV_PC_LR*/ 1 ≀

≀8167;]

We continue with a re-implementation of the clock_init and delay functions
from Sections 9.4 and 9.5 (see these sections for more details):

fn clock_init() {
const EEFC0_MODE_REGISTER: &u32 = 1074661888;
const EEFC1_MODE_REGISTER: &u32 = 1074662400;
*EEFC0_MODE_REGISTER = 1536; /*wait=6*/
*EEFC1_MODE_REGISTER = 1536; /*wait=6*/

const PMC_MAIN_OSCILLATOR_REGISTER: &u32 = 1074660896;
const PMC_PHASE_LOCK_LOOP_REGISTER: &u32 = 1074660904;
const PMC_MASTER_CLOCK_REGISTER: &u32 = 1074660912;
const PMC_STATUS_REGISTER: &u32 = 1074660968;

*PMC_MAIN_OSCILLATOR_REGISTER = 3669769; /*Enable Crystal Oscillator*/
while (*PMC_STATUS_REGISTER & 1) == 0 {} /*Wait until ready*/

*PMC_MAIN_OSCILLATOR_REGISTER = 20446985; /*Select Crystal Oscillator*/
while (*PMC_STATUS_REGISTER & 65536) == 0 {} /*Wait until selected*/

*PMC_PHASE_LOCK_LOOP_REGISTER = 537280257; /*Configure Phase Lock Loop*/
while (*PMC_STATUS_REGISTER & 2) == 0 {} /*Wait until ready*/

*PMC_MASTER_CLOCK_REGISTER = 2; /*Select Phase Lock Loop output*/
while (*PMC_STATUS_REGISTER & 8) == 0 {} /*Wait until output ready*/
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const SYSTICK_CONTROL_AND_STATUS_REGISTER: &u32 = 3758153744;
*SYSTICK_CONTROL_AND_STATUS_REGISTER = 1; /*Enable*/

const WATCHDOG_TIMER_MODE_REGISTER: &u32 = 1074666068;
*WATCHDOG_TIMER_MODE_REGISTER = 32768; /*Disable*/

}

fn delay(millis: u32) {
const SYSTICK_CONTROL_AND_STATUS_REGISTER: &u32 = 3758153744;
const SYSTICK_RELOAD_VALUE_REGISTER: &u32 = 3758153748;
const SYSTICK_CURRENT_VALUE_REGISTER: &u32 = 3758153752;

*SYSTICK_RELOAD_VALUE_REGISTER = 10500 * millis;
*SYSTICK_CURRENT_VALUE_REGISTER = 0;
/*Wait until timer counts from 1 to 0*/
while *SYSTICK_CONTROL_AND_STATUS_REGISTER & 65536 == 0 {}

}

We also re-implement the boot_mode_select_rom function from Section 9.6.2,
without the Vector Table relocation part (we do this in os_init instead, see below):

fn boot_mode_select_rom() {
const EEFC0_COMMAND_REGISTER: &u32 = 1074661892;
const EEFC0_STATUS_REGISTER: &u32 = 1074661896;
const CLEAR_BOOT_MODE_SELECTION_BIT_COMMAND: u32 = 1509949708;
*EEFC0_COMMAND_REGISTER = CLEAR_BOOT_MODE_SELECTION_BIT_COMMAND;
while *EEFC0_STATUS_REGISTER != 1 {}

}

22.3.2 Graphics card driver
Here we re-implement the graphics card driver functions from Section 10.4 (see
this section for more details). We omit the last ones, namely gpu_clear_screen,
gpu_set_cursor, gpu_set_color, and gpu_draw_char:

fn gpu_reset() {
const PIOB_ENABLE_REGISTER: &u32 = 1074663424;
const PIOB_OUTPUT_ENABLE_REGISTER: &u32 = 1074663440;
const PIOB_SET_OUTPUT_DATA_REGISTER: &u32 = 1074663472;
const PIOB_CLEAR_OUTPUT_DATA_REGISTER: &u32 = 1074663476;
const PIOB_PULL_UP_DISABLE_REGISTER: &u32 = 1074663520;
const PB12_PIN: u32 = 4096;

*PIOB_ENABLE_REGISTER = PB12_PIN;
*PIOB_OUTPUT_ENABLE_REGISTER = PB12_PIN;
*PIOB_PULL_UP_DISABLE_REGISTER = PB12_PIN;
*PIOB_CLEAR_OUTPUT_DATA_REGISTER = PB12_PIN;
delay(10);
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*PIOB_SET_OUTPUT_DATA_REGISTER = PB12_PIN;
delay(10);

}

fn spi_init() {
const PIOA_DISABLE_REGISTER: &u32 = 1074662916;
const PA25_26_27_28_PINS: u32 = 503316480;
*PIOA_DISABLE_REGISTER = PA25_26_27_28_PINS;

const PMC_PERIPHERAL_CLOCK_ENABLE_REGISTER: &u32 = 1074660880;
const SPI_ID: u32 = 16777216;
*PMC_PERIPHERAL_CLOCK_ENABLE_REGISTER = SPI_ID;

const SPI_CONTROL_REGISTER: &u32 = 1073774592;
const SPI_MODE_REGISTER: &u32 = 1073774596;
const SPI_CHIP_SELECT_REGISTER: &u32 = 1073774640;
*SPI_MODE_REGISTER = 1; /*Set master mode*/
*SPI_CONTROL_REGISTER = 1; /*Enable*/
*SPI_CHIP_SELECT_REGISTER = 5506; /*4MHz, 16bits, rising edge*/

}

fn spi_transfer(data: u32) -> u32 {
const SPI_RECEIVE_DATA_REGISTER: &u32 = 1073774600;
const SPI_TRANSMIT_DATA_REGISTER: &u32 = 1073774604;
const SPI_STATUS_REGISTER: &u32 = 1073774608;

while (*SPI_STATUS_REGISTER & 2) == 0 {} /*Wait transmitter ready*/
*SPI_TRANSMIT_DATA_REGISTER = data;

while (*SPI_STATUS_REGISTER & 1) == 0 {} /*Wait data received*/
return *SPI_RECEIVE_DATA_REGISTER;

}

fn gpu_set_register(register : u32, value : u32) {
const SELECT_REGISTER: u32 = 32768;
spi_transfer(SELECT_REGISTER | register);
spi_transfer(value & 255);

}

fn gpu_set_register_or_wait(register : u32, value : u32) {
if register != 0 {

gpu_set_register(register, value);
} else {

delay(value);
}

}
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static GPU_INIT_COMMANDS = [
136, 6, /*PLL Control 1*/
0, 1, /*delay 1ms*/
137, 1, /*PLL Control 2*/
0, 1, /*delay 1ms*/
4, 129, /*Pixel Clock Setting*/
20, 99, /*Horizontal Display Width*/
21, 4, /*Horizontal Non-Display Period Fine Tuning*/
22, 3, /*Horizontal Non-Display Period*/
23, 25, /*HSYNC Start Position*/
25, 223, /*Vertical Display Height 0*/
26, 1, /*Vertical Display Height 1*/
27, 21, /*Vertical Non-Display Period 0*/
29, 21, /*VSYNC Start Position*/
142, 128, /*Memory Clear Control*/
0, 100, /*delay 100ms*/
1, 128, /*Power And Display Control*/
199, 1, /*Extra General Purpose IO*/
138, 64, /*PWM1 Control*/
52, 31, /*Horizontal End Point of Active Window 0*/
53, 3, /*Horizontal End Point of Active Window 1*/
54, 223, /*Vertical End Point of Active Window 0*/
55, 1, /*Vertical End Point of Active Window 1*/
64, 224, /*Memory Write Control 0*/
68, 30 /*Blink Time Control*/

];

fn gpu_init() {
gpu_reset();
spi_init();
let ptr = GPU_INIT_COMMANDS;
while ptr < GPU_INIT_COMMANDS + 48 {

gpu_set_register_or_wait(load8(ptr), load8(ptr + 1));
ptr = ptr + 2;

}
}

22.3.3 Keyboard driver
Finally, we re-implement the keyboard driver from Section 11.4.2, starting with the
two character tables (see this section for more details):
static CHARACTERS = [

0, 136, 0, 132, 130, 128, 129, 139, 0, 137, 135, 133, 131, 9, 96, 0, 0,
141, 0, 0, 140, 113, 49, 0, 0, 0, 122, 115, 97, 119, 50, 0, 0,
99, 120, 100, 101, 52, 51, 0, 0, 32, 118, 102, 116, 114, 53, 0, 0,
110, 98, 104, 103, 121, 54, 0, 0, 0, 109, 106, 117, 55, 56, 0, 0,
44, 107, 105, 111, 48, 57, 0, 0, 46, 47, 108, 59, 112, 45, 0, 0,
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0, 39, 0, 91, 61, 0, 0, 143, 0, 10, 93, 0, 92, 0, 0, 0,
0, 0, 0, 0, 0, 8, 0, 0, 49, 0, 52, 55, 0, 0, 0, 48,
46, 50, 53, 54, 56, 27, 142, 138, 43, 51, 45, 42, 57, 144, 0, 0,
0, 0, 134,
0, 136, 0, 132, 130, 128, 129, 139, 0, 137, 135, 133, 131, 9, 126, 0, 0,
141, 0, 0, 140, 81, 33, 0, 0, 0, 90, 83, 65, 87, 64, 0, 0,
67, 88, 68, 69, 36, 35, 0, 0, 32, 86, 70, 84, 82, 37, 0, 0,
78, 66, 72, 71, 89, 94, 0, 0, 0, 77, 74, 85, 38, 42, 0, 0,
60, 75, 73, 79, 41, 40, 0, 0, 62, 63, 76, 58, 80, 95, 0, 0,
0, 34, 0, 123, 43, 0, 0, 143, 0, 10, 125, 0, 124, 0, 0, 0,
0, 0, 0, 0, 0, 8, 0, 0, 49, 0, 52, 55, 0, 0, 0, 48,
46, 50, 53, 54, 56, 27, 142, 138, 43, 51, 45, 42, 57, 144, 0, 0,
0, 0, 134];

const KEYBOARD_HANDLER_STATE: &u32 = 1074666128;
const KEYBOARD_HANDLER_SHIFT: &u32 = 1074666132;
const KEYBOARD_HANDLER_CHAR: &u32 = 1074666136;

const NVIC_INTERRUPT_SET_ENABLE_REGISTER: &u32 = 3758153984;
const NVIC_INTERRUPT_CLEAR_ENABLE_REGISTER: &u32 = 3758154112;
const USART_ID: u32 = 131072;

fn keyboard_init() {
*KEYBOARD_HANDLER_STATE = 0;
*KEYBOARD_HANDLER_SHIFT = 0;
*KEYBOARD_HANDLER_CHAR = 0;

const PIOA_ENABLE_REGISTER: &u32 = 1074662912;
const PA10_17_PINS: u32 = 132096;
*PIOA_ENABLE_REGISTER = PA10_17_PINS;

const PMC_PERIPHERAL_CLOCK_ENABLE_REGISTER: &u32 = 1074660880;
*PMC_PERIPHERAL_CLOCK_ENABLE_REGISTER = USART_ID;

const USART_CONTROL_REGISTER: &u32 = 1074364416;
const USART_MODE_REGISTER: &u32 = 1074364420;
const USART_INTERRUPT_ENABLE_REGISTER: &u32 = 1074364424;

*USART_MODE_REGISTER = 1008; /*PS/2 protocol configuration*/
*USART_INTERRUPT_ENABLE_REGISTER = 1; /*Enable RX ready interrupt*/
*NVIC_INTERRUPT_SET_ENABLE_REGISTER = USART_ID;
*USART_CONTROL_REGISTER = 16; /*Enable receiver*/

}

fn keyboard_put_char(c: u32) {
if *KEYBOARD_HANDLER_CHAR == 0 {

*KEYBOARD_HANDLER_CHAR = c;
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}
}

fn keyboard_get_char() -> u32 {
*NVIC_INTERRUPT_CLEAR_ENABLE_REGISTER = USART_ID;
let c = *KEYBOARD_HANDLER_CHAR;
*KEYBOARD_HANDLER_CHAR = 0;
*NVIC_INTERRUPT_SET_ENABLE_REGISTER = USART_ID;
return c;

}

fn keyboard_wait_char() -> u32 {
let c = 0;
while c == 0 { c = keyboard_get_char(); }
return c;

}

Here we merge the (keyboard_)skip_code, press_shift, release_shift,
put_extended_code, and put_code functions into a single one, taking an addi-
tional action parameter equal to one of the following constants:

const SKIP_CODE: u32 = 0;
const RELEASE_SHIFT: u32 = 1;
const PRESS_SHIFT: u32 = 2;
const PUT_EXTENDED_CODE: u32 = 3;
const PUT_CODE: u32 = 4;

fn keyboard_handle_code(action: u32, scancode: u32) {
if action == RELEASE_SHIFT {
*KEYBOARD_HANDLER_SHIFT = 0;

} else if action == PRESS_SHIFT {
*KEYBOARD_HANDLER_SHIFT = 132;

} else if action == PUT_EXTENDED_CODE {
keyboard_put_char(scancode + 128);

} else if action == PUT_CODE {
keyboard_put_char(load8(CHARACTERS + scancode + *KEYBOARD_HANDLER_SHIF ≀

≀T));
}

}

We then replace the addresses of these functions with these constants in the Finite
State Machine transition table:

static TRANSITION_TABLE = [
4, 0, 0, 30, 0, 20, 0, 10, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
3, 0, 0, 0, 0, 0, 0, 40, 0, 0,
0, 10, 0, 0, 0, 0, 0, 10, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
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and we update the keyboard_handler function to use keyboard_handle_code:

fn keyboard_action_column(scancode : u32) -> u32 {
if scancode == 18 { return 8; }
if scancode < 132 { return 0; }
if scancode == 224 { return 4; }
if scancode == 240 { return 6; }
return 2;

}

fn keyboard_handler() {
const USART_RECEIVER_HOLDING_REGISTER: &u32 = 1074364440;
let scancode = *USART_RECEIVER_HOLDING_REGISTER;
let cell = TRANSITION_TABLE + *KEYBOARD_HANDLER_STATE + keyboard_action_ ≀

≀column(scancode);
keyboard_handle_code(load8(cell), scancode);
*KEYBOARD_HANDLER_STATE = load8(cell + 1);

}

22.3.4 Disk driver
The new “disk driver” functions implemented in the previous chapter can be
added here, starting from the block data structure definitions and ending with the
disk_delete_file function. Indeed, they will be needed by our operating system to
work with files.

22.3.5 Main function
To finish this initial version of the kernel we need to implement the main function,
os_init. As discussed above, this function should display on screen each character
typed on the keyboard. But this is not the only thing it has to do.

Indeed, to run this kernel with the boot loader, we first need to copy the boot
loader in the boot page. However, after our test with the kernel, we need to return in
the memory editor to continue building our operating system. For this, os_init must
restore the BIOS Vector Table in the boot page, as soon as possible (in case a next
step fails).

The os_init function also needs to configure an USART handler in the Vector
Table, to handle USART interrupts with the keyboard driver. However, as explained
above, we don’t want to change the BIOS Vector Table. The solution is to define a
new Vector Table in RAM. In summary, os_init must do the following:

1. define and enable a new Vector Table in RAM.
2. restore the BIOS Vector Table in the boot page.
3. initialize the drivers.
4. display on screen each character typed on the keyboard.
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For step 1 we first need an USART handler function. When it returns, such a
function must make sure to restore the registers to the values they had before the
interrupt (so that the interrupted program can resume execution correctly). This is why
the USART handler implemented in Section 11.4.2 saves and restores the registers R4
to R6, in addition to the R0 to R3 registers automatically saved by the microprocessor.
Indeed, this handler calls the bytecode interpreter, which uses registers R0 to R6.

Here we want to compile the whole kernel into native code, and thus no longer
need to use the bytecode interpreter to call keyboard_handler. Note also that this
function, and the functions it calls directly or indirectly, have at most 2 parameters
and use very simple expressions. In other words, they do not use registers other than
R0 to R3 (at most). Since these registers are automatically saved and restored (see
Section 11.3.2), our USART handler can just call keyboard_handler directly:
fn usart_handler() {

keyboard_handler();
}

For step 2 we implement the following function, which uses the disk driver
functions to copy the BIOS Vector Table backup (at address EFF0016 = 982784 – see
Figure 22.1), into the boot page, at address 8000016 = 524288:
fn restore_bios_vector_table() {

const BIOS_VECTOR_TABLE_BACKUP: &u32 = 982784;
const BOOT_PAGE: &u32 = 524288;
block_copy_bytes(BIOS_VECTOR_TABLE_BACKUP, BOOT_PAGE, 256);
block_write(BOOT_PAGE as u32);

}

With this we can finally implement the os_init function, as described above.
To simplify we only set the USART handler in the Vector Table (no Hard Fault
handler), relocated with the Vector Table Offset Register (see Section 7.4) at the
address reserved for this by the boot loader (257 bytes before code – see Section 22.1.2
and Figure 22.2):
fn os_init(code: &u32, heap: &u32, stack: &u32) {

const VECTOR_TABLE_OFFSET_REGISTER: &&u32 = 3758157064;
const USART_HANDLER_OFFSET: u32 = 132;
let vector_table = code - 257;
*(vector_table + USART_HANDLER_OFFSET) = usart_handler + 1;
*VECTOR_TABLE_OFFSET_REGISTER = vector_table;

restore_bios_vector_table();
clock_init();
keyboard_init();
gpu_init();
gpu_set_register(2, '>');
loop {
gpu_set_register(2, keyboard_wait_char());

}
}
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FIGURE 22.2 The layout of the kernel in RAM, and the code , heap, and stack arguments
passed to os_init. The kernel code (red) is just after the relocated Vector Table
(yellow). Red, white, and gray areas represent native code, used memory, and unused
memory, respectively (not to scale).

22.4 Compilation and test
To compile and test this initial kernel we proceed in two steps, as for the boot loader:

1. we store the source code as a data buffer in the Flash1 memory bank, compile it,
and store the compiled code in the same way.

2. we copy the compiled code into the file system, flash the boot loader in the boot
page, and reset the Arduino.

For step 1 we can reuse the data buffer at address F400016, which currently
contains the boot loader source code. Indeed, we saved this code in the “boot.toy”
file. In particular, we can reuse the F8 and F10 commands, as is. Let’s just update
their description to reflect their new purpose. With the command editor, update the
F8 command description to:

fn 0
cst 999424 cst 537330176 call 2708
cst_0 retv

d LOAD_KERNEL_SOURCE_CODE

and the F10 command description to:

fn 0
cst 537330176 cst 832 call 2836
cst_0 retv

d SAVE_KERNEL_SOURCE_CODE

The kernel source code includes the disk driver functions from the previous
chapter. To avoid re-typing them, first make a copy of the builder source code by
typing “F3”+“r” and “F10”+“r”. Then type “F4”+“r” to replace its beginning part
with the clock, graphics card, and keyboard drivers, and its end part with the main
function from Section 22.3.5. The result should be identical to the toys_v0.txt file
in https://ebruneton.github.io/toypc/sources.zip. When done, type “F10”+“r” to save
it and “F9”+“r” to compile it. If necessary, repeat these steps until the compilation is
successful.
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For step 2 we modify the builder as follows. Type “F3”+“r” and “F4”+“r” to edit
the builder source code, delete the code after the buffer_write function (starting
with static NAME = . . .), and replace it with the following:

fn flash_boot_loader_and_reset() {
const BOOT_LOADER_BACKUP: &u32 = 982528;
const BOOT_PAGE: &u32 = 524288;
block_copy_bytes(BOOT_LOADER_BACKUP, BOOT_PAGE, 256);
block_write(BOOT_PAGE as u32);

const RESET_CONTROL_REGISTER: &u32 = 1074665984;
const RESET_COMMAND: u32 = 2768240653;
*RESET_CONTROL_REGISTER = RESET_COMMAND;

}

static NAME = ['t','o','y','s'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
let result = buffer_write(COMPILED_CODE, NAME, 4);
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

As its name implies, flash_boot_loader_and_reset copies the boot loader, at
address EFE0016, into the boot page, and then resets the Arduino (see Section 9.7).
The main function calls it after saving the compiled code of the kernel, at address
E300016 = 929792, in a “toys” file on disk.

When done, type “F5”+“r” to save the builder, and“F6”+“r” to compile it. If
necessary, repeat these steps until the compilation is successful. Finally, type “F7”+“r”
to run the builder. The Arduino should reset and you should see a “>” prompt on
screen. Furthermore, any character typed should be displayed on screen, showing that
the boot loader successfully loaded and launched the kernel. After a new reset, the
Arduino should restart with the memory editor.
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CHAPTER
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and System Calls

Thanks to our boot loader we can now reassemble a program stored in the file system
into a contiguous sequence of bytes and run it. However, the boot loader can only
launch a single initial program, namely the operating system kernel. To run other
programs a solution is to implement a kernel which, in turn, can load and run other
programs. Our kernel currently contains the clock, graphics card, keyboard and
disk drivers. In particular, it contains a disk_read_file function which can load a
program stored on disk. Hence we “just” need to improve our kernel so that it can
also run programs. In fact things are not so simple.

In order to load and run a program the kernel must find a RAM region not already
used by other programs. For this it must keep track of which regions are currently
used and which ones are free. Moreover, to do something useful, programs launched
by the kernel should be able to use the keyboard, the screen, or the disk. The kernel
already provides functions for this, and we don’t want to re-implement them in each
program. In other words, the kernel should provide a way for a program to use its
services. This chapter provides a new version of our kernel which does this. We test
it at the end with a small program launching itself recursively to compute a factorial.

23.1 Requirements
Most operating systems can run several programs concurrently. Such systems can, for
instance, run a music player program “at the same time” as a compiler. In fact they
run the music player for a few milliseconds, then the compiler for a few milliseconds,
then the music player again, etc. They are called multitasking operating systems.
The opposite is a monotasking system. Such a system cannot run several programs
concurrently. Monotasking systems are much simpler to implement than multitasking
ones. For this reason, we use a monotasking model for our toy operating system,
presented below.

A program loaded and started by the kernel is called a process. A process is
spawned by loading the compiled code of a program in RAM and by calling its main
function. A parent process P can ask the kernel to spawn a child process Q but, to
get a monotasking system, we require P to be suspended until Q terminates. In other
words, processes must behave like functions calling each other (when a function calls
another, the caller is suspended until the callee returns).
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By analogy with functions, which can have parameters and can return a result, we
also the require the ability to spawn a process with some arguments, and the ability to
return a result from a child process to its parent. Moreover, a process should be able
to stop and return a result at any time, and not just when its main function returns
(like our compiler with its panic function). We also add a safety requirement: a bug
in a process should not crash everything and require the user to reboot the computer.
Instead, the process should be terminated and should return some error value to its
parent, which should resume its execution normally.

As described above, the kernel should provide a way for processes to use its
services. In this chapter we require only two services: one to spawn a child process
with some arguments, and another to stop the current process and to return a value to
its parent. We define more services in the next chapter.

To solve the issue that the boot loader can only launch a single program, the kernel
could ask the user to type on the keyboard the name and arguments of a program to
launch, run it until completion, ask which other program to launch next, etc. But
a better method is to implement this command line interpreter, also called a shell,
in a process. Indeed, this reduces the kernel size and makes it easier to change the
shell implementation. Hence, we require our kernel to spawn a single process when it
starts, from the program file named “shell”.

23.2 Design
Since spawning a process should behave similarly to calling a function, one could be
tempted to use actual function calls for this. More precisely, a process could call a
“spawn” function in the kernel, which would itself load some program’s code and call
its main function. This would lead to a single stack, with the stack frames of “spawn”
function calls interleaved between the stack frames of process function calls.

Unfortunately this simple design cannot ensure our safety requirement. A bug
in a process might cause it to write random values in the code, heap, or stack of the
kernel, or of another process. This could trigger a Hard Fault some time later, when
the kernel or this other process uses this incorrect instruction or value. To prevent this,
one method is to completely isolate each process from each other, and from the kernel.
This means that each process should have its own memory region to store its code,
heap and stack. And that it should not be able to access any other memory region, in
any way. A consequence is that the kernel and the processes should each have their
own stack. Another is that processes cannot call functions in the kernel or in another
process (because, for this, they would need to read the function’s instructions, outside
their own memory region).

Most operating systems isolate processes in this way, and thus need to use one
stack per process, and to avoid function calls to system services. This is why the ARM
Cortex M3, like many other microprocessors, provides several features specifically
designed for these tasks. We present them below, before presenting our final design.
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23.2.1 Memory Protection Unit
The Memory Protection Unit (see Section 7.1) is designed to enforce isolation between
processes. We show how to use it in Chapter 26.

23.2.2 Process Stack Pointer
To make it easier to have one stack per process, and one stack for the kernel, the Cortex
M3 has two Stack Pointer (SP) registers. One is called the Main Stack Pointer (MSP),
and is intended to be used by the kernel. The other is called the Process Stack Pointer
(PSP) and, as its name implies, is intended to be used by processes. Instructions
which the use “the” SP, such as PUSH or POP, actually use either the MSP or the PSP,
depending on the current state of the microprocessor:

• when an exception or interrupt handler is executing (other than the Reset handler),
which is called the handler mode, these instructions always operate on the Main
Stack Pointer register.
• otherwise, in thread mode, the register used depends on a “stack selection” bit in a

so called CONTROL register. When this bit is 0, which is the default value, the
MSP is used. When it is 1, the PSP is used instead.

So far we never changed the stack selection bit, and we were thus using the MSP
all the time, in handler and thread mode. It is however possible to change this bit, and
we present a method to do this in the next section. This enables using the PSP with
instructions such as PUSH or POP, but also with ADD, SUB, MOV, LDR, or STR
instructions using the SP as operand. It is also possible to get or set the value of the
MSP and of the PSP directly, with the following instructions:

MRS Rz ← SYSRx

11110111110011110001 z x

MSR SYSRz ← Rx

00011100111100010001 z x

The “Move to Register from Special Register” (MRS) instruction copies the value
of the special register SYSRx into a normal register Rz. The “Move to Special
Register from Register” (MSR) instruction does the opposite. The MSP, PSP, and
CONTROL registers correspond to SYSR8, SYSR9, and SYSR20, respectively. Rx
and Rz must not be the PC or the SP.

23.2.3 Interrupt entry and return
As described in Section 11.3.2, the microprocessor pushes some values on the stack
when an exception or interrupt occurs, and pops them when it terminates. In fact things
are a bit more complex since there are two stack pointers. This section gives more
details about this process (but not all of them – see [17] for a complete description).
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When an interrupt1 becomes active the microprocessor pushes an interrupt stack
frame on the currently selected stack. This stack frame contains (see Figure 23.4):

• the value of the R0, R1, R2, R3, R12, and R14 (LR) registers.
• the return address, i.e., the address of the instruction to return to when the handler

terminates. This address is not an interworking address.
• the value of a special “status” register which contains, among other things, the

result of the last CMP instruction (see Section 7.3.1). For the same reason behind
interworking addresses (see Section 7.2.1), bit 24 of this value must always be 1.

After this the microprocessor sets the Link Register (LR) to a special value called
EXC_RETURN, which encodes the current execution mode2 and stack selection bit:

Mode Stack EXC_RETURN
Handler Main FFFFFFF116
Thread Main FFFFFFF916
Thread Process FFFFFFFD16

Finally, the Cortex M3 changes the current mode to handler mode, and the current
stack to the Main stack. The interrupt handler then starts to execute, on this stack.
When any one of the above EXC_RETURN value is copied into the Program Counter,
the reverse process happens: the execution mode and the current stack are set according
to the EXC_RETURN value, and the R0, R1, R2, R3, R12, R14, R15 (Program
Counter), and “status” registers are set to values popped from this new stack.

Note that an interrupt handler can return with a different EXC_RETURN value
than the one set in the LR when it started. For instance, an interrupt which occurred
in thread mode while the Main stack was selected can set the PC to FFFFFFFD16. In
this case execution resumes in thread mode but on the Process stack (which should
then contain a valid interrupt stack frame). An interrupt handler can also change
the Process Stack Pointer during its execution. We use both possibilities in the next
sections, to spawn the initial process and to switch execution between processes.

23.2.4 SVC instruction and interrupt
The Cortex M3 provides several features to make it possible to use services provided
by the kernel without function calls. One is the possibility to configure the Memory
Protection Unit so that memory is protected only in thread mode. Another is the
following instruction:

SVC SVC interrupt 11111011 c

The “Supervisor Call” instruction triggers a special interrupt called an “SVC
interrupt”, corresponding to the 11th entry of the Vector Table (counting from 0,

1The process is the same for exceptions.
2An interrupt can become active in handler mode. We explain this in the next chapter.
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program’s code

begin end

SP

heap_limitheap process arguments

FIGURE 23.1 The layout of a process in RAM. Red, yellow, green, and gray areas
represent native code, heap, stack, and unused memory, respectively.

i.e., at offset 44). Its c operand is unused. A program executing this instruction is
immediately suspended, and resumes only when the stack frame pushed on interrupt
entry is popped. In other words, this instruction behaves a bit like a function call to
the SVC handler, hence its name. But it uses an interrupt for this, which executes
in handler mode. Hence, if the Memory Protection Unit is configured as explained
above, the SVC handler can access any memory, and in particular the kernel’s code,
heap and stack. This provides a way for processes to use kernel services, despite their
memory isolation, without using actual function calls.

23.2.5 Final design
Thanks to the above Cortex M3 features we can achieve our requirements with the
following design. First of all, to make it easier to isolate processes, we store each one
in a contiguous region of RAM, noted [begin, end [. Due to limitations of the Memory
Protection Unit, these addresses must be multiple of 32 bytes (see Chapter 26). We
then organize this region as follows (see Figure 23.1):

• a process’s memory region starts with the program’s compiled code, which must
itself start with its main function.
• the code is followed by a heap region, between heap and heap_limit , where the

program can store its own data. The process arguments are put at the beginning of
this region, as a data buffer (i.e., a 32-bit header containing the arguments size s,
followed by s bytes of arbitrary data).
• the heap is followed by a region reserved for the stack, between heap_limit and
end . As usual, the stack grows in decreasing address order. The stack pointer is
thus initialized to end . The heap can be used in arbitrary ways, but usually grows
in increasing address order.

To launch this process we need a way to “tell” the program where the process
arguments are, and where it can store its own data. For this we require its main function
to have two parameters, corresponding to heap and heap_limit . This specifies both
the region where data can be stored, and the location of the process arguments (since,
by hypothesis, they start at heap).

To spawn a new process while keeping track of the used and unused regions of
memory, a simple solution is to put it just after its parent (see Figure 23.2). This
leads to a simple “stack” of processes, pushed when spawn and popped when they
terminate. But this design wastes the parent’s unused memory, which cannot use it
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RQP

FIGURE 23.2 Storing processes one after the other would waste memory. Here
spawning a process would be possible if the unused memory was not fragmented.

PShellKernel

heap
heap_limit
stack_limit

current_process

parent
begin

saved_context
end

null

FIGURE 23.3 Processes are stored in the unused memory region of their parent,
between the areas reserved for the kernel’s heap (blue) and stack (white). The
kernel’s heap contains a Kernel data structure (dark blue) with a linked list (red links)
of Process data structures, starting with the current one. Each structure describes
the start and end address of a process and links to its parent.

until its child terminates since it is suspended. To solve this issue we use another
design instead: we put child processes inside their parent process, like Russian dolls
(see Figure 23.3). This allows each child process to use as many bytes as possible of
its parent’s unused memory (up to 2×31 bytes can be wasted due to the alignment
constraints of begin and end ). Finally, we use all the available memory between the
kernel’s heap and stack, for which we reserve fixed amounts of RAM, to spawn the
initial shell process (see Figures 22.2 and 23.3).

23.3 Data structures and algorithms
To implement our requirements we store in the kernel’s heap the following data
structures, and we use them in the algorithms described below (see Figure 23.3):

• a Kernel struct contains the limits of the regions reserved for the kernel’s heap
and stack. It also contains a heap pointer to the first free byte in the kernel’s heap.
Finally, it links to a struct representing the currently running process.

• a Process struct per process. Each struct describes the start and end address of the
process, and links to the Process struct of its parent.

23.3.1 System calls
In order to allow processes to “call” services provided by the operating system kernel,
i.e., to make system calls, we use the SVC instruction. But this is not sufficient. This
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FIGURE 23.4 When the SVC handler starts it pushes the EXC_RETURN value on the
Main stack (white). The stack frame pushed on interrupt entry (light green), on the
Process stack (green), must start with a service ID and a pointer to its arguments.

instruction can only “call” a single interrupt handler function, and we would like our
kernel to provide several services (for the keyboard, the screen, the disk, etc). To solve
this we can pass to this handler an integer specifying the desired service, i.e., a service
ID. But we need to decide how. We also need a way to pass some arguments to each
service, and to get a result back. This can be done via registers, with the stack, or a
mix of both. Here, to simplify the implementation, we require the following:

• before using the SVC instruction R0 and R1 should contain the service ID and
a pointer to the service arguments, respectively. The registers not automatically
saved in the interrupt stack frame should not contain any important value (so that
the interrupt handler does not need to save and restore them).
• when the interrupted process resumes R0 should contain the service’s result.

As a consequence, when the SVC handler function starts executing, the Process
stack and the Main stack look as depicted in Figure 23.4:

• the top of the Process stack contains the interrupt stack frame, pushed on interrupt
entry, starting with the service ID and the pointer to the service arguments.
• the top of the Main stack contains the EXC_RETURN value. Indeed the handler

function has no argument and, like any function, its pushes its arguments and
the LR on the stack when it starts (see Figure 20.2). And the LR contains the
EXC_RETURN values as described Section 23.2.3.

23.3.2 Spawn
We then define a “spawn” service, with ID 0 and with the following arguments:

• a destination pointer where to spawn the process, dst ,
• a pointer to the name of the file containing its code, name ,
• the length of this name, name_length ,
• a pointer to the process arguments, args ,
• the size of these arguments, args_length .
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FIGURE 23.5 The memory content when the SVC handler for a “spawn” system call
starts (top), and just before it returns (bottom).

As a consequence, when the SVC handler for a “spawn” system call starts executing,
the Process stack of the calling process looks as depicted in Figure 23.5. We then use
the following algorithm to spawn the child process (see Figures 23.1 and 23.5):

1. compute begin by rounding up dst to a multiple of 32, and end by rounding down
the current Process Stack Pointer to a multiple of 32 (or the kernel’s stack_limit
for the initial process – there is no current process in this case).

2. compute heap_limit by subtracting a minimum stack size from end (512 bytes – if
a program needs more space for its stack, it can then further decrease heap_limit
to make sure not to store data beyond this).

3. load the program’s code at begin , and compute heap as begin plus the code size.
4. copy the process arguments after the code, at address heap.
5. synthesize an interrupt stack frame in the new process stack area. Set the saved R0

and R1 values to heap and heap_limit , and the return address to begin, i.e., the
address of the new process’s main function.

6. save the current Process Stack Pointer in a field of the current Process struct named
saved_context (see Figure 23.3). Then change it, with an MSR instruction, to
the top of the above synthesized stack frame.

7. create and initialize a new Process struct representing the spawned process, which
becomes the new Kernel’s current process.

Thus, when the SVC handler returns, the synthesized interrupt stack frame is
popped from the stack of the spawned process. The effect is a jump to the main
function of this new process, with its heap and heap_limit parameters in R0 and R1,
as required. In other words, the new process starts executing, with its own stack.
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23.3.3 Exit
To terminate this new process and return a value to its parent we define an “exit”
service, with ID 1 and a single result argument, and using the following algorithm:

1. delete the Process struct representing the child process, and sets the Kernel’s
current process to its parent.

2. set the Process Stack Pointer to the value saved in the parent Process (at step 6 of
the spawn algorithm). That is, to the top of the interrupt stack frame which was
pushed when the parent called spawn.

3. set the saved R0 value in this interrupt stack frame to result .

Thus, when the SVC handler returns, execution resumes in the parent process, at
the instruction just after the SVC. Moreover, the child process’s result is in R0, as a
normal function result.

23.3.4 Error handling
Several errors can occur when spawning a process. For instance, the program file
might not exist, or there might not be enough memory to load it. In such cases we
want to return an error code to the parent. There are several ways to do this. A
convenient method for users is to return it in R0, like the exit value of the spawned
process. To distinguish the two cases (spawning error vs spawned process’s result) we
spit the 32-bit result in two parts:

• we store the error, if any, in the most significant byte, called the result’s status.
• we store the result of the spawned process in the 3 least significant bytes (this leaves

only 224 possible result values, but this is acceptable for a toy system).

The advantage of this encoding is that if the process is spawned successfully, i.e.,
if the result’s status is 0, then the 32-bit result is directly equal to the exit value. For
consistency, we use this encoding for all system calls.

23.3.5 Initial process
After it has initialized itself the kernel can spawn the initial shell process with a spawn
system call, like for any other process. Note however that this system call is made by
the kernel, and not by a process. At this stage the kernel is running in Thread mode
on the Main stack. This has two consequences:

• the SVC interrupt stack frame is pushed on the Main stack, instead of the Process
Stack as for all other system calls. The SVC handler is pushed on the same stack
just after that. Hence, the interrupt stack frame is just below the EXC_RETURN
value in this case (see Figure 23.6).
• the SVC interrupt handler must change the EXC_RETURN value to FFFFFFFD16

to use the Process Stack on interrupt exit. Otherwise the interrupt would return in
the kernel.
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FIGURE 23.6 The Main Stack when the SVC handler for the initial “spawn” starts.

23.4 Implementation
We can now extend the first version of our kernel, written in the previous chapter, with
the algorithms described above. We start by declaring a new function to spawn the
initial shell process, after the initialization of the kernel:

fn os_init(code: &u32, heap: &u32, stack: &u32);
fn os_spawn_shell();

fn entry(code: &u32, heap: &u32, stack: &u32) {
os_init(code, heap, stack);
os_spawn_shell();

}

We continue by adding some error code definitions, and a utility function to
compute a result with an error status (see Section 23.3.4):

• NOT_FOUND if spawning a process fails because its program file is not found.
• INTERNAL_ERROR if a process triggers a Hard Fault and thus terminates abnormally.
• INVALID_STATE if the initial process calls exit (it has no parent to return to).

const OK: u32 = 0;
const INVALID_ARGUMENT: u32 = 1;
const INVALID_STATE: u32 = 2;
const NOT_FOUND: u32 = 3;
const ALREADY_EXISTS: u32 = 4;
const OUT_OF_MEMORY: u32 = 5;
const INTERNAL_ERROR: u32 = 6;

fn error_result(error: u32) -> u32 { return error << 24; }

We then define, after the disk driver functions and before the usart_handler,
some types corresponding to the data structures defined above (see Figure 23.3).
Context corresponds to an interrupt stack frame (see Figure 23.4). The last 3 fields
of Kernel contain the addresses of functions implementing our system calls (we add
a temporary draw_char system call for testing purposes):
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struct Context {
r0: u32,
r1: u32,
r2: u32,
r3: u32,
r12: u32,
r14: u32,
return_address: u32,
status_register: u32

}
struct Process {

parent: &Process,
begin: &u32,
end: &u32,
saved_context: &Context

}
struct Kernel {

heap: &u32,
heap_limit: &u32,
stack_limit: &u32,
current_process: &Process,
spawn: u32,
exit: u32,
draw_char: u32

}

To find the Kernel allocated in the kernel’s heap (see Figure 23.3) we store a
pointer to it in a General Purpose Backup Register, after the ones used by the keyboard
driver (at address 400E1A9C16 = 1074666140 – see Section 11.4.2).
const KERNEL_POINTER_REGISTER: &&Kernel = 1074666140;
fn os_kernel() -> &Kernel { return *KERNEL_POINTER_REGISTER; }

23.4.1 Spawn
To implement the spawn system call we need the MRS and MSR instructions to get
and set the Process Stack Pointer. This can only be done with native functions:
fn get_process_stack_pointer() -> &u32 [

/*MRS_R0_PSP*/ 2148135919;
/*MOV_PC_LR*/ 18167;

]
fn set_process_stack_pointer(value: &u32) [

/*MSR_PSP_R0*/ 2282353536;
/*MOV_PC_LR*/ 18167;

]

We use them in the following utility function, which changes the current process to
the given one (the change becomes effective when the SVC handler calling it returns):
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fn os_set_current_process(kernel: &Kernel, process: &Process) {
set_process_stack_pointer(process.saved_context as &u32);
kernel.current_process = process;

}

The spawn system call takes some pointers as arguments. A bug in the calling
process might cause them to point in a reserved memory region, in the kernel’s code,
heap, or stack, or in another process. Since spawn reads and writes data at these
addresses, such a bug could cause a crash of the kernel, even if processes are isolated.
To avoid this, all system calls must check that their arguments are correct. This is
the goal of the following function, which checks if the size bytes starting at ptr are
inside the memory region of a process (while being careful to avoid overflows):

const FALSE: u32 = 0;
const TRUE: u32 = 1;
fn process_contains_buffer(self: &Process, ptr: &u32, size: u32) -> u32 {

if ptr < self.begin || ptr >= self.end { return FALSE; }
if size > self.end - ptr { return FALSE; }
return TRUE;

}

We can now implement a function to spawn a process, as described in Section 23.3.2.
We start by checking if there is enough free memory in the kernel’s heap to store a
new Process struct, and by computing begin and end :

fn os_spawn(dst: &u32, name: &u32, name_length: u32, args: &u32, args_leng ≀
≀th: u32) -> u32 {

let kernel = os_kernel();
if sizeof(Process) > kernel.heap_limit - kernel.heap {
return error_result(OUT_OF_MEMORY);

}
let begin = (((dst as u32 + 31) >> 5) << 5) as &u32;
let end = (((kernel.stack_limit as u32) >> 5) << 5) as &u32;
let parent = kernel.current_process;
if parent != null {
end = ((get_process_stack_pointer() as u32 >> 5) << 5) as &u32;

We then check the arguments, unless parent is null (this case corresponds to
the kernel spawning the initial shell process, and we trust it). More precisely, we
check that the [begin, end [ region is not empty, and that the parent’s memory region
contains it (as well as the name and arguments of the process to spawn). We also
check that the arguments do not overlap the [begin, end [ region, so that we can copy
them later on with mem_copy_non_overlapping.

if end < begin || begin < parent.begin ||
process_contains_buffer(parent, name, name_length) == FALSE ||
process_contains_buffer(parent, args, args_length) == FALSE {

return error_result(INVALID_ARGUMENT);
}
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if args + args_length > begin && args < end {
return error_result(INVALID_ARGUMENT);

}
}

We continue by checking if the program file exists, and if there is enough memory
to load it in the new process. If so we compute heap and heap_limit . Finally, we
check if this heap region can contain the process arguments, as a data buffer (i.e., with
an additional 4 bytes header).

let file_block = disk_find_file(name, name_length, null);
if file_block == null { return error_result(NOT_FOUND); }
let code_size = disk_get_file_size(file_block);
if code_size > end - begin {
return error_result(OUT_OF_MEMORY);

}
const MIN_STACK_SIZE: u32 = 512;
let heap = begin + code_size;
let heap_limit = end - MIN_STACK_SIZE;
if heap_limit < heap + 4 || args_length > heap_limit - heap - 4 {
return error_result(OUT_OF_MEMORY);

}

At this point all the possible error cases have been checked (while being careful to
avoid overflows). We can thus actually spawn the process. For this we start by loading
the program’s code at the begin address. This code starts after the header of the first
file block, which contains 3 words and the file name (see Figure 21.4). We also copy
the process arguments, as a data buffer, in the new process heap:

let offset = 12 + name_length;
disk_read_file(&file_block as &&DiskBlock, &offset, begin, code_size);
*heap = args_length;
mem_copy_non_overlapping(args, heap + 4, args_length);

Finally, we initialize an interrupt stack frame as described in Section 23.3.2
and Figure 23.5, save the current Process Stack Pointer, create a Process struct in the
kernel’s heap describing the spawned process, and make it the current process.

let context = (end - sizeof(Context)) as &Context;
context.r0 = heap as u32;
context.r1 = heap_limit as u32;
context.r14 = 0;
context.return_address = begin as u32;
context.status_register = 1 << 24;
if parent != null {
parent.saved_context = get_process_stack_pointer() as &Context;

}
let process = kernel.heap as &Process;
kernel.heap = kernel.heap + sizeof(Process);
process.parent = parent;
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process.begin = begin;
process.end = end;
process.saved_context = context;
os_set_current_process(kernel, process);
return OK;

}

23.4.2 Exit
Implementing the exit function is much easier. We start by checking if the current
process has a parent (the initial shell process must not exit). We also check if the
result value is less than 224 (see Section 23.3.4). If so we delete process from the
kernel’s heap, copy the exit value in the parent’s saved R0 register, and make this
parent the new current process.

fn os_exit(result: u32) -> u32 {
let kernel = os_kernel();
let process = kernel.current_process;
if process.parent == null { return error_result(INVALID_STATE); }
if result >= (1 << 24) { return error_result(INVALID_ARGUMENT); }
kernel.heap = process as &u32;
process = process.parent;
process.saved_context.r0 = result;
os_set_current_process(kernel, process);
return OK;

}

In order to test the above system calls we need to spawn a process doing something
that we can easily verify, such as drawing characters on the screen. For this we
implement the following temporary function (see Section 10.2.2):

fn os_draw_char(c: u32) -> u32 {
gpu_set_register(2, c);
return OK;

}

23.4.3 Hard Fault and SVC handlers
As described in the requirements, an error occurring in a process should terminate it
and return an error code to its parent. We thus implement the Hard Fault handler as
follows (we assume that the kernel is bug free, i.e., that no Hard Fault can occur while
the kernel is running):

fn hard_fault_handler() {
os_exit(INTERNAL_ERROR);

}
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The SVC handler must call either os_spawn, os_exit, or os_draw_char, depend-
ing on the service ID in the interrupt stack frame. This could be done with a chain
if id == 0 . . . else if id == 1 . . . else if id == 2 . . . However, this would
become less and less practical as new services are defined. Instead, we store the
addresses of these functions in the Kernel struct, and we call the idth one with the
following native function:

fn call(arg0: u32, arg1: u32, arg2: u32, arg3: u32, arg4: u32, arg5: u32,
function: u32) -> u32 [

/*BX_R6*/ 18224;
]

This calls a function f at interworking address function with up to 6 arguments.
Indeed, when the BX instruction executes R0 to R5 contain the arguments, and the LR
contains the return address in the caller. This is what f expects. We can thus jump to
it directly with this instruction (R6 contains function). f will then return directly in
the caller.

Before implementing the SVC handler it is useful to have some constants describing
the total number of system calls and the number of parameters of each one. It is also
useful to have a struct representing the system call arguments (i.e., what the saved
R1 register in the interrupt stack frame points to – see Figure 23.4):

const NUM_SYSTEM_CALLS: u32 = 3;
static SYSTEM_CALL_ARITY = [5, 1, 1];

struct CallArguments {
arg0: u32,
arg1: u32,
arg2: u32,
arg3: u32,
arg4: u32,
arg5: u32

}

With this we can finally implement the SVC handler. We start by computing the
address of the top of the interrupt stack frame, in context. If there is a current process
this is simply the value of the Process Stack Pointer (see Figure 23.4). Otherwise this
is 4 bytes after the EXC_RETURN value (see Figure 23.6). And the EXC_RETURN
value itself is 4 bytes after the kernel local variable, on top of the stack:

fn supervisor_call_handler() {
let kernel = os_kernel();
let exc_return_ptr = &kernel as &u32 + 4;
let context = (exc_return_ptr + 4) as &Context;
let process = kernel.current_process;
if process != null {
context = get_process_stack_pointer() as &Context;

}
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We then compute the address f of the function which can handle this system call,
and the address of its arguments. For this we compute the address of the kernel field
which contains f (the spawn, exit, or draw_char field, for ID=0, 1, or 2, respectively),
and get the value at this address:

let id = context.r0;
let function = *(&kernel.spawn + (id << 2));
let args = context.r1 as &CallArguments;

We then call this function, whose interworking address is f + 1, after checking
that the system call ID and the arguments are valid. In particular, the arguments must
be contained in the process’s memory region (if there is a current process):

let args_size = 0;
let result = error_result(INVALID_ARGUMENT);
if id < NUM_SYSTEM_CALLS {
args_size = load8(SYSTEM_CALL_ARITY + id) << 2;
if process == null ||

process_contains_buffer(process, args as &u32, args_size) == TRUE ≀
≀{

result = call(args.arg0, args.arg1, args.arg2, args.arg3,
args.arg4, args.arg5, function + 1);

}
}

Finally, we copy the result in the saved R0 register, so that it is popped in R0 on
interrupt exit. We also set the EXC_RETURN value to FFFFFFFD16 = 4294967293,
in order to force a return using the Process Stack (this is only necessary for the initial
spawn system call):

context.r0 = result;
*exc_return_ptr = 4294967293; /*Thread Mode, Process Stack*/

}

23.4.4 Initialization
We update the os_init function to add the new Hard Fault and SVC handlers in the
Vector Table, and to create and initialize the Kernel data structure (we also remove
the temporary test code after gpu_init). For this we reserve 512 bytes for kernel’s
heap (enough for 30 processes), and 512 bytes for its stack:
fn os_init(code: &u32, heap: &u32, stack: &u32) {

const VECTOR_TABLE_OFFSET_REGISTER: &&u32 = 3758157064;
const HARD_FAULT_HANDLER_OFFSET: u32 = 12;
const SVC_HANDLER_OFFSET: u32 = 44;
const USART_HANDLER_OFFSET: u32 = 132;
let vector_table = code - 257;
*(vector_table + HARD_FAULT_HANDLER_OFFSET) = hard_fault_handler + 1;
*(vector_table + SVC_HANDLER_OFFSET) = supervisor_call_handler + 1;
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*(vector_table + USART_HANDLER_OFFSET) = usart_handler + 1;
*VECTOR_TABLE_OFFSET_REGISTER = vector_table;

restore_bios_vector_table();

const MAX_KERNEL_HEAP_SIZE: u32 = 512;
const MAX_KERNEL_STACK_SIZE: u32 = 512;
let kernel = heap as &Kernel;
kernel.heap = heap + sizeof(Kernel);
kernel.heap_limit = heap + MAX_KERNEL_HEAP_SIZE;
kernel.stack_limit = stack - MAX_KERNEL_STACK_SIZE;
kernel.current_process = null;
kernel.spawn = os_spawn;
kernel.exit = os_exit;
kernel.draw_char = os_draw_char;
*(KERNEL_POINTER_REGISTER as &&Kernel) = kernel;

clock_init();
keyboard_init();
gpu_init();

}

We finish the implementation with the os_spawn_shell function, which spawns
the program file named “shell”, without any argument, after the kernel’s heap. For
this we use an SVC instruction in a native function, called from an intermediate spawn
function:

fn system_call(id: u32, args: &u32) [ /*SVC*/ 57088; ]

fn spawn(dst: &u32, name: &u32, name_length: u32, args: &u32, args_length: ≀
≀ u32) {

system_call(0, &dst as &u32);
}

static SHELL = ['s','h','e','l','l'];
fn os_spawn_shell() {

let dst = os_kernel().heap_limit;
spawn(dst, SHELL, 5, null, 0);

}

When spawn starts it pushes its arguments on the stack, in the same order as
required by the SVC handler (compare Figure 20.2 and Figure 23.4). Moreover, the
system_call function stores the system call ID 0 and the address of the first argument
in R0 and R1, respectively, before jumping to the SVC instruction (as required in
Section 23.3.1). Finally, no other register are used at this point. In other words,
everything is ready to make a system call. Note also that, since the initial process
cannot exit, no instruction is needed to return from system_call.
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23.5 Compilation and tests
Type “F8”+“r” in the command editor to load the current kernel source code, and
“F4”+“r” to edit it. Then update it as described above. For reference, we also provide
this new version in the toys_v1.txt file in https://ebruneton.github.io/toypc/sources.
zip. When done, type “F10”+“r” to save it and “F9”+“r” to compile it. If necessary,
repeat these steps until the compilation is successful. To copy the compiled code in
the “toys” file use F3 to load the builder source code, and F4 to edit it. Then change
its main function to the following:

static NAME = ['t','o','y','s'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
return buffer_write(COMPILED_CODE, NAME, 4);

}

Finally, save the builder with F5, compile it with F6, and run it with F7.
To test this kernel we need a “shell” program. We use here a small test application

spawning itself recursively to compute a factorial. As in the previous chapter, we
store it in the Flash1 memory bank before copying it in the file system. For this we
use a new data buffer, at address DD00016 = 905216 = page 464 (see Figure 23.7). To
load and save its content, edit the F11 command as follows (see F3 and F8):

fn 0
cst 905216 cst 537330176 call 2708
cst_0 retv

d LOAD_APPLICATION_SOURCE_CODE

and define the F12 command with (see F5 and F10):

fn 0
cst 537330176 cst 464 call 2836
cst_0 retv

d SAVE_APPLICATION_SOURCE_CODE

Then use F2 to start a new program, F4 to edit it, and type the following code:

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32;
fn exit(result: u32) -> u32;

fn entry(heap: &u32, heap_limit: &u32) {
let args = heap + 4;
let args_end = args + *heap;
heap = (((args_end as u32 + 3) >> 2) << 2) as &u32;
exit(main(args, args_end, heap, heap_limit));

}
fn system_call(id: u32, args: &u32) -> u32 [
/*SVC*/ 57088;
/*MOV_PC_LR*/ 18167;

]
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FIGURE 23.7 The Flash1 memory bank content at the end of Chapter 23. White,
blue, red and gray areas represent source code, bytecode, native code, and unused
memory, respectively (not to scale).

fn spawn(dst: &u32, name: &u32, name_length: u32, args: &u32, args_length: ≀
≀ u32) -> u32 {

return system_call(0, &dst as &u32);
}
fn exit(result: u32) -> u32 {
return system_call(1, &result);

}
fn draw_char(c: u32) -> u32 {
return system_call(2, &c);

}

static SHELL = ['s','h','e','l','l'];
fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {

if args_end == args {
*heap = 3;
draw_char('=');
draw_char('0' + spawn(heap + 4, SHELL, 5, heap, 4));
loop {}

} else {
if *args == 0 { return 1; }
*args = *args - 1;
return spawn(heap, SHELL, 5, args, 4) * (*args + 1);

}
}

The entry function computes the start and end pointers of the arguments, and
adjusts heap to the first multiple of 4 after args_end (to avoid unaligned memory
accesses, which might decrease performance – this is not necessary here but we reuse
this code later on). It then calls a main function with these new arguments and exit
its result.
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The spawn function is similar to the one in the kernel, but now returns a result (the
exit value of the spawned process). The exit and draw_char functions are similar,
for the corresponding system calls. The system_call native function is also extended
with a “return” instruction because these 3 system calls are now expected to return.

Finally, the main function implements our factorial test. If the arguments are
empty, which is the case when this application is spawned by the kernel, if spawns
itself with the argument 3, at the destination address heap + 4. It then draws a digit
corresponding to the result of the child process, and finally loops forever. Otherwise,
if the arguments are not empty, the main function computes the factorial of the first
argument with a recursive spawn.

When you are done typing this program, use F12 to save it, and F9 to compile
it. If necessary, repeat these steps until the compilation is successful. To copy the
compiled code in the “shell” file and to test it use F3 to load the builder source code,
and F4 to edit it. Then change its main function to the following:

static NAME = ['s','h','e','l','l'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
let result = buffer_write(COMPILED_CODE, NAME, 5);
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all goes
well this should launch the kernel, which should launch our test program, which
should then spawn itself recursively and finally display “=6”, the factorial of 3. After
that you can reset the Arduino, which should restart with the memory editor.
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Our kernel can now spawn an initial process, which can itself spawn other processes.
However, these processes can’t use the keyboard, the screen, or the disk unless they
re-implement the related kernel functions. Indeed, for the reasons explained in the
previous chapter, they can’t call these functions directly. This chapter extends our
kernel with new system calls in order to solve this problem.

24.1 Requirements
The new system calls should provide access to all existing kernel services. This
includes the delay and boot mode selection services, getting the last character typed or
waiting for one, displaying text on screen, and listing, creating, reading, writing, and
deleting files. We also require a new service: the possibility for a process to return
more data to its parent than a single exit value (other than via files).

These system calls should encapsulate the kernel’s implementation details, so that
it can be improved without having to rewrite user programs, also called applications.
For instance, users must not have to deal with DiskBlock or FileBlock, so that these
data structures can be replaced with better ones later on.

The new system calls must also provide a safe way to use the computer resources,
and the disk in particular. This is not the case of the current file system functions.
For instance, it is possible to inadvertently pass a free block to a function expecting a
file block, which might cause a crash or corrupt the file system. This could happen,
for example, if a process gets the first block of a file, spawns a child process which
happens to delete the file, and then uses this block to read the file after the child
terminates.

24.2 Design
In order to meet the above requirements we use a design inspired from the one used
in many existing operating systems for this purpose. More precisely, we model the
keyboard, the graphics card, and the files as sources and/or sinks of bytes, transmitted
one after the other:

• the keyboard is a source of bytes, one per character typed.
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• the graphics card is a sink of commands, sent to it to write values in its registers,
and a source of values, read from its registers (see Section 10.2.3).
• a file is a source of bytes when it is read, and a sink of bytes when new data is

appended to it.

These sources and sinks are called input streams and output streams, respectively.
We introduce two new system calls, called read and write, to read bytes from an
input stream, and to write bytes in an output stream, respectively. We then define the
following streams, identified with a stream ID:

• STANDARD_INPUT (ID 0): the stream of characters typed on the keyboard.
Reading a byte from this stream returns the last character typed since the last one
read. If there is none this operation blocks, i.e., waits until a character is typed.
• STANDARD_OUTPUT (ID 1): a stream of bytes sent by a process to its parent.

These bytes are appended to a buffer provided by the parent. They allow processes
to return more data to their parent than a single exit value.
• KEYBOARD (ID 2): a non-blocking stream of the characters typed on the keyboard.

Reading a byte from this stream returns the last character typed (since the last one
read from STANDARD_INPUT or KEYBOARD), or 0 if there is none.
• GPU (ID 3): an input and output stream used to send commands to the graphics

card, and to read the value of its registers.

File streams can not have a fixed stream ID, since files can be created and deleted
at any time. Instead, we define two more system calls to create a stream for a given
file, and to delete a file stream. They are called open and close, respectively:

• open takes as parameter a file name and a mode (read or write). It creates either an
input stream or an output stream, depending on the mode, and returns the ID of this
new stream. Creating an output stream either creates a file if there is no file with
the given name, or clears the existing file content.
• close takes as parameter a file stream ID and deletes this stream.

Several input streams can exist at a given time for a single file. Each input stream
has its own cursor, which indicates how many bytes have already been read from the
file. Thus, for instance, one stream could have already read 10 bytes of a file, while
another could have read 20 bytes of the same file.

To simplify, and to ensure safety at the same time, we do not allow the coexistence
of several output streams for the same file (across all processes). We do not allow
either the coexistence of input and output streams for a given file. Similarly, we
forbid the deletion of a file (for which we add a delete system call) which has some
associated input or output streams (in any process).

24.3 Data structures and algorithms
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24.3.1 STANDARD_INPUT
Reading a byte from standard input is easy to do with the keyboard_wait_char
function. Note however that this function must be called from the SVC handler in
order to use it in the read system call. In other words, it must run as part of the
SVC interrupt handler. But it might itself wait for the USART handler to run, to get
characters from the keyboard. For this to work, an USART interrupt must be able
to interrupt the SVC handler. Otherwise the latter would wait forever. However, by
default, an interrupt handler cannot interrupt another.

To handle such cases the ARM Cortex M3 uses interrupt priorities. Interrupts
with higher priority are executed first, and can interrupt a currently running handler
with a lower priority. Each type of interrupt has a configurable priority, specified with
a so-called priority level (a non-negative integer). By default, all interrupt types have
priority level 0, which corresponds to the highest priority1. Increasing the priority
level of an interrupt decreases its priority.

To solve the above problem we thus need to increase the priority level of SVC
interrupts, i.e., to decrease their priority (we cannot increase the USART priority since
it is already the highest possible). This can be done with the SVC Handler Priority
Register, at address E000ED1C16 in the “System” region (see Figure 6.3). The most
significant byte of this register defines the priority level of SVC interrupts (the other
bytes are “reserved”).

24.3.2 STANDARD_OUTPUT
In order to write data to standard output, on behalf of a process, the kernel must have a
pointer to an output buffer provided by the parent, as well as its capacity. To this end:

• we add a new output_p parameter to the spawn system call. This parameter must
be a pointer to a word containing the buffer’s start address (see Figure 24.1).
• we use the existing spawn’s dst parameter as the buffer’s limit address.

Each time the kernel appends a byte to this buffer, it also increases the address at
output_p. This allows a parent process to compute how many bytes were written by
its child, once it terminates (see Figure 24.1).

24.3.3 GPU
The GPU stream is used to read and write the value of the graphics card registers.
Recall that this is done with 3 types of commands, each using 2 bytes: Select Register,
Read Data, and Write Data (Section 10.2.3). We thus use the following algorithms:

• reading a byte from GPU sends a Read Data command to the graphics card and
returns the result. This gives the value of the last register selected with a Select
Register command.

1Reset and Hard Fault have even higher, non-configurable priorities.
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FIGURE 24.1 A child process writes STANDARD_OUTPUT data at the address stored in
the word at output_p, up to dst, and updates this address (top). When it terminates
(bottom), the word at output_p points to the end of the data it wrote (brown). Red,
yellow, green, and gray areas represent native code, heap, stack, and unused memory,
respectively.

• writing two bytes in GPU sends the corresponding command to the graphics card.
This must be either a Select Register or a Write Data command. Some registers are
sensitive and might damage the card if not used correctly, such as those setting the
clock frequency. For safety, we filter out the Select Register commands for these
registers.

24.3.4 File streams
A process can create several file streams with open. Each has its own ID, mode (read
or write), and cursor. To keep track of this information we add a file_streams field
in the Process struct, pointing to a linked list of FileStream data structures. Each
FileStream contains the following data (see Figure 24.2):

• a pointer to the next FileStream in the list, or null for the last one.
• the stream’s mode. We use ’r’ for the read mode, and ’w’ for the write mode.
• a pointer to the FileBlock of the file from which this stream was created.
• the stream’s cursor, pointing to the next byte to read from or to write to this file. It

is represented with a pointer to a DiskBlock, and an offset within this block:
• for an input stream, the offset is the number of bytes that have already been read

in this block, plus the block’s header size.
• for an output stream the offset is unused. Instead, bytes are appended after the

last used one in the block, which is specified in the block’s header.

Note that a FileStream does not store its ID. Instead, we use its position in the
file_streams list to compute its ID: the ith element, counting from 0, has ID i+ 42.
A consequence is that, when a file stream is closed, it cannot be deleted and removed
from the file_streams list (this would change the IDs of the next streams). Instead,
we set its mode to 0, meaning “unused”, and its FileBlock pointer to null.

We store the newly created FileStream data structures after the current Process,
in the kernel’s heap. They are automatically deleted when the process terminates.

2Stream IDs are local: two streams with the same ID, in different processes, can refer to different files.
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FIGURE 24.2 A process has a linked list of structs representing its file streams (red
links). Each stream points to the corresponding file block (bottom) and to the next
byte to read or write. Here the first stream, with implicit ID 4, has read the first block
and 7− 4 = 3 bytes of the second block of the “Cat” file.

This is because a Process is deleted, in os_exit, by restoring the kernel’s heap
pointer to the value it had just before the process was created.

Files list
In order to get a list of all the files we use a virtual directory containing this list of
names. By convention, users can open it in read mode by using an empty file name.
This gives a stream from which file names can be read one by one (in their entirety; to
simplify, we do not allow reading a file name piece by piece).

To implement this we represent a directory stream with a FileStream whose
mode is ’l’ (for “list”). The FileBlock pointer of such a stream points to the file
whose name must be returned by the next read call. Its cursor is unused (DiskBlock
pointer and offset).

Although we forbid deleting a file with at least one open stream, we do not forbid
deleting one which is the next to be returned by a directory stream. Instead, if a
directory stream points to a file which is about to be deleted, we advance it to the next
file.

24.4 Implementation
We can now extend the second version of our kernel, written in the previous chapter,
with the algorithms described above. The first change is the addition of the load16
function, copied from our native compiler. We use it later on to read commands from
the GPU stream:

fn load8(ptr: &u32) -> u32 [ /*LDRB_R0_R0_0*/30720; /*MOV_PC_LR*/18167; ]
fn load16(ptr: &u32) -> u32 [ /*LDRH_R0_R0_0*/34816; /*MOV_PC_LR*/18167; ]
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The following existing code is unchanged, up to and including the Context struct.
We implement the FileStream struct just after it, as described above. We also add
new fields in Process to store its list of file streams, as well as its output_p parameter.
The output_limit field indicates the limit of the standard output buffer.
const MODE_UNUSED: u32 = 0;
const MODE_LIST: u32 = 'l';
const MODE_READ: u32 = 'r';
const MODE_WRITE: u32 = 'w';

struct FileStream {
next: &FileStream,
mode: u32,
file_block: &FileBlock,
current_block: &DiskBlock,
current_offset: u32

}
struct Process {

parent: &Process,
begin: &u32,
end: &u32,
saved_context: &Context,
file_streams: &FileStream,
output_p: &&u32,
output_limit: &u32

}

We continue by removing the temporary draw_char field in Kernel, and by
replacing it with fields for the new system calls, implemented below. We also add a
small utility function computing the minimum of two numbers, needed later on.

spawn: u32,
exit: u32,
sleep: u32,
stat: u32,
open: u32,
read: u32,
write: u32,
close: u32,
delete: u32,
reboot: u32

}

const KERNEL_POINTER_REGISTER: &&Kernel = 1074666140;
fn os_kernel() -> &Kernel { return *KERNEL_POINTER_REGISTER; }

fn min(x: u32, y: u32) -> u32 {
if x < y { return x; } else { return y; }

}
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The os_spawn function must be updated to take the new output_p parameter into
account. This requires additional validations, to make sure that the 4 bytes starting at
output_p are contained in the parent’s memory region. We must also check that the
address stored at output_p is in this region, and before dst. After that we can simply
store output_p and the output buffer limit address (dst) in the process struct.

fn os_spawn(dst: &u32, name: &u32, name_length: u32,
args: &u32, args_length: u32, output_p: &&u32) -> u32 {

...
if parent != null {

...
if args + args_length > begin && args < end {

return error_result(INVALID_ARGUMENT);
}
if process_contains_buffer(parent, output_p as &u32, 4) == FALSE ||

*output_p < parent.begin || *output_p > dst {
return error_result(INVALID_ARGUMENT);

}
}

...
process.saved_context = context;
process.file_streams = null;
process.output_p = output_p;
process.output_limit = dst;
os_set_current_process(kernel, process);
return OK;

}

We keep the os_exit function unchanged since it already automatically deletes
the process’s file streams. On the other hand we delete the temporary os_draw_char
function, and start implementing functions for the new system calls. The first one
provides access to the delay function. Since this function is restricted to delays of
about 1.5s (see Section 9.5) we call it several times if needed:

fn os_sleep(millis: u32) -> u32 {
while millis > 1000 { delay(1000); millis = millis - 1000; }
delay(millis);
return OK;

}

With the stream system calls presented above it is not possible to get the size of
a file other than by reading it completely. To improve this we provide the following
system call, which returns the size of the specified file. If the given name is not
contained in the process’s memory region, or if the file is not found, it returns an error
instead (in the most significant byte, see Section 23.3.4):

fn os_stat(name: &u32, length: u32) -> u32 {
let process = os_kernel().current_process;
if process_contains_buffer(process, name, length) == FALSE {
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return error_result(INVALID_ARGUMENT);
}
let file_block = disk_find_file(name, length, null);
if file_block == null { return error_result(NOT_FOUND); }
return disk_get_file_size(file_block);

}

Before implementing the stream system calls it is useful to have some functions to
manage the file streams of a process. The following one returns the FileStream with
the given ID, or null if there is none:
const STANDARD_INPUT: u32 = 0;
const STANDARD_OUTPUT: u32 = 1;
const KEYBOARD: u32 = 2;
const GPU: u32 = 3;
const FIRST_FILE_STREAM_ID: u32 = 4;

fn process_get_file_stream(self: &Process, stream_id: u32) -> &FileStream ≀
≀{

let stream = self.file_streams;
let id = FIRST_FILE_STREAM_ID;
while stream != null && id != stream_id {
stream = stream.next;
id = id + 1;

}
return stream;

}

The next function returns the first unused FileStream of a process, or creates
one if all streams are used. In the latter case, it adds the FileStream at the end of the
file_streams list, in order to avoid changing the implicit ID of the existing ones.
This requires updating the next field of the last existing FileStream, or the process’s
file_streams field if there is no existing stream. The stream_ptr variable points
to the former or to the later, depending on which case applies.

This function stores the ID of the returned stream at address stream_id. It returns
null if there is not enough memory in the kernel’s heap to create a FileStream.
fn process_get_unused_file_stream(self: &Process, stream_id: &u32) -> &Fil ≀

≀eStream {
let stream_ptr = &self.file_streams;
let stream = *stream_ptr;
*stream_id = FIRST_FILE_STREAM_ID;
while stream != null && stream.mode != MODE_UNUSED {
stream_ptr = &stream.next;
stream = *stream_ptr;
*stream_id = *stream_id + 1;

}
let kernel = os_kernel();
if stream == null && kernel.heap + sizeof(FileStream) <= kernel.heap_lim ≀
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≀it {
stream = kernel.heap as &FileStream;
kernel.heap = kernel.heap + sizeof(FileStream);
stream.next = null;
stream.mode = MODE_UNUSED;
stream.file_block = null;
*stream_ptr = stream;

}
return stream;

}

Another convenient function is the following, which checks if a given file can be
opened in read or write mode. For this it checks all the file streams of all the processes.
If one of them corresponds to file_block, in read or write mode, then the file can
only be opened again in read mode, provided it is not already open in write mode.
fn process_can_open(self: &Process, file_block: &FileBlock, mode: u32) -> ≀

≀u32 {
let process = self;
let stream: &FileStream = null;
while process != null {
stream = process.file_streams;
while stream != null {

if stream.file_block == file_block && stream.mode != MODE_LIST {
if stream.mode == MODE_WRITE || mode == MODE_WRITE {

return FALSE;
}

}
stream = stream.next;

}
process = process.parent;

}
return TRUE;

}

We can now implement the stream system call functions themselves, starting
with open. This function takes a file name and a mode as parameters, and returns a
stream ID or an error. It first validates its arguments, and gets or creates an unused
FileStream and its ID. An empty file name designates the virtual directory, which
can only be read (with the internal “list” mode). Otherwise, in read mode, the file
must exists. In write mode it is created if it does not exist yet. It is cleared otherwise.
fn os_open(name: &u32, length: u32, mode: u32) -> u32 {

let process = os_kernel().current_process;
if process_contains_buffer(process, name, length) == FALSE ||

mode != MODE_READ && mode != MODE_WRITE {
return error_result(INVALID_ARGUMENT);

}
let stream_id = 0;
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let stream = process_get_unused_file_stream(process, &stream_id);
if stream == null { return error_result(OUT_OF_MEMORY); }
let file_block = SUPER_BLOCK.first_file;
let status = OK;
if length == 0 {
if mode != MODE_READ { status = INVALID_ARGUMENT; }
mode = MODE_LIST;

} else {
file_block = disk_find_file(name, length, null);
if file_block == null {

if mode == MODE_READ {
status = NOT_FOUND;

} else {
status = disk_create_file(name, length, &file_block);

}
} else if process_can_open(process, file_block, mode) == TRUE {

if mode == MODE_READ {
stream.current_offset = 12 + file_block.name_length;

} else {
disk_clear_file(file_block);

}
} else {

status = INVALID_STATE;
}

}
if status != OK { return error_result(status); }
stream.mode = mode;
stream.file_block = file_block;
stream.current_block = file_block as &DiskBlock;
return stream_id;

}

The next function reads up to size bytes from the given stream, into buffer.
It returns the number of bytes actually read, or an error. For this it first checks its
arguments. Then, if the stream is STANDARD_INPUT or KEYBOARD, it reads only
one character, in a blocking or non-blocking way. If the stream is GPU it reads exactly
size bytes by sending as many Read Data commands. If it is STANDARD_OUTPUT
this is an error. Any other case corresponds to a file stream or a directory stream.
In the latter case, this function copies up to size bytes of the current file name, and
advances the stream to the next file. To avoid getting truncated file names, users must
pass a buffer which can contain the longest possible file name, i.e., 244 characters.

fn os_read(stream_id: u32, buffer: &u32, size: u32) -> u32 {
let process = os_kernel().current_process;
if size == 0 || process_contains_buffer(process, buffer, size) == FALSE ≀

≀{
return error_result(INVALID_ARGUMENT);

}
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let i = 0;
if stream_id < FIRST_FILE_STREAM_ID {
if stream_id == STANDARD_INPUT {

*buffer = keyboard_wait_char();
return 1;

} else if stream_id == KEYBOARD {
*buffer = keyboard_get_char();
return 1;

} else if stream_id == GPU {
while i < size {
store8(buffer + i, spi_transfer(16384 /*Read Data Command*/));
i = i + 1;

}
return size;

} else {
return error_result(INVALID_STATE);

}
}
let stream = process_get_file_stream(process, stream_id);
if stream == null || stream.mode == MODE_UNUSED {
return error_result(NOT_FOUND);

}
if stream.mode == MODE_LIST {
if stream.file_block == null { return 0; }
size = min(size, stream.file_block.name_length);
mem_copy_non_overlapping(&stream.file_block.name, buffer, size);
stream.file_block = stream.file_block.next_file;
return size;

}
if stream.mode != MODE_READ { return error_result(INVALID_STATE); }
return size - disk_read_file(&stream.current_block, &stream.current_offs ≀

≀et, buffer, size);
}

Before implementing a function for the write system call we need one to validate
a command before sending it to the GPU. This helper function must filter out invalid
commands (only Select Register and Write Data can be used) as well as Select Register
commands for “sensitive” registers. For this we define a list of “safe” registers:

static GPU_SAFE_REGISTERS = [
4, 0, 1, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0,
255, 224, 255, 255, 255, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

These 32 bytes contain 256 bits, one per possible GPU register. The ith bit,
counting from 0, is 1 if register Ri is judged “safe”, or 0 otherwise (such as registers
setting clock frequencies – see the full register list in [13]). The following function
uses it to filter out invalid GPU commands as described above (the ith bit is the jth

bit of the kth byte, where j = i mod 8 = i ∧ 7 and k = i/8 = i≫ 3):

447



CHAPTER 24 Streams

fn os_gpu_write(value: u32) {
let command = value >> 8;
let register = value & 255;
let mask = 0;
if command != 0 /*Write Data Command*/ {
if command != 128 /*Select Register Command*/ { return; }
mask = 1 << (register & 7);
if *(GPU_SAFE_REGISTERS + (register >> 3)) & mask == 0 { return; }

}
spi_transfer(value);

}

The next function writes up to size bytes from the given buffer, into the given
stream. It returns the number of bytes actually written, or an error. If the arguments
are valid, and if the stream is STANDARD_OUTPUT, it copies as many bytes as
possible into the process’s output buffer (given its remaining capacity). If the stream
is GPU, it sends these bytes to the graphics card two by two, with the above function
(if size is odd the last byte is not sent). Otherwise the stream must be a file stream in
write mode. In this case this function appends the whole buffer to the corresponding
file (this can fail if the disk is full).

fn os_write(stream_id: u32, buffer: &u32, size: u32) -> u32 {
let process = os_kernel().current_process;
if process_contains_buffer(process, buffer, size) == FALSE {
return error_result(INVALID_ARGUMENT);

}
let i = 0;
if stream_id < FIRST_FILE_STREAM_ID {
if stream_id == STANDARD_OUTPUT {

size = min(size, process.output_limit - *process.output_p);
mem_copy_non_overlapping(buffer, *process.output_p, size);
*process.output_p = *process.output_p + size;
return size;

} else if stream_id == GPU {
while i + 1 < size {
os_gpu_write(load16(buffer + i));
i = i + 2;

}
return i;

} else {
return error_result(INVALID_STATE);

}
}
let stream = process_get_file_stream(process, stream_id);
if stream == null || stream.mode == MODE_UNUSED {
return error_result(NOT_FOUND);

}
if stream.mode != MODE_WRITE { return error_result(INVALID_STATE); }
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let status = disk_write_file(&stream.current_block, buffer, size);
if status != OK { return error_result(status); }
return size;

}

Closing a file stream is very easy (see Section 24.3.4):

fn os_close(stream_id: u32) -> u32 {
let process = os_kernel().current_process;
let stream = process_get_file_stream(process, stream_id);
if stream == null || stream.mode == MODE_UNUSED {
return error_result(NOT_FOUND);

}
stream.mode = MODE_UNUSED;
stream.file_block = null;
return OK;

}

The following function deletes the file with the given name. Before this it checks
that its arguments are valid, that the file exists and that no process is currently reading
it or writing to it (by checking that it could be open in write mode). It also advances
all the directory streams which reference it to the next file (by iterating over all file
streams of all processes):

fn os_delete(name: &u32, length: u32) -> u32 {
let process = os_kernel().current_process;
if process_contains_buffer(process, name, length) == FALSE {
return error_result(INVALID_ARGUMENT);

}
let previous_file_block: &FileBlock = null;
let file_block = disk_find_file(name, length, &previous_file_block);
if file_block == null { return error_result(NOT_FOUND); }
if process_can_open(process, file_block, MODE_WRITE) == FALSE {
return error_result(INVALID_STATE);

}
let stream: &FileStream = null;
while process != null {
stream = process.file_streams;
while stream != null {

if stream.mode == MODE_LIST && stream.file_block == file_block {
stream.file_block = file_block.next_file;

}
stream = stream.next;

}
process = process.parent;

}
disk_delete_file(file_block, previous_file_block);
return OK;

}
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The last new system call function reboots the computer and launches the operating
system (if mode is not 1) or the Boot Assistant (if mode is 1). For this it changes the
boot mode to boot from ROM if necessary, and then triggers a reset with the Reset
Control Register, at address 400E1A0016 = 1074665984 (see Section 9.7):

fn os_reboot(mode: u32) -> u32 {
const RESET_CONTROL_REGISTER: &u32 = 1074665984;
const RESET_COMMAND: u32 = 2768240653;
if mode == 1 { boot_mode_select_rom(); }
*RESET_CONTROL_REGISTER = RESET_COMMAND;
return OK;

}

After that the existing kernel code is mostly unchanged. The SVC handler, in
particular, does not need to be updated to take the new system call functions into
account. Instead, we just need to update the constants describing the number of system
calls and the arity of each one (in the order they are declared in Kernel):

const NUM_SYSTEM_CALLS: u32 = 10;
static SYSTEM_CALL_ARITY = [6, 1, 1, 2, 3, 3, 3, 1, 2, 1];

The os_init function just needs to be updated in order to store the new system
call function addresses in the kernel struct, and to configure the SVC handler priority
level. Here we use the maximum priority level (255), i.e., the lowest possible priority.

fn os_init(code: &u32, heap: &u32, stack: &u32) {
...

kernel.exit = os_exit;
kernel.sleep = os_sleep;
kernel.stat = os_stat;
kernel.open = os_open;
kernel.read = os_read;
kernel.write = os_write;
kernel.close = os_close;
kernel.delete = os_delete;
kernel.reboot = os_reboot;
*(KERNEL_POINTER_REGISTER as &&Kernel) = kernel;

clock_init();
keyboard_init();
gpu_init();
const SVC_HANDLER_PRIORITY_REGISTER: &u32 = 3758157084;
*SVC_HANDLER_PRIORITY_REGISTER = 255 << 24;

}

The last required change is to take the new output_p parameter into account to
spawn the shell. Here we set its output buffer capacity to 0.

fn spawn(dst: &u32, name: &u32, name_length: u32,
args: &u32, args_length: u32, output_p: &&u32) {
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system_call(0, &dst as &u32);
}

static SHELL = ['s','h','e','l','l'];
fn os_spawn_shell() {

let dst = os_kernel().heap_limit;
spawn(dst, SHELL, 5, null, 0, &dst);

}

24.5 Compilation and tests
Type “F8”+“r” in the command editor to load the current kernel source code, and
“F4”+“r” to edit it. Then update it as described above. For reference, we also provide
this new version in the toys_v2.txt file in https://ebruneton.github.io/toypc/sources.
zip. When done, type “F10”+“r” to save it and “F9”+“r” to compile it. If necessary,
repeat these steps until the compilation is successful. To copy the compiled code in
the “toys” file use F3 to load the builder source code, and F4 to edit it. Then change
its main function to the following:

static NAME = ['t','o','y','s'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
return buffer_write(COMPILED_CODE, NAME, 4);

}

Finally, save the builder with F5, compile it with F6, and run it with F7. To test the
new system calls we can use two processes doing the following:

• a parent creates a file and writes some text to it. It then spawns a child, displays
on screen the output written to standard output by its child, and then any character
received from standard input.
• the child reads the above file and copies its content to standard output.

Each step should work and the screen should eventually display the text written to
disk by the parent. We can implement this test in a single program spawning itself,
playing the parent role if spawned without argument, or the child role otherwise. For
this use F11 to load the current “shell” source code, and F4 to edit it. Keep the entry
and system_call functions unchanged. Add the following OK constant and status
helper before the spawn function, and add an output_p parameter to the latter:

const OK: u32 = 0;
fn status(result: u32) -> u32 { return result >> 24; }

fn spawn(dst: &u32, name: &u32, name_length: u32,
args: &u32, args_length: u32, output_p: &&u32) -> u32 {

return system_call(0, &dst as &u32);
}
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Then, after exit, unchanged, add similar functions for the new system calls:

fn exit(result: u32) -> u32 {
return system_call(1, &result);

}
fn sleep(millis: u32) -> u32 {

return system_call(2, &millis);
}
fn stat(name: &u32, length: u32) -> u32 {

return system_call(3, &name as &u32);
}
fn open(name: &u32, length: u32, mode: u32) -> u32 {

return system_call(4, &name as &u32);
}
const STANDARD_INPUT: u32 = 0;
const STANDARD_OUTPUT: u32 = 1;
const KEYBOARD: u32 = 2;
const GPU: u32 = 3;
fn read(stream_id: u32, buffer: &u32, size: u32) -> u32 {

return system_call(5, &stream_id);
}
fn write(stream_id: u32, buffer: &u32, size: u32) -> u32 {

return system_call(6, &stream_id);
}
fn close(stream_id: u32) -> u32 {

return system_call(7, &stream_id);
}
fn delete(name: &u32, length: u32) -> u32 {

return system_call(8, &name as &u32);
}
fn reboot(mode: u32) -> u32 {

return system_call(9, &mode);
}

Using these, add the following function to read a character from STANDARD_INPUT,
and update draw_char to use the new write system call. This new implementation
writes the following commands to the GPU stream, in this order (see Sections 10.2.2
and 10.2.3):

• a Select Register command (8016), in the 2 least significant bytes of buffer.
• a Write Data command (0016), in the most significant bytes.

fn wait_char() -> u32 {
let buffer = 0;
read(STANDARD_INPUT, &buffer, 1);
return buffer;

}
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fn draw_char(c: u32) -> u32 {
let buffer = (c & 255) << 16 | (32768 /*Select Register*/ | 2);
return write(GPU, &buffer, 4);

}

Then implement a function playing the parent process role:

static SHELL = ['s','h','e','l','l'];
static TEST = ['t','e','s','t'];
static TEXT = ['0','1','2','3','4','5','6','7','8','9'];

fn parent(heap: &u32) -> u32 {
let stream = open(TEST, 4, 'w');
if status(stream) != OK { return 'o'; }
let i = 0;
while i < 23 {
if write(stream, TEXT, 10) != 10 { return 'w'; }
i = i + 1;

}
if close(stream) != OK { return 'c'; }
let argument = 0;
let output = heap;
if spawn(heap + 512, SHELL, 5, &argument, 4, &output) != OK {
return 's';

}
if delete(TEST, 4) != OK { return 'd'; }
let ptr = heap;
while ptr < output {
draw_char((*ptr) & 255);
ptr = ptr + 1;

}
return '.';

}

This function writes 0123456789 23 times in a new file named “test”, and closes
it. It then spawns the “shell” program with a 4 bytes argument equal to 0, and an
output buffer for this child starting at heap, with a maximum capacity of 512 bytes.
Finally, it deletes the file and displays the content of this output buffer on screen. It
returns ’.’ if everything goes well, or a lowercase letter indicating which step failed.
Continue with a function playing the child process role:

fn child(heap: &u32) -> u32 {
let stream = open(TEST, 4, 'r');
if status(stream) != OK { return 'O'; }
let n = 0;
loop {
n = read(stream, heap, 64);
if status(n) != OK { return 'R'; }
write(STANDARD_OUTPUT, heap, n);
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if n < 64 { break; }
}
exit(OK);
return 'E';

}

This function reads the “test” file, in chunks of at most 64 bytes, and writes each
chunk to standard output just after it has been read. If less than 64 bytes are read
this means that the end of the file is reached. In this case the function exits with OK
(without closing the stream; this is not necessary since terminating a process deletes
all its streams). Otherwise, or if exit fails, it returns an uppercase letter indicating
which step failed.

Finally, update the main function to call the parent or the child function, and to
finally display any character read from standard input:

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
if args_end == args {
draw_char(parent(heap));

} else {
draw_char(child(heap));

}
loop { draw_char(wait_char()); }

}

When you are done typing this program, use F12 to save it, and F9 to compile it
(for reference we also provide it in the streams_test.txt file in https://ebruneton.gi
thub.io/toypc/sources.zip). If necessary, repeat these steps until the compilation is
successful. To copy the compiled code in the “shell” file and to test it use F3 to load
the builder source code, and F4 to change its main function as follows:

static NAME = ['s','h','e','l','l'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
let result = buffer_write(COMPILED_CODE, NAME, 5);
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all goes
well this should launch the kernel, which should launch our test program. The screen
should display 0123456789 23 times, followed by a dot. Typing any key should
display it on screen. After that you can reset the Arduino, which should restart with
the memory editor.
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25
CHAPTER

Shell, Text Editor,
and Compiler

Our kernel can spawn an initial process which can now use all the computer resources,
thanks to the system calls added in the previous chapter. However, we only have a
useless test initial program for now. Moreover, in order to store new programs on disk
we need the command editor to edit, compile, and save them. And we need to switch
back and forth between the basic input output system and the operating system to
launch them. The goal of this chapter is to solve these issues by making it possible to
edit, compile, save, and launch programs from the operating system alone.

For this we need a text editor and a compiler which can run as processes, and
which can read and write files (instead of data buffers). We already have a text editor,
but only in binary bytecode form. We thus need to rewrite it in Toy, and to update it to
work with files. Our compiler is already in Toy, but also needs to be updated to work
with files. Finally, to launch arbitrary programs, we need something like the command
editor, but more practical, called a shell. This chapter provides these 3 programs. We
test them at the end with a “Hello, Word!” application.

25.1 Shell
25.1.1 Requirements
The shell must allow the user to interactively launch arbitrary programs. For this the
user must be able to specify which program to launch, and its arguments. On disk
programs and data are stored as files, and can thus be specified with file names. Hence,
for instance, “toyc hello hello.toy” could be used to specify that the program
stored in the file named “toyc” must be launched with the file names “hello” and
“hello.toy” as arguments. We thus require the following:

• the shell should allow the user to type a line of text called a command line, or
command, after a prompt “>”. To simplify, we do not require the possibility to
insert or delete characters in the middle of a command, but only at the end.
• commands must be of the form “<program> <arguments>”. Typing Enter should

spawn the program stored in the file named <program>, with <arguments> as
arguments (which can be empty). The launched program is then responsible to
parse <arguments> in order to extract each individual argument.
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• the shell must display on screen the output of the last executed command. Either an
error message if the program could not be launched, or the text written to standard
output by this program. It should then repeat the above steps.

To save memory we only require our shell to display the last executed command,
its output, and the currently edited command. Older commands are not displayed. For
instance, after a “hello” command writing “Hello, World!” to standard output, and
while typing a new “edit hello.toy” command, the screen should display:

>hello
Hello, World!
>edit hello.to_

To simplify, for now, we do not require the possibility to save commands, as in the
command editor. Still, to avoid having to re-type recent commands, we require the
shell to keep in memory a history of the last N executed commands. It should then be
possible, with the arrow up and down keys, to replace the currently edited command
with one from the above history.

25.1.2 Data structures
In order to meet the above requirements we use a buffer to store the currently edited
command, N buffers to store the previous N commands, and one buffer to store the
output of the last executed one (see Figure 25.1).

After a command is run we must 1) add it to the history, and 2) remove the oldest
command from this history. To make this is easy to implement we link the N + 1
command buffers in a circular doubly linked list. This means that each buffer has a
link to a next one and to a previous one, and that these links form two rings going in
opposite directions (see the green and red links in Figure 25.1). We also use a pointer
to the currently edited command. Then, after this command is run, it suffice to update
this pointer to the next command, and to clear this command, to automatically achieve
1) and 2) above:

edit hello.toy

next

current run current

toyc hello hello.toyhello

edit hello.toy

∅hello
=⇒

In fact this only requires links from one command to the next. We use the opposite
links to easily go back in the history, with the arrow up key.

In summary we use a Command data structure, with two pointers to previous and
next commands, and a length indicating the number of characters of this command
(followed by the characters themselves – see Figure 25.1). We also use a Shell data
structure, containing a pointer to one of the commands, as well as pointers to the
output of the last command: its beginning (inclusive), its end (exclusive), and the
limit of the underlying buffer (exclusive – see Figure 25.1).
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FIGURE 25.1 A shell with a history of two commands (N = 2). The user is currently
editing an “edit hello.to” command, of length 13. The previous command was “hello”
and its output was “Hello, World!”. The command before it was “foo”.

25.1.3 Implementation
We implement the shell by editing our test application, which already contains some
useful code, in order to avoid re-typing it. After the entry function, unchanged, we
insert the load8, store8, load16, and store16 functions, copied from our native
compiler (the last two are not needed right now but will be useful later).
fn load8(ptr: &u32) -> u32 [ /*LDRB_R0_R0_0*/30720; /*MOV_PC_LR*/18167; ]
fn load16(ptr: &u32) -> u32 [ /*LDRH_R0_R0_0*/34816; /*MOV_PC_LR*/18167; ]
fn store8(ptr: &u32, value: u32) [ /*STRB_R1_R0_0*/28673; /*MOV_PC_LR*/181 ≀

≀67; ]
fn store16(ptr: &u32, value: u32) [ /*STRH_R1_R0_0*/32769; /*MOV_PC_LR*/18 ≀

≀167; ]

We continue with a function to read a token from a command, i.e., the program
name or an argument. This function uses a simplified version of Algorithm 15.1, with
a pointer to src instead of src itself as parameter. It returns a pointer to the token’s
first character, stores its length at address length and updates src to the address of
the first character after it. This allows reading a command with repeated calls to this
function with the same first two arguments.
fn sh_read_token(src_p: &&u32, src_end: &u32, length: &u32) -> &u32 {

let src = *src_p;
while src < src_end && load8(src) == ' ' { src = src + 1; }
if src >= src_end { return null; }
let token = src;
while src < src_end && load8(src) != ' ' { src = src + 1; }
*length = src - token;
*src_p = src;
return token;

}

We also copy, after the existing OK constant, the error codes from the kernel (which
are useful to return errors and analyze the result of commands):
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const OK: u32 = 0;
const INVALID_ARGUMENT: u32 = 1;
const INVALID_STATE: u32 = 2;
const NOT_FOUND: u32 = 3;
const ALREADY_EXISTS: u32 = 4;
const OUT_OF_MEMORY: u32 = 5;
const INTERNAL_ERROR: u32 = 6;

The shell needs to draw text on the screen, with double buffering to avoid flickering
(see Section 14.2.3). For this we implement the following functions, after the existing
system call functions (from status to reboot). They are re-implementations of
functions of the same names in Sections 10.4 and 14.3, in Toy and using system calls
(see these sections and the draw_char function from Section 24.5 for more details).

fn gpu_set_register(id: u32, value: u32) {
let buffer = (value & 255) << 16 | (32768 /*Select Register*/ | id);
write(GPU, &buffer, 4);

}

fn gpu_set_double_buffer() {
gpu_set_register(32 /*Display Configuration*/, 128);
gpu_set_register(65 /*Memory Write Control 1*/, 1);

}

fn gpu_set_single_buffer() {
gpu_set_register(65 /*Memory Write Control 1*/, 0);
gpu_set_register(82 /*Layer Transparency 0*/, 0);
gpu_set_register(32 /*Display Configuration*/, 0);

}

fn gpu_switch_buffer() {
let buffer = 32768 /*Select Register*/ | 65 /*Memory Write Control 1*/;
write(GPU, &buffer, 2);
let layer = 0;
read(GPU, &layer, 1);
buffer = /*0 (Write Data) | */ 1 - layer;
write(GPU, &buffer, 2);
gpu_set_register(82 /*Layer Transparency 0*/, layer);

}

fn gpu_clear_screen() {
gpu_set_register(142 /*Memory Clear Control*/, 192);
let buffer = 0;
loop {
read(GPU, &buffer, 1);
if buffer & 128 == 0 { return; }

}
}
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fn gpu_set_cursor(col: u32, row: u32) {
gpu_set_register(42 /*Font Write Cursor H Position 0*/, col << 3);
gpu_set_register(43 /*Font Write Cursor H Position 1*/, col >> 5);
gpu_set_register(44 /*Font Write Cursor V Position 0*/, row << 4);
gpu_set_register(45 /*Font Write Cursor V Position 1*/, row >> 4);

}

fn gpu_set_color(r: u32, g: u32, b: u32) {
gpu_set_register(99 /*Foreground Color 0*/, r);
gpu_set_register(100 /*Foreground Color 1*/, g);
gpu_set_register(101 /*Foreground Color 2*/, b);

}

fn gpu_draw_char(c: u32) { gpu_set_register(2, c); }

The shell also needs to allocate memory for its data structures, and to copy
commands from the history. For this we copy the following functions from the Toy
compiler and from the kernel (with a return null instead of a panic):

fn mem_allocate(size: u32, heap_p: &&u32, heap_limit: &u32) -> &u32 {
let ptr = *heap_p;
if size > heap_limit as u32 || ptr > heap_limit - size { return null; }
*heap_p = ptr + size;
return ptr;

}
fn mem_copy_non_overlapping(src: &u32, dst: &u32, size: u32) {

let i = 0;
while i < size {
store8(dst + i, load8(src + i));
i = i + 1;

}
}

We can now start the “real” shell implementation, beginning with a definition of
its data structures, and of their maximum sizes (NUM_COMMANDS is equal to N + 1;
data contains the first 4 characters of a command; hence, &c.data points the first
character of command c):

const NUM_COMMANDS: u32 = 4;
const MAX_COMMAND_LENGTH: u32 = 196;
const MAX_OUTPUT_SIZE: u32 = 512;

struct Command {
previous: &Command,
next: &Command,
length: u32,
data: u32

}
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struct Shell {
commands: &Command,
output_begin: &u32,
output_end: &u32,
output_limit: &u32

}

We continue with a function to copy the text of a command into another, and a
function to create a Shell struct. The latter allocates all the required memory, returns
null if this fails, and initializes the shell and its commands otherwise. In particular, it
initializes the previous and next command links as illustrated in Figure 25.1. These
links stay unchanged after that.

fn command_copy(src: &Command, dst: &Command) {
dst.length = src.length;
mem_copy_non_overlapping(&src.data, &dst.data, src.length);

}

fn sh_new(heap_p: &&u32, heap_limit: &u32) -> &Shell {
let shell = mem_allocate(sizeof(Shell), heap_p, heap_limit) as &Shell;
let command_size = sizeof(Command) - 4 + MAX_COMMAND_LENGTH;
let command =

mem_allocate(NUM_COMMANDS * command_size, heap_p, heap_limit) as &Co ≀
≀mmand;

let output = mem_allocate(MAX_OUTPUT_SIZE, heap_p, heap_limit);
if shell == null || command == null || output == null { return null; }
shell.commands = command;
shell.output_begin = output;
shell.output_end = output;
shell.output_limit = output + MAX_OUTPUT_SIZE;
let i = 0;
let previous_command = command + (NUM_COMMANDS - 1) * command_size;
while i < NUM_COMMANDS {
previous_command.next = command;
command.previous = previous_command;
command.length = 0;
previous_command = command;
command = command + command_size;
i = i + 1;

}
return shell;

}

The next function appends up to length characters from src to the shell’s output
buffer (depending on its remaining capacity):

fn sh_print(self: &Shell, src: &u32, length: u32) {
if length > self.output_limit - self.output_end {
length = self.output_limit - self.output_end;
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}
mem_copy_non_overlapping(src, self.output_end, length);
self.output_end = self.output_end + length;

}

We use it in the following function, which runs the command in [src, src_end [.
This function starts by extracting the program name, i.e., the command’s first token.
If it is not empty it spawns this program, with the rest of the command as arguments,
and the shell’s output buffer as standard output buffer. It then appends to this buffer
an error message if the program could not be launched, if it ran out of memory, or if it
crashed. Finally, it appends a new line character if the output of the previous steps is
not empty and does not already ends with a new line:
static CANT_FIND = ['C','a','n',''','t',' ','f','i','n','d',' '];
static CANT_LAUNCH = ['C','a','n',''','t',' ','l','a','u','n','c','h',' '];
static NOT_ENOUGH_MEMORY = ['O','u','t',' ','o','f',' ','m','e','m','o','r ≀

≀','y'];
static CRASHED = [' ','c','r','a','s','h','e','d'];

const NEW_LINE: u32 = 10;

fn sh_run(self: &Shell, src: &u32, src_end: &u32) {
let length = 0;
let name = sh_read_token(&src, src_end, &length);
if name == null { return; }
let old_end = self.output_end;
let result = spawn(self.output_limit, name, length, src, src_end - src, ≀

≀&self.output_end);
if status(result) == NOT_FOUND {
sh_print(self, CANT_FIND, 11);
sh_print(self, name, length);

} else if status(result) != OK {
sh_print(self, CANT_LAUNCH, 13);
sh_print(self, name, length);

} else if result == OUT_OF_MEMORY {
sh_print(self, NOT_ENOUGH_MEMORY, 13);

} else if result == INTERNAL_ERROR {
sh_print(self, name, length);
sh_print(self, CRASHED, 8);

}
let new_line = NEW_LINE;
if self.output_end > old_end && load8(self.output_end - 1) != NEW_LINE {
sh_print(self, &new_line, 1);

}
}

The next 3 functions are used to draw commands and their output on screen. The
first one draws the characters in [src, src_end [, starting at column and row (col , *row )
on screen. It automatically starts a new line when a “new line” character is found or
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when the maximum line width is reached (100 characters). To simplify, tabulations
are not supported.
fn sh_draw_string(src: &u32, src_end: &u32, col: u32, row: &u32) {

let c = 0;
while src < src_end {
c = load8(src);
src = src + 1;
if c != NEW_LINE {

gpu_draw_char(c);
col = col + 1;

}
if c == NEW_LINE || col == 100 {

col = 0;
*row = *row + 1;
gpu_set_cursor(col, *row);

}
}

}

The second one draws the given command, after a “>” prompt, and updates *row
to the next screen row:
fn sh_draw_command(command: &Command, row: &u32) {

gpu_draw_char('>');
sh_draw_string(&command.data, &command.data + command.length, 1, row);
*row = *row + 1;

}

The third one draws the last executed command in green (if it is not empty), its
output in yellow (if it is not empty), and the currently edited command in green:
fn sh_draw(self: &Shell, current_command: &Command) {

gpu_clear_screen();
gpu_set_cursor(0, 0);
gpu_set_color(0, 7, 0);
let row = 0;
if current_command.previous.length > 0 {
sh_draw_command(current_command.previous, &row);
gpu_set_cursor(0, row);

}
if self.output_end > self.output_begin {
gpu_set_color(7, 7, 0);
sh_draw_string(self.output_begin, self.output_end, 0, &row);
gpu_set_cursor(0, row);
gpu_set_color(0, 7, 0);

}
sh_draw_command(current_command, &row);
gpu_switch_buffer();

}
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The next function handles characters typed on the keyboard in a loop, and redraws
the screen after each key typed (with the above function). It maintains two pointers:

• current points to the currently edited command. It is moved to the next command
after the current one is run.
• history can point to any command. It is moved to the previous or next command

with the arrow up and down keys, respectively. Selecting a new history command
copies it into the current one.

The supported keys and their associated actions are the following:

• the Escape key exits the shell. This can fail if the current process is the initial one
(this is not always the case since the shell can also be spawned by a process). In
this case we restore double buffering, which is disabled before calling exit.
• the Enter key executes the current command, sets the next command as the current

one, clears it, and resets the history pointer to current.
• the ArrowUp key moves the history command to the previous one, unless there is

none (i.e., unless this would circle back to the current one).
• the ArrowDown key moves the history command to the next one, if there is one. If

this goes back to the current command we clear it instead of copying it to itself.
• the Backspace key deletes the last character of the current command. Printable

ASCII characters are appended to the current command, if it is not full.

const BACKSPACE_KEY: u32 = 8;
const ENTER_KEY: u32 = 10;
const ESCAPE_KEY: u32 = 27;
const DELETE_KEY: u32 = 127;
const ARROW_UP_KEY: u32 = 245;
const ARROW_DOWN_KEY: u32 = 242;

fn sh_run_editor(self: &Shell) -> u32 {
gpu_set_double_buffer();
let current = self.commands;
let history = current;
let c = 0;
loop {
sh_draw(self, current);
read(STANDARD_INPUT, &c, 1);
if c == ESCAPE_KEY {

gpu_set_single_buffer();
exit(OK);
gpu_set_double_buffer();

} else if c == ENTER_KEY {
self.output_end = self.output_begin;
sh_run(self, &current.data, &current.data + current.length);
gpu_set_double_buffer();
current = current.next;
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current.length = 0;
history = current;

} else if c == ARROW_UP_KEY && history.previous != current {
history = history.previous;
command_copy(history, current);

} else if c == ARROW_DOWN_KEY && history != current {
history = history.next;
if history == current {
current.length = 0;

} else {
command_copy(history, current);

}
} else if c == BACKSPACE_KEY && current.length > 0 {

current.length = current.length - 1;
} else if c >= 32 && c < DELETE_KEY && current.length < MAX_COMMAND_LE ≀

≀NGTH {
store8(&current.data + current.length, c);
current.length = current.length + 1;

}
}

}

Finally, we delete the existing functions (from wait_char to child), and replace
the main function with the following one. This function simply creates and runs the
shell if there are no arguments. Otherwise, for testing purposes, it writes them to
standard output.
fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {

let shell = sh_new(&heap, heap_limit);
if shell == null { return OUT_OF_MEMORY; }
if args_end > args {
write(STANDARD_OUTPUT, args, args_end - args);
return OK;

}
return sh_run_editor(shell);

}

25.1.4 Compilation and tests
Type “F11”+“r” in the command editor to load the current application source code,
and “F4”+“r” to edit it. Then update it as described above. For reference, we also
provide this new version in the shell_v0.txt file in https://ebruneton.github.io/toyp
c/sources.zip. When done, type “F12”+“r” to save it and “F9”+“r” to compile it. If
necessary, repeat these steps until the compilation is successful. To copy the source
code (at address DD00016 = 905216) and the compiled code in files use F3 to load the
builder source code, and F4 to edit it. Then change its main function to the following:
static NAME = ['s','h','e','l','l'];
static SOURCE = ['s','h','e','l','l','.','t','o','y'];
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fn main() -> u32 {
const COMPILED_CODE: &u32 = 929792;
const SOURCE_CODE: &u32 = 905216;
let result = buffer_write(COMPILED_CODE, NAME, 5);
if result == OK { result = buffer_write(SOURCE_CODE, SOURCE, 9); }
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all goes
well this should launch the kernel and the shell. To test it, try the commands “hello
world” and “shell hello world”. The former should fail because there is no
program named “hello”. The latter should print its arguments, i.e., “hello world”.
You can also try the “shell” command, which should launch another shell. You can
check this with the arrow keys, which should not show the previous commands. Then
type Escape to return in the initial shell, and try the Escape, arrow up and down keys
again. Finally, reset the Arduino, which should restart with the memory editor.

25.2 Text editor
25.2.1 Requirements
The text editor should take as argument the name of the file to edit, and should create
it if it does not exist. It should also take an initial text cursor position as an optional
argument. The goal is to be able to edit a source file directly at the location of an
error indicated by the compiler. Typing Escape should show a message asking the
user whether to save the file or not before exiting.

25.2.2 Implementation
We implement the text editor by editing the shell program, which already contains
some useful code, in order to avoid re-typing it. More precisely we keep the beginning
of its code, up to the mem_allocate function (excluded), and delete everything else.
We then re-implement the functions from Section 14.3, and the mem_copy function
from Section 13.2 that they need (see these sections for more details):

fn mem_copy(src: &u32, dst: &u32, n: u32) {
let i = 0;
if dst < src {
while i + 4 <= n {

*(dst + i) = *(src + i);
i = i + 4;

}
while i < n {

store8(dst + i, load8(src + i));
i = i + 1;
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}
} else {
i = n;
while i >= 4 {

i = i - 4;
*(dst + i) = *(src + i);

}
while i > 0 {

i = i - 1;
store8(dst + i, load8(src + i));

}
}

}

const ARROW_DOWN_KEY: u32 = 242;
const ARROW_LEFT_KEY: u32 = 235;
const ARROW_RIGHT_KEY: u32 = 244;
const ARROW_UP_KEY: u32 = 245;
const BACKSPACE_KEY: u32 = 8;
const DELETE_KEY: u32 = 127;
const ENTER_KEY: u32 = 10;
const ESCAPE_KEY: u32 = 27;
const PAGE_DOWN_KEY: u32 = 250;
const PAGE_UP_KEY: u32 = 253;
const TAB_KEY: u32 = 9;

fn ted_set_cursor(begin: &u32, cursor: &u32, gap: u32, new_cursor: &u32) - ≀
≀> &u32 {

if new_cursor > cursor {
mem_copy(cursor + gap, cursor, new_cursor - cursor);

} else {
mem_copy(new_cursor, new_cursor + gap, cursor - new_cursor);

}
return new_cursor;

}

fn ted_move_backward(begin: &u32, cursor: &u32, lines: u32, col: &u32, row ≀
≀: &u32) -> &u32 {

let c = 0;
let ptr = cursor;
while ptr > begin {
c = load8(ptr - 1);
if c == ENTER_KEY {

if *row == lines { break; }
*row = *row + 1;

} else if *row == 0 {
if c == TAB_KEY {
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*col = *col + 2;
} else {
*col = *col + 1;

}
}
ptr = ptr - 1;

}
return ptr;

}

fn ted_move_forward(cursor: &u32, gap: u32, end: &u32, lines: u32) -> &u32 ≀
≀ {

loop {
if cursor == end - gap { return cursor; }
if load8(cursor + gap) == ENTER_KEY {

if lines == 1 { return cursor + 1; }
lines = lines - 1;

}
cursor = cursor + 1;

}
}

fn ted_handle_key(begin: &u32, cursor: &u32, gap: u32, end: &u32, c: u32) ≀
≀-> &u32 {

let col = 0;
let row = 0;
if c == ARROW_LEFT_KEY && cursor > begin {
return cursor - 1;

} else if c == ARROW_RIGHT_KEY && cursor < end - gap {
return cursor + 1;

} else if c == ARROW_UP_KEY {
return ted_move_backward(begin, cursor, 1, &col, &row);

} else if c == ARROW_DOWN_KEY {
return ted_move_forward(cursor, gap, end, 1);

} else if c == PAGE_UP_KEY {
return ted_move_backward(begin, cursor, 30, &col, &row);

} else if c == PAGE_DOWN_KEY {
return ted_move_forward(cursor, gap, end, 30);

}
return cursor;

}

fn ted_draw(begin: &u32, cursor: &u32, gap: u32, end: &u32) {
gpu_clear_screen();
gpu_set_cursor(0, 0);
let r = 0;
let c = 0;
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let col = 0;
let row = 0;
let ptr = ted_move_backward(begin, cursor, 15, &col, &row);
if ptr == cursor { ptr = ptr + gap; }
while ptr < end && r < 30 {
c = load8(ptr);
if c == ENTER_KEY {

r = r + 1;
gpu_set_cursor(0, r);

} else if c == TAB_KEY {
gpu_draw_char(' ');
gpu_draw_char(' ');

} else {
gpu_draw_char(c);

}
ptr = ptr + 1;
if ptr == cursor { ptr = ptr + gap; }

}
gpu_switch_buffer();
gpu_set_cursor(col, row);

}

fn text_editor(buffer: &u32, offset: u32, max_length: u32) {
let length = *buffer;
if length > max_length { return; }
let begin = buffer + 4;
let cursor = begin + length;
let end = begin + max_length;
let gap = end - cursor;
let c = 0;
if offset > length { offset = length; }
cursor = ted_set_cursor(begin, cursor, gap, begin + offset);
gpu_set_color(0, 7, 0);
gpu_set_double_buffer();
ted_draw(begin, cursor, gap, end);
loop {
read(STANDARD_INPUT, &c, 1);
if c == ESCAPE_KEY {

*buffer = ted_set_cursor(begin, cursor, gap, end - gap) - begin;
gpu_set_single_buffer();
return;

}
if c == BACKSPACE_KEY {

if cursor > begin {
cursor = cursor - 1;
gap = gap + 1;

}
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} else if c < DELETE_KEY {
if gap > 0 {
store8(cursor, c);
cursor = cursor + 1;
gap = gap - 1;

}
} else {

cursor = ted_set_cursor(begin, cursor, gap,
ted_handle_key(begin, cursor, gap, end, c));

}
ted_draw(begin, cursor, gap, end);

}
}

The rest of the code is new and implements the above requirements. The following
function computes the value of the optional command line argument, the initial cursor
position. It stores the value of this argument, if present, at address offset. It returns
an error if this argument is not a number, and OK otherwise. [args, args_end [ must
be the rest of the command line arguments, after the name of the file to edit.
fn read_offset(args: &&u32, args_end: &u32, offset: &u32) -> u32 {

let length = 0;
let argument = sh_read_token(args, args_end, &length);
if argument == null { return OK; }
let i = 0;
let c = 0;
while i < length {
c = load8(argument + i);
if c < '0' || c > '9' { return INVALID_ARGUMENT; }
*offset = (*offset) * 10 + (c - '0');
i = i + 1;

}
return OK;

}

The next function simply returns an error after writing a corresponding error
message to standard output. It is followed by some messages needed in main:
fn write_error(src: &u32, length: u32, error: u32) -> u32 {

write(STANDARD_OUTPUT, src, length);
return error;

}

static USAGE = ['U','s','a','g','e',':',' ',
'e','d','i','t',' ','f','i','l','e',' ',
'[','o','f','f','s','e','t',']'];

static READ_ERROR = ['R','e','a','d',' ','e','r','r','o','r'];
static WRITE_ERROR = ['W','r','i','t','e',' ','e','r','r','o','r'];
static SAVE_PROMPT = ['S','a','v','e',' ','(','y','/','n',')','?'];
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The main function starts by reading the command line arguments. If they are
invalid, it prints a message explaining their expected format and returns an error. It
also checks that the heap is large enough to edit a small text.
fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {

let length = 0;
let name = sh_read_token(&args, args_end, &length);
let offset = 0;
if name == null || read_offset(&args, args_end, &offset) != OK {
return write_error(USAGE, 25, INVALID_ARGUMENT);

}
if heap_limit < heap + 256 { return OUT_OF_MEMORY; }

It continues by reading the file to edit, if it exists, into the data buffer named
buffer, using all the available heap memory (minus 4 bytes for the data buffer header).
Otherwise it initializes an empty buffer.

let buffer = heap;
let max_length = heap_limit - heap - 4;
let stream = open(name, length, 'r');
if status(stream) == OK {
*buffer = read(stream, buffer + 4, max_length);
close(stream);
if status(*buffer) != OK {

return write_error(READ_ERROR, 10, status(*buffer));
}
if *buffer == max_length { return OUT_OF_MEMORY; }

} else {
*buffer = 0;

}

The end of the function calls text_editor to edit this buffer. When it returns, it
displays a message asking the user whether the changes must be saved or not, with
ted_draw. If the user types “y” it saves the buffer content (without its 4 bytes
header) into the edited file and returns OK, or an error if the file could not be saved.

text_editor(buffer, offset, max_length);
ted_draw(SAVE_PROMPT, SAVE_PROMPT + 11, 0, SAVE_PROMPT + 11);
let c = 0;
read(STANDARD_INPUT, &c, 1);
if c != 'y' { return OK; }
stream = open(name, length, 'w');
if status(stream) != OK {
return write_error(WRITE_ERROR, 11, status(stream));

}
let n = write(stream, buffer + 4, *buffer);
if status(n) != OK {
return write_error(WRITE_ERROR, 11, status(n));

}
return OK;

}
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25.2.3 Compilation and tests
Type “F11”+“r” in the command editor to load the current shell source code, and
“F4”+“r” to edit it. Then update it as described above. For reference, we also provide
this code in the edit_v0.txt file in https://ebruneton.github.io/toypc/sources.zip.
When done, type “F12”+“r” to save it and “F9”+“r” to compile it. If necessary, repeat
these steps until the compilation is successful. To copy the text editor source code and
compiled code in files use F3 to load the builder source code, and F4 to edit it. Then
change its main function to the following:

static NAME = ['e','d','i','t'];
static SOURCE = ['e','d','i','t','.','t','o','y'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
const SOURCE_CODE: &u32 = 905216;
let result = buffer_write(COMPILED_CODE, NAME, 4);
if result == OK { result = buffer_write(SOURCE_CODE, SOURCE, 8); }
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all goes
well this should launch the kernel and the shell. To test the text editor, type “edit
test.txt” and Enter. Type some text and then Escape and “y” to save it. To check
that this worked, type “edit test.txt 2”: the text editor should display the text
you just saved, and the cursor should be under the third character. Finally, reset the
Arduino, which should restart with the memory editor.

25.3 Compiler
25.3.1 Requirements
The shell and the text editor start with the same source code which is in fact useful for
most programs (namely the entry function, and the system call functions). To avoid
duplicating it in each program we require the possibility to compile a program from
several source files. We can then put the shared code in a separate file, implemented
only once, and compile it together with a program specific file. The compiler should
thus take as arguments the name of the compiled program to generate, followed by one
or more source file name(s). In case of a compilation error it should write the error
code, the error location, and the name of the source file to standard output. The goal
is to be able to edit this file directly at the location of the error with the text editor.

25.3.2 Design
We meet the above requirements with a simple method requiring very few changes to
our compiler, but which is not memory efficient (we improve it in Chapter 27). More
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dst_buffer

begin (process) heap end(process) heap_limit

heap_limitheap

SPfile1 file2

dst_limitdst src

FIGURE 25.2 The compiler process’s heap (bottom), between its compiled code (red)
and its stack (green), contains the generated code (yellow), the Compiler struct (dark
blue), the compiler’s heap (shades of blue), and the input source code (white).

precisely, we load all the input files in RAM, after the compiler’s heap, which is itself
only a part of the compiler process’s heap (compare Figure 25.2 with Figures 19.4
and 23.1). And we compile each file with tc_parse_program, one by one, into the
same dst_buffer that we finally save into a file.

25.3.3 Implementation
We implement the above design by editing the current compiler code as follows. We
first replace the tc_main function declaration and the main function with the same
entry function as in the shell and the text editor (we don’t have a compiler able to
compile several files yet, and thus need to duplicate it for now):

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32;
fn exit(result: u32) -> u32;

fn entry(heap: &u32, heap_limit: &u32) {
let args = heap + 4;
let args_end = args + *heap;
heap = (((args_end as u32 + 3) >> 2) << 2) as &u32;
exit(main(args, args_end, heap, heap_limit));

}

Then, after load8, load16, store8, and store16 (unchanged), and for the same
reason, we copy the following functions from the shell and the text editor:

fn sh_read_token(src_p: &&u32, src_end: &u32, length: &u32) -> &u32 {
let src = *src_p;
while src < src_end && load8(src) == ' ' { src = src + 1; }
if src >= src_end { return null; }
let token = src;
while src < src_end && load8(src) != ' ' { src = src + 1; }
*length = src - token;
*src_p = src;
return token;

}

const OK: u32 = 0;
const INVALID_ARGUMENT: u32 = 1;
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const INVALID_STATE: u32 = 2;
const NOT_FOUND: u32 = 3;
const ALREADY_EXISTS: u32 = 4;
const OUT_OF_MEMORY: u32 = 5;
const INTERNAL_ERROR: u32 = 6;

fn status(result: u32) -> u32 { return result >> 24; }

fn system_call(id: u32, args: &u32) -> u32 [
/*SVC*/ 57088;
/*MOV_PC_LR*/ 18167;

]
fn exit(result: u32) -> u32 {

return system_call(1, &result);
}
fn open(name: &u32, length: u32, mode: u32) -> u32 {

return system_call(4, &name as &u32);
}
const STANDARD_OUTPUT: u32 = 1;
fn read(file_descriptor: u32, buffer: &u32, size: u32) -> u32 {

return system_call(5, &file_descriptor);
}
fn write(file_descriptor: u32, buffer: &u32, size: u32) -> u32 {

return system_call(6, &file_descriptor);
}
fn close(file_descriptor: u32) -> u32 {

return system_call(7, &file_descriptor);
}

We then keep all the existing code between panic_result and tc_parse_fn
unchanged, but we remove the call to tc_check_symbols in tc_parse_program.
Otherwise a function declared in one file would need to be implemented in this same
file, which is too restrictive (recall that tc_check_symbols checks that all declared
functions are effectively implemented).
fn tc_parse_program(self: &Compiler) {

loop {
...

if self.next_token != 0 { panic(23); }
return;

}
}

}

The following code is new. It replaces the tc_main function and implements the
above requirements. We start with a function to write a decimal number x to standard
output, which is needed to write an error code or its location. This function writes x
divided by 10 by calling itself recursively, followed by the remainder of this division.
The next function is similar to the one with the same name in the text editor:
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fn write_integer(x: u32) {
let quotient = x / 10;
x = x - 10 * quotient + '0';
if quotient > 0 { write_integer(quotient); }
write(STANDARD_OUTPUT, &x, 1);

}

fn write_error(src1: &u32, length1: u32, src2: &u32, length2: u32, error: ≀
≀u32) -> u32 {

write(STANDARD_OUTPUT, src1, length1);
write(STANDARD_OUTPUT, src2, length2);
return error;

}

The main function starts by reading the command line arguments. If there are less
than two it prints a message explaining their expected format and returns an error. It
then increases the stack area, by decreasing the process’s heap limit, and checks that
this heap is large enough to compile a small program (see Figure 25.2).

static USAGE = ['U','s','a','g','e',':',' ',
't','o','y','c',' ','o','u','t','p','u','t',' ',
'i','n','p','u','t','1',' ','i','n','p','u','t','2',' ',
'.','.','.'];

static CANT_OPEN = ['C','a','n',''','t',' ','o','p','e','n',' '];
static CANT_READ = ['C','a','n',''','t',' ','r','e','a','d',' '];
static CANT_WRITE = ['C','a','n',''','t',' ','w','r','i','t','e',' '];
static ERROR = ['E','r','r','o','r',' '];
static AT = [' ','a','t', ' '];
static IN = [' ','i','n', ' '];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let out_length = 0;
let in_length = 0;
let out = sh_read_token(&args, args_end, &out_length);
let in = sh_read_token(&args, args_end, &in_length);
if out == null || in == null {
write(STANDARD_OUTPUT, USAGE, 36);
return INVALID_ARGUMENT;

}
const MAX_CODE_SIZE: u32 = 12288;
const MAX_HEAP_SIZE: u32 = 18432;
const MIN_SRC_SIZE: u32 = 256;
heap_limit = heap_limit - 512;
if heap_limit < heap + MAX_CODE_SIZE + sizeof(Compiler) + MAX_HEAP_SIZE ≀

≀+ MIN_SRC_SIZE {
return OUT_OF_MEMORY;

}
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The main function continues by creating and initializing the compiler struct.
Note that dst is a multiple of 4, as required (see Section 20.3), thanks to the rounding
done in the entry function. It also implements a “panic handler” writing the error
code, offset and source file name to standard output, as required (src points to the
beginning of the source code loaded from the file whose name starts at in).

let error = 0;
let dst = heap;
let compiler = (dst + MAX_CODE_SIZE) as &Compiler;
compiler.dst = dst;
compiler.dst_limit = compiler as &u32;
compiler.heap = compiler.dst_limit + sizeof(Compiler);
compiler.heap_limit = compiler.heap + MAX_HEAP_SIZE;
compiler.symbols = null;
let src = compiler.heap_limit;
error = panic_result();
if error != 0 {
write(STANDARD_OUTPUT, ERROR, 6);
write_integer(error);
if in == null { return error; }
write(STANDARD_OUTPUT, AT, 4);
write_integer(compiler.src - src);
return write_error(IN, 4, in, in_length, error);

}

This handler is followed by a loop which reads each input source file and compiles
it. Each file is loaded at src, which is then incremented by the file size. If the file
can be read successfully and if there is enough memory to load its content, it is
compiled with tc_parse_program. This requires initializing the scanner first, with
tc_read_char and tc_read_token, which in turn requires initializing the compiler’s
src and src_end fields.

let stream = 0;
let src_size = 0;
while in != null {
stream = open(in, in_length, 'r');
if status(stream) != OK {

return write_error(CANT_OPEN, 11, in, in_length, status(stream));
}
src_size = read(stream, src, heap_limit - src);
close(stream);
if status(src_size) != OK || src_size == heap_limit - src {

return write_error(CANT_READ, 11, in, in_length, status(src_size));
}
compiler.src = src - 1;
compiler.src_end = src + src_size;
tc_read_char(compiler);
tc_read_token(compiler);
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tc_parse_program(compiler);
in = sh_read_token(&args, args_end, &in_length);
src = src + src_size;

}

The main function ends by checking that all declared functions, in all files, are
effectively implemented, and by writing the compiled code to disk:

tc_check_symbols(compiler.symbols, null);
stream = open(out, out_length, 'w');
if status(stream) != OK {
return write_error(CANT_OPEN, 11, out, out_length, status(stream));

}
let n = write(stream, dst, compiler.dst - dst);
if status(n) != OK {
return write_error(CANT_WRITE, 12, out, out_length, status(n));

}
return OK;

}

25.3.4 Compilation and tests
To update the compiler as described above we first need some commands to load and
save its source code, at address D100016 = 856064 = page 272 (see Figure 23.7). For
this type “F11”+“e” in the command editor, update this command to:

fn 0
cst 856064 cst 537330176 call 2708
cst_0 retv

d LOAD_COMPILER_SOURCE_CODE

and type “s” to save it. With the same method, update the F12 command to:

fn 0
cst 537330176 cst 272 call 2836
cst_0 retv

d SAVE_COMPILER_SOURCE_CODE

Then use F11 and F4 to load and edit the current compiler source code, and update
it as described above. For reference, we also provide this code in the toyc_v0.txt
file in https://ebruneton.github.io/toypc/sources.zip. When done, use F12 and F9
to save it and to compile it. If necessary, repeat these steps until the compilation is
successful. To copy the new compiler source code and compiled code in files use F3
to load the builder source code, and F4 to edit it. Then change its main function to the
following:

static NAME = ['t','o','y','c'];
static SOURCE = ['t','o','y','c','.','t','o','y'];
fn main() -> u32 {
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const COMPILED_CODE: &u32 = 929792;
const SOURCE_CODE: &u32 = 856064;
let result = buffer_write(COMPILED_CODE, NAME, 4);
if result == OK { result = buffer_write(SOURCE_CODE, SOURCE, 8); }
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all goes
well this should launch the kernel and the shell. To test our new compiler, first create
a “hello.toy” file containing the following program (i.e., type “edit hello.toy”
in the shell, enter this code, and finally type Escape and “y” to save it):

fn main();
fn entry(heap: &u32, heap_limit: &u32) { main(); }

fn system_call(id: u32, args: &u32) -> u32 [
/*SVC*/ 57088;
/*MOV_PC_LR*/ 18167;

]
fn exit(result: u32) -> u32 {
return system_call(1, &result);

}
fn write(stream_id: u32, buffer: &u32, size: u32) -> u32 {
return system_call(6, &stream_id);

}

static HELLO = ['H','e','l','l','o',',',' ','W','o','r','l','d','!'];
fn main() {

write(1 /*standard output*/, HELLO, 13);
exit(0);

}

Then compile it with “toyc hello hello.toy”. If there is a compilation error,
edit the source code at the location indicated by the compiler. Once the compilation is
successful, run the compiled program with the ”hello” command line, which should
print the “Hello, World!” message. You can then reset the Arduino, which should
restart with the memory editor.

25.4 Self hosting
We now have everything we need to edit, compile and run new programs from our
operating system alone. Moreover, the file system contains the source code of the
shell, the text editor, and the compiler (and of the boot loader). We can thus update
them and recompile them from the operating alone too. In other words, we no longer
need our bytecode interpreter, the basic input output system, the command editor,
or anything else we built in the Flash1 memory bank. In particular, we no longer
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need to restore the BIOS Vector Table in our kernel to restart the basic input output
system after a reset of the operating system. To remove it, type “F8”+“r” in the
command editor to load the kernel source code, and “F4”+“r” to edit it. Then delete
the restore_bios_vector_table function, and remove the call to this function in
os_init. Use F10 to save these changes and F9 to compile them.

To copy this new kernel, and its source code (so that we can update it from the
operating system alone), use F3 to load the builder source code, and F4 to edit it.
Then change its main function, one last time, to the following (the kernel source code
is at address F400016 = 999424 – see Figure 23.7):

static NAME = ['t','o','y','s'];
static SOURCE = ['t','o','y','s','.','t','o','y'];
fn main() -> u32 {

const COMPILED_CODE: &u32 = 929792;
const SOURCE_CODE: &u32 = 999424;
let result = buffer_write(COMPILED_CODE, NAME, 4);
if result == OK { result = buffer_write(SOURCE_CODE, SOURCE, 8); }
if result == OK { flash_boot_loader_and_reset(); }
return result;

}

Finally, save the builder with F5, compile it with F6, and run it with F7. If all
goes well this should launch the kernel and the shell. Then reset the Arduino. This
should relaunch the kernel and the shell again.
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26
CHAPTER

Memory Protection

Our operating system is now self-hosting, which means that we can edit and recompile
its entire source code with itself. But the kernel is not finished. Indeed, a bug in a
process can currently crash everything, instead of exiting this process with an error
code, as required in Chapter 23. To meet this requirement the plan was to make sure
that a process can only access its own memory region (see Section 23.2). This chapter
implements this strategy with the help of the microprocessor’s Memory Protection
Unit, which is presented first.

26.1 Memory Protection Unit
The Memory Protection Unit (MPU) is a component of the Cortex M3 microprocessor
inside the microcontroller (see Figure 6.2). As briefly introduced in Section 7.1, it can
divide the memory into regions, and can associate different access rights with each
region. For instance, one region can be made inaccessible, another read-only, etc. If
an instruction tries to read memory in an inaccessible region, or to write a value in a
read-only one, a Memory Management exception is triggered. If the handler for this
type of exceptions is not explicitly enabled, the generic Hard Fault handler is called
instead.

26.1.1 Regions
The MPU uses 8 configurable regions, numbered from 0 to 7, plus a non-configurable
“background region”. Each of the 8 regions has the following configurable properties:

• a base address and a size. These properties define the region boundaries, namely
[base address, base address + size[. size must be a power of 2 larger than or equal
to 32, and base address must be a multiple of size.
• some attributes, which include access permissions such as “no access”, “read-only”

or “full access”.
• an enabled bit. A disabled region does not have any effect on any memory access.

The background region can only be enabled or disabled. If enabled, it allows full
access to all memory addresses (i.e., its base address is 0, its size is 4 GB, and its
access permissions are “full access”).
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Finally, the MPU as a whole can be enabled or not. If it is disabled, which is the
default after a reset, all memory accesses are permitted. If it is enabled, a memory
access at an address a is checked as follows:

• if a is inside at least one enabled region, access is checked against the permissions
of the enabled region containing a with the largest number. For instance, if a is
inside region 1, enabled with “no access”, and also inside region 3, enabled as
“read-only”, then reading the value at a is permitted. As another example, if the
background region is enabled and if a is inside region 2, enabled with “no access”,
then any access to a is rejected (configurable regions take precedence over the
background region).
• if a is outside the boundaries of all enabled regions, access is rejected.

26.1.2 Subregions
Regions whose size is larger than or equal to 256 bytes are divided in 8 subregions
of equal size. For instance, a 32 KB region starting at address 512 KB is divided
in 8 subregions of 4 KB each: subregion 0 in [512 KB, 516 KB[, subregion 1 in
[516 KB, 520 KB[, etc. These subregions have the same attributes as the enclosing
region, but can be independently enabled or disabled. For the above access checking
rules, an address a is inside an enabled region R if R is enabled, and if a is inside an
enabled subregion of R.

26.1.3 Privilege level
The MPU regions are configured with some registers, presented in the next section,
inside the “System” memory region (see Figure 6.3). If the MPU is configured to
forbid all memory accesses outside the RAM region of a process, then these registers
become inaccessible. In other words, it becomes impossible to reconfigure the MPU to
switch to another process. A solution to this problem could be to allow only memory
accesses to the memory region of a process or to the “System” region. But then, due
to a bug or an intentional “attack”, the process could access the MPU registers and
reconfigure them to allow all memory accesses!

To solve these issues the Cortex M3 can run at one of two privilege levels:
privileged or unprivileged. At the privileged level the MPU registers are always
accessible, even if the MPU would otherwise forbid this. The above problems can
thus be solved if 1) the kernel executes at the privileged level and 2) processes execute
at the unprivileged level and have no way to change this level. Indeed, in this case:

• the MPU can be configured to forbid any memory access outside a process’s memory
region, while this process is running. The process is then unable to reconfigure
the MPU because it cannot access its registers, and because it cannot switch to
privileged level.
• when the kernel is running it can access the MPU registers thanks to its privileges,

and can thus reconfigure the MPU to switch to another process.
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Name Type Address
Control Register Read-Write E000ED9416

Region Number Register Read-Write E000ED9816

Region Base Address Register Read-Write E000ED9C16

Region Attribute and Size Register Read-Write E000EDA016

TABLE 26.1 The Memory Protection Unit registers used in this book.

Exception and interrupt handlers always execute at the privileged level, which
ensures 1) above (after its initialization, the kernel always runs inside some exception
or interrupt handler, such as the USART or SVC handler). Outside exception and
interrupt handlers, i.e., in Thread mode, the microprocessor can run at any privilege
level. This is configured with a bit of the CONTROL register (see Section 23.2.2),
which can only be modified at the privileged level (thus ensuring 2) above).

In fact the CONTROL register, which can be accessed with the MRS and MSR
instructions (see Section 23.2.2), has the following binary format:

000000000000000000000000000000 ps

where p specifies the privilege level in Thread mode, and s selects the current Stack
Pointer. More precisely, the default value p = 0 configures Thread mode to run at
privileged level, and p = 1 to run at unprivileged level. s = 1 selects the Process
Stack Pointer, and s = 0 selects the Main Stack Pointer (see Section 23.2.2). Setting
s in Handler mode has no effect since this mode always uses the Main Stack Pointer.

26.1.4 MPU registers
The Memory Protection Unit is configured with the following registers (see Table 26.1):

• The Control Register enables or disables the MPU and the background region. Its
binary format is the following (we show only the bits that we use):

000000000000000000000000000000 eb

where e = 1 enables the MPU, e = 0 disables it, b = 1 enables the background
region at the privileged level, and b = 0 disables it. The background region is
always disabled at the unprivileged level.
• The Region Number Register defines a “current region number”, used by the next

registers (region must be between 0 and 7 included):
000000000000000000000000 region

• The Region Base Address Register defines the base address of a region:
base address v region

If v = 1 then writing into this register stores region in the Region Number Register,
and sets the base address of this region. If v = 0 writing into this register sets the
base address of the region whose number is stored in the Region Number Register.
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In both cases, the region’s base address is set to 32 ∗ base address . For instance,
setting this register to B316, i.e., setting base address to 5, v to 1 and region to 3
sets the base address of region 3 to 32 ∗ 5 = 160.
• The Region Attribute and Size Register defines the size, access permissions and

subregions of the region whose number is stored in the Region Number Register.
Its binary format is the following (we show only the bits that we use):

000000000 esizesubregionsattributesaccess

• e = 1 enables this region, and e = 0 disables it.
• size sets the region size to 2size+1 (size must be larger than or equal to 4).
• subregions specifies which subregions are disabled: the ith subregion, counting

from 0, is disabled if the ith bit of subregions is 1. For instance, subregions =
5 = 1012 disables subregions 0 and 2 and enables the others.

• attributes depends on the region type (Flash, RAM, etc). For a RAM region,
the recommended value is 6 (see Sections 10.23.5 and 10.23.9.1 in [8]).

• access defines the region’s access permissions. access = 0 means “no access”,
3 means “full access”, and 7 means “read-only” (see Table 10.39 in [8]).

Note that, with the above registers, it is possible to set a base address which is
not a multiple of the region size, as required. In this case the MPU uses this base
address, rounded down to a multiple of the region size, to perform the access checks.
For instance, if a region is set to [96, 96 + 64[, the MPU internally uses [64, 64 + 64[
to check memory accesses.

26.2 Algorithm
Thanks to the Memory Protection Unit and the privilege levels we can make sure that
a process can only access its own memory region as follows:

• enable the MPU and the background region with the MPU Control Register. The
background region, only enabled in privileged mode, allows the kernel to access
any memory address, and in particular its own data structures.
• set the privilege level of Thread mode to unprivileged with the CONTROL register,

so that processes run at this privilege level. This must not be done during the kernel
initialization, which runs in Thread mode. Otherwise the kernel would loose its
privileges. In particular, this would disable the background region, and the kernel
might no longer be able to access its own data structures. Instead, this step can be
done just before spawning the initial process, in the spawn system call handler.
• just before switching to a child process, or back to a parent process, configure the

MPU registers to forbid any memory access outside this process’s memory region,
hereafter noted [begin, end [.

The first two steps are trivial to implement, but the last one is not. Indeed, we
cannot simply configure an MPU region with base address begin and size end−begin .
This is because the base address must be a multiple of the region size, which must itself
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be a power of 2 (larger than or equal to 32). For instance, [begin, end [ = [32, 128[ is
not a valid MPU region because 32 is not a multiple of 96 = 128− 32, and because
96 is not a power of 2. However, this interval can be covered with two MPU regions,
namely [32, 64[ and [64, 128[. It can also be covered with subregions 1, 2, and 3 of
the MPU region [0, 256[. This example shows that, in general, several MPU regions
or subregions are needed to cover a given interval.

The problem is now to find a way to compute the base address, size, and enabled
subregions of each MPU region so that they cover a given [begin, end [ interval. A
prerequisite is that begin and end are multiple of 32, since the smallest possible MPU
region or subregion is 32 bytes. This is why we rounded these values to multiples of
32 in Chapter 23. If the MPU had a large enough number of regions we could then
cover the [begin, end [ interval with many 32 bytes regions. But it has only 8. To solve
this problem we need to use regions with the largest possible sizes.

Consider for instance an interval I0 = [32, . . . [, ignoring the end part for now.
The largest region which can cover its beginning part is [0, 256[, with subregion
[0, 32[ disabled. This leaves an interval I1 = [256, . . . [ to cover. The largest region
which can cover its beginning part is [0, 2048[, with subregion [0, 256[ disabled. By
repeating this process we then get the MPU regions [0, 16 KB[ and [0, 128 KB[, with
their subregion 0 disabled. Note that the 4th region is larger than the RAM (96 KB).
Hence, with this method, we never need more than 4 regions to cover the beginning
part of a process’s memory interval (contained in RAM). The same method, applied to
the end part, shows that the 4 remaining MPU regions are sufficient to cover the rest.

26.2.1 Definition
The above ideas can be formalized as follows. To cover the [begin, end [ interval,
where begin and end are multiples of 2level−3 (with level ≥ 8 and begin < end ):

• configure a region of size s = 2level , with base address b0 equal to begin rounded
down to a multiple of s, and with subregions covering [begin, gap_begin[, where
gap_begin = min(b0 + s, end) > begin .
• configure a region of size s, with base address b1 equal to end rounded up to

a multiple of s, minus s, and with subregions covering [gap_end , end [, where
gap_end = max(begin, b1 ) < end .
• if gap_begin < gap_end , repeat the above steps with begin, end , and level

replaced with gap_begin , gap_end , and level + 3, respectively.

The first two steps configure regions which satisfy the MPU constraints since,
by construction, s is a power of 2, and b0 and b1 are multiples of s. Moreover, by
construction too, gap_begin and gap_end are inside their respective region, and are
multiples of 2level−3 = s/8 (since begin , end , b0, b1, and s are). This ensures that
[begin, gap_begin[ and [gap_end , end [ can be covered with subregions.

Finally, if gap_begin = end then gap_begin > gap_end since end > gap_end .
Hence, if gap_begin is less than gap_end it is necessarily equal to b0 + s, and is thus
a multiple of s. A similar argument shows that, in this case, gap_end is necessarily a
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multiple of s too. The third step above thus satisfies the required hypotheses to repeat
the process with level + 3.

For an interval inside the 96 KB of RAM, and starting with level = 8, this process
can be repeated at most 4 times. Indeed, a fifth repetition would imply a non-empty
[gap_begin, gap_end [ region whose size is a multiple of s = 217 = 128 KB. And
this is not possible since this is larger than the RAM.

26.2.2 Example
To illustrate this, consider the case [begin, end [ = [672, 4448] (see Figure 26.1).

At the first iteration, with level = 8, the first step gives s = 256, b0 = ⌊672/256⌋∗
256 = 512, and gap_begin = b0 + s = 768. We thus configure a region with base
address 512, size 256, and with its last 3 subregions enabled so that they cover
[begin, gap_begin[ = [672, 768[. The second step gives b1 = ⌊(4448 + 255)/256⌋ ∗
256 − 256 = ⌊(4448 − 1)/256⌋ ∗ 256 = 4352 and gap_end = b1 = 4352. We
thus configure a second region with base address 4352, size 256, and with its first 3
subregions enabled so that they cover [gap_end , end [ = [4352, 4448[.

At the second iteration, with begin = 768, end = 4352, and level = 11, the first
step gives s = 2048, b0 = ⌊768/2048⌋ ∗2048 = 0, and gap_begin = b0+ s = 2048.
We thus configure a third region with base address 0, size 2048, and with its last 5
subregions enabled so that they cover [begin, gap_begin[= [768, 2048[. The second
step gives b1 = ⌊(4352− 1)/2048⌋ ∗ 2048 = 4096 and gap_end = b1 = 4096. We
thus configure a fourth region with base address 4096, size 2048, and with its first
subregion enabled so that it covers [gap_end , end [ = [4096, 4352[.

At the third and last iteration, with begin = 2048, end = 4096, and level = 14,
the first step gives s = 16384, b0 = ⌊2048/16384⌋ ∗ 16384 = 0, and gap_begin =
min(b0 + s, end) = 4096. We thus configure a fifth region with base address 0,
size 16384, and with its subregion 1 enabled so that it covers [begin, gap_begin[ =
[2048, 4096[. The second step gives exactly the same region and subregion.

26.3 Implementation
The above algorithm uses the min and max mathematical functions. The former is
already implemented in our kernel, but the latter is not. We also need a function to
set the CONTROL register with a Move to Special Register from Register (MSR)
instruction (see Section 23.2.2). We add them just after the min function:
fn max(x: u32, y: u32) -> u32 {

if x > y { return x; } else { return y; }
}

fn set_control_register(value: u32) [
/*MSR_CONTROL_R0*/ 2283074432;
/*MOV_PC_LR*/ 18167;

]
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FIGURE 26.1 The MPU regions used to forbid any memory access outside the
[672, 4448[ memory interval (blue). Enabled regions are shown with their enabled
subregions in green, and their disabled subregions in gray.

The MPU regions must be configured when the current process is changed to a
new one (a child or a parent). This is done in os_set_current_process. We thus
implement the above algorithm just before this function.

The following function configures the MPU region whose number is id . It enables
it, sets its size to s = 2level , and sets its base address and subregions in order to cover
the [begin, end [ interval. It assumes that begin and end are multiple of s/8, that
begin > end , and that end − begin ≤ s. It sets the base address to begin rounded
down to a multiple of s, i.e., to ⌊begin/s⌋ ∗ s = (begin ≫ level) ≪ level . It then
sets the attributes, size and disabled sub regions as follows:

• access is set to 3 (“full access”), attributes to 6 (“RAM”), and e to 1 (“enabled”),
yielding 306000116 = 50724865,
• size is set to level − 1 (recall that the region size is 2size+1),
• the disabled subregions are set to 255− ((2e − 1)− (2b − 1)) = 255− 2e + 2b =
255− (1≪ e) + (1≪ b), where [b, e[ are the indices of the enabled subregions.
For instance, if b = 2 and e = 5, this gives 2e − 1 = 111112, 2b − 1 = 112,
(2e − 1)− (2b − 1) = 111002, and 255− ((2e − 1)− (2b − 1)) = 111111112 −
111002 = 111000112, which disables the subregions other than 2, 3, or 4.

fn mpu_set_region(id: u32, begin: u32, end: u32, level: u32) {
const MPU_REGION_BASE_ADDRESS_REGISTER: &u32 = 3758157212;
const MPU_REGION_ATTRIBUTE_AND_SIZE_REGISTER: &u32 = 3758157216;
const RAM_FULL_ACCESS_ENABLED: u32 = 50724865;
let base_address = (begin >> level) << level;
begin = (begin - base_address) >> (level - 3);
end = (end - base_address) >> (level - 3);
*MPU_REGION_BASE_ADDRESS_REGISTER = base_address | 16 | id;
*MPU_REGION_ATTRIBUTE_AND_SIZE_REGISTER = RAM_FULL_ACCESS_ENABLED |

(255 - (1 << end) + (1 << begin)) << 8 | (level - 1) << 1;
}
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We use this function in the following one, which performs one iteration of the
algorithm in Section 26.2.1. It assumes that *begin and *end are multiple of 2level−3,
and that *begin > *end . It configures the MPU regions with number id and id +1 to
cover as much as possible of the [*begin, *end [ interval, and updates these variables
to the (possibly empty) uncovered gap.
fn mpu_set_end_regions(id: u32, begin: &u32, end: &u32, level: u32) {

let gap_begin = min(((*begin >> level) + 1) << level, *end);
let gap_end = max(*begin, ((*end - 1) >> level) << level);
mpu_set_region(id, *begin, gap_begin, level);
mpu_set_region(id + 1, gap_end, *end, level);
*begin = min(gap_begin, gap_end);
*end = gap_end;

}

The next function calls it 4 times, with increasing level values and distinct region
numbers, to cover the whole [begin, end [ interval (whose bounds must be multiple
of 32 and whose size must be less than 128 KB). Note that, for some of these calls,
begin and end might be equal. The above functions actually support this, even if this
common value is not a multiple of 2level−3. In such cases, they give MPU regions
whose all subregions are disabled. Thus, by always calling mpu_set_end_regions
exactly 4 times, we make sure that unneeded regions are disabled (not doing so could
keep unwanted regions configured for the previous process).
fn mpu_set_regions(begin: u32, end: u32) {

mpu_set_end_regions(0, &begin, &end, 8);
mpu_set_end_regions(2, &begin, &end, 11);
mpu_set_end_regions(4, &begin, &end, 14);
mpu_set_end_regions(6, &begin, &end, 17);

}

We finally call the above function in os_set_current_process to forbid all
memory accesses outside the memory region of the new current process:
fn os_set_current_process(kernel: &Kernel, process: &Process) {

set_process_stack_pointer(process.saved_context as &u32);
mpu_set_regions(process.begin as u32, process.end as u32);
kernel.current_process = process;

}

To make sure that this process cannot change the MPU registers to grant itself more
access rights, we also need to set the privilege level of Thread mode to unprivileged.
For that we set the p bit of the CONTROL register to 1 in os_spawn, just before
spawning the initial process (which has no parent by definition):

context.status_register = 1 << 24;
if parent != null {

parent.saved_context = get_process_stack_pointer() as &Context;
} else {
set_control_register(/*unprivileged*/1);

}
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Last but not least, we need to enable the MPU and the background region with the
MPU Control Register. We do this at the end of the os_init function, but only if the
user presses ’y’:

const SVC_HANDLER_PRIORITY_REGISTER: &u32 = 3758157084;
const MPU_CONTROL_REGISTER: &u32 = 3758157204;
*SVC_HANDLER_PRIORITY_REGISTER = 255 << 24;
if keyboard_wait_char() == 'y' { *MPU_CONTROL_REGISTER = 5; }

}

Without this precaution, a bug in the above implementation could cause a crash in
the kernel, the shell, the text editor or the compiler. We would then have no way to fix
the error. Instead, with this precaution, and if a problem occurs, we can reboot with
the MPU disabled and fix the issue.

26.4 Compilation and tests
Type “edit toys.toy” and Enter to edit the current kernel source code, and update
it as described above. For reference, we also provide this code in the toys_v3.txt
file in https://ebruneton.github.io/toypc/sources.zip. Then save it and compile it with
“toyc toys toys.toy”. Repeat these steps until the compilation is successful.

To test these changes we can introduce a voluntary bug in our “hello” program.
Type “edit hello.toy” to edit it and update its main function as follows:
fn main() {
write(1 /*standard output*/, HELLO, 13);
const KERNEL_POINTER_REGISTER: &u32 = 1074666140;
*KERNEL_POINTER_REGISTER = 0;
exit(0);

}

Then type “toyc hello hello.toy” to compile it. This bug sets to 0 the General
Purpose Backup Register containing the address of the Kernel data structure (see its
definition in “toys.toy”). It could thus make the kernel unable to access its own
data structures. To confirm this, type “hello” to run this program. The shell should
become unresponsive, because the kernel crashed. Indeed, we haven’t restarted it yet,
and the MPU is thus not yet enabled.

Now reset the Arduino, and type “y” to enable the MPU. This should launch the
shell, and you should be able to launch the text editor and compile programs. If not
reset the Arduino again and type any key other than “y” to launch the kernel without
MPU. Then repeat the steps from the beginning of this section.

Finally, type “hello” to run this program again. This time the MPU should trigger
a Hard Fault when the process attempts to set the KERNEL_POINTER_REGISTER to 0.
This should cause the kernel to terminate this process with an INTERNAL_ERROR status.
In turn, the shell should print “Hello, World!” followed by the message “hello
crashed”. But the shell and the kernel should now continue to work.

At this stage we no longer need the possibility to disable the MPU when launching
the kernel. Type “edit toys.toy” and replace the line
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if keyboard_wait_char() == 'y' { *MPU_CONTROL_REGISTER = 5; }

with

*MPU_CONTROL_REGISTER = 5; /*Enable MPU and background region*/

Then recompile the kernel with “toyc toys toys.toy” and reset the Arduino. The
shell should start without having to press any key.
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27
CHAPTER

Utilities

As illustrated in the previous chapter, our operating system provides everything we
need to edit, compile, and run programs, including its kernel. However, it is not very
practical to use. For instance, to delete a file, one has to write a program doing this,
compile it, and run it. This is a lot of work for a simple task. Fortunately, once this is
done, this program can be reused to delete any file (provided it takes the name of the
file to delete as command line argument). For instance, with such a program named
“delete” we can simply type “delete foo.txt” in the shell to delete “foo.txt”.
This chapter provides this program, as well as a few others performing other simple
tasks such as copying a file or listing all the files. It also provides a few small compiler
and shell improvements.

27.1 Split
The above utility programs need to parse their command line arguments and to make
system calls. We improved the compiler in Chapter 25 so that the functions doing this
could be stored in a separate source file, shared by several programs. It now remains
to create this shared file, before implementing the programs using it.

The shell already contains the code we want to put in this file, namely the entry
function, the sh_read_token function, and the system call functions. It also contains
other functions which could be shared, such as those drawing text on the screen, or
allocating and copying memory. Unfortunately we have no way to copy paste text,
to avoid rewriting this code from scratch in new files. We could implement such a
functionality, but a much simpler method is to write a program to split a file in several
parts. This is what we do in this section.

27.1.1 Requirements
The “split” program must take as argument the name of the file to split. This file
must contain the name and content of each part, separated by “~”. For instance

file1.txt~lorem ipsum
dolor sit amet
~file2.txt~consectetur
adipiscing elit
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should be split in a “file1.txt” file containing
lorem ipsum
dolor sit amet

and a “file2.txt” file containing
consectetur
adipiscing elit

Furthermore, the original file should remain unchanged.

27.1.2 Implementation
In order to implement this program we need to rewrite one last time some of the
functions we want to share (but not all of them, making this program still worth the
effort – see their description in the previous chapters):
fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32;
fn exit(result: u32) -> u32;

fn entry(heap: &u32, heap_limit: &u32) {
let args = heap + 4;
let args_end = args + *heap;
heap = (((args_end as u32 + 3) >> 2) << 2) as &u32;
exit(main(args, args_end, heap, heap_limit));

}

fn load8(ptr: &u32) -> u32 [ /*LDRB_R0_R0_0*/30720; /*MOV_PC_LR*/18167; ]

fn sh_read_token(src_p: &&u32, src_end: &u32, length: &u32) -> &u32 {
let src = *src_p;
while src < src_end && load8(src) == ' ' { src = src + 1; }
if src >= src_end { return null; }
let token = src;
while src < src_end && load8(src) != ' ' { src = src + 1; }
*length = src - token;
*src_p = src;
return token;

}

const OK: u32 = 0;
const INVALID_ARGUMENT: u32 = 1;
const OUT_OF_MEMORY: u32 = 5;
fn status(result: u32) -> u32 { return result >> 24; }

fn system_call(id: u32, args: &u32) -> u32 [
/*SVC*/ 57088;
/*MOV_PC_LR*/ 18167;

]
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fn exit(result: u32) -> u32 {
return system_call(1, &result);

}
fn open(name: &u32, length: u32, mode: u32) -> u32 {
return system_call(4, &name as &u32);

}
fn read(stream_id: u32, buffer: &u32, size: u32) -> u32 {
return system_call(5, &stream_id);

}
fn write(stream_id: u32, buffer: &u32, size: u32) -> u32 {
return system_call(6, &stream_id);

}
fn close(stream_id: u32) -> u32 {
return system_call(7, &stream_id);

}

We can then implement the actual functionality of this program. It is simple
enough to be entirely included in the main function. We start by getting the name of
the file to split from the command line arguments, and by reading as many bytes as
possible from this file. We return an error if the file name argument is missing, if the
file cannot be opened or read, or cannot be read entirely (supporting the case of files
which do not fit in RAM is more complex and not needed):
fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {

let length = 0;
let name = sh_read_token(&args, args_end, &length);
if name == null { return INVALID_ARGUMENT; }

let stream = open(name, length, 'r');
if status(stream) != OK { return status(stream); }
length = read(stream, heap, heap_limit - heap);
close(stream);
if status(length) != OK { return status(length); }
if length == heap_limit - heap { return OUT_OF_MEMORY; }

We then use a loop to split each part. At the beginning of each iteration, src
and ptr point to the first character of the name of the next file to create. Then ptr
is advanced to the next “~”. The file name is thus between src and ptr (excluded),
and a stream is opened to write into this file. Finally, src and ptr are advanced to
the character after the “~”, ptr is advanced to the next “~” again, and the content,
between src and ptr (excluded), is written to the stream:
let src = heap;
let src_end = src + length;
let ptr = src;
while src < src_end {
while ptr < src_end && load8(ptr) != '~' { ptr = ptr + 1; }
if ptr == src_end { return INVALID_ARGUMENT; }
stream = open(src, ptr - src, 'w');
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if status(stream) != OK { return status(stream); }
src = ptr + 1;
ptr = src;
while ptr < src_end && load8(ptr) != '~' { ptr = ptr + 1; }
length = write(stream, src, ptr - src);
close(stream);
if status(length) != OK { return status(length); }
src = ptr + 1;
ptr = src;

}
return OK;

}

27.1.3 Compilation and tests
Type “edit split.toy” and enter the above source code. Then save it and compile it
with “toyc split split.toy”. If necessary, repeat these steps until the compilation
is successful. To split the shell source code, first type “edit shell.toy” and edit it
as follows:

src/base.toy~fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: & ≀
≀u32) -> u32;

...
}
~src/gpu.toy~fn gpu_set_register(id: u32, value: u32) {
...
fn gpu_draw_char(c: u32) { gpu_set_register(2, c); }
~src/memory.toy~fn mem_allocate(size: u32, heap_p: &&u32, heap_limit: &u32 ≀

≀) -> &u32 {
...
}
~src/shell/shell.toy~const NUM_COMMANDS: u32 = 4;
...

Then type “split shell.toy” to actually split it. This should create three files
“src/base.toy”, “src/gpu.toy”, and “src/memory.toy”, intended to be shared,
plus a “src/shell/shell.toy” file for the shell itself.

To check that this worked, type “toyc shell2 src/base.toy src/gpu.toy
src/memory.toy src/shell/shell.toy” to compile a new shell program from
these parts. There should be no error, and typing “shell2 test” should launch a
new shell, printing “test”.

The beginning of the text editor contains the same code as in the “src/base.toy”
and “src/gpu.toy” files above. We can thus delete it and use these files instead, to
reduce the total amount of code. For this the fastest way is to split the text editor
source code in two parts and simply discard the first part. To this end, type “edit
edit.toy” and edit this code as follows:

492



27.2 Reboot

trash.txt~fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32 ≀
≀) -> u32;

...
fn gpu_draw_char(c: u32) { gpu_set_register(2, c); }
~src/edit/edit.toy~fn mem_copy(src: &u32, dst: &u32, n: u32) {
...

Then type “split edit.toy” to actually split it. To check that this worked, type
“toyc edit2 src/base.toy src/gpu.toy src/edit/edit.toy” to compile a new
text editor program from these parts. There should be no error, and typing “edit2
src/edit/edit.toy” should open the new text editor code.

27.2 Reboot
We can now implement some utility programs to make our operating system easier
to use. We start here with a program to reboot the computer. We don’t really need
one to reboot the operating system – we can simply use the RESET button instead
– but rebooting with the Boot Assistant is useful. For instance, this can be used to
make a copy of the Flash memory on an external computer, to save work done on
the Arduino. The following program uses the reboot system call to reboot with the
operating system or with the Boot Assistant (if run with the “-rom” command line
argument). Thanks to the shared files created above we only need to implement the
main function, which should be self-explanatory:

static USAGE = ['U','s','a','g','e',':',' ',
'r','e','b','o','o','t',' ','[','-','r','o','m',']'];

static ROM = ['-','r','o','m'];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let length = 0;
let argument = sh_read_token(&args, args_end, &length);
let mode = 0; /*Flash*/
if argument != null {

if length != 4 || *argument != *ROM {
write(STANDARD_OUTPUT, USAGE, 20);
return INVALID_ARGUMENT;

}
mode = 1; /*ROM*/

}
return status(reboot(mode));

}

Type “edit src/reboot/reboot.toy”, enter this code, save it, and compile
it with “toyc reboot src/base.toy src/reboot/reboot.toy”. To test it, type
“reboot”, and then “reboot -rom”. The system should become unresponsive, because
the Boot Assistant should now be running instead of the operating system. To reboot
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again with the operating system, run the following command on an external computer
(see Section 9.7):
user@host:~$ python3 flash_helper.py
>reset#

27.3 Delete
The “delete” utility deletes the file whose name is given as command line argument.
It is as simple as the previous one:
static USAGE = ['U','s','a','g','e',':',' ',

'd','e','l','e','t','e',' ','f','i','l','e'];

static CANT_DELETE = ['C','a','n',''','t',' ','d','e','l','e','t','e',' '];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let length = 0;
let name = sh_read_token(&args, args_end, &length);
if name == null {

write(STANDARD_OUTPUT, USAGE, 18);
return INVALID_ARGUMENT;

}
let result = status(delete(name, length));
if result != OK {

write(STANDARD_OUTPUT, CANT_DELETE, 13);
write(STANDARD_OUTPUT, name, length);

}
return result;

}

Type “edit src/delete/delete.toy”, enter this code, save it, and compile
it with “toyc delete src/base.toy src/delete/delete.toy”. To test it, type
“delete trash.txt” to delete the “trash.txt” file produced above while splitting
the text editor. Typing this command again should give an error because the file no
longer exists.

27.4 Copy
The “copy” utility copies a file into another. It takes as command line arguments the
names of these files, starting with the source one. It reads as many bytes as possible
from the source file, writes them to the destination file, and repeats this until all bytes
of the source file are read. It thus supports files which do not fit in RAM. Its source
code is longer than that of the previous utility programs, but should still be easy to
understand:
fn write_error(src1: &u32, length1: u32, src2: &u32, length2: u32, result: ≀

≀ u32) -> u32 {
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write(STANDARD_OUTPUT, src1, length1);
write(STANDARD_OUTPUT, src2, length2);
return status(result);

}

static USAGE = ['U','s','a','g','e',':',' ',
'c','o','p','y',' ','s','r','c',' ','d','s','t'];

static CANT_OPEN = ['C','a','n',''','t',' ','o','p','e','n',' '];
static CANT_READ = ['C','a','n',''','t',' ','r','e','a','d',' '];
static CANT_WRITE = ['C','a','n',''','t',' ','w','r','i','t','e',' '];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let src_length = 0;
let dst_length = 0;
let src_name = sh_read_token(&args, args_end, &src_length);
let dst_name = sh_read_token(&args, args_end, &dst_length);
if src_name == null || dst_name == null {

write(STANDARD_OUTPUT, USAGE, 19);
return INVALID_ARGUMENT;

}
let buffer = heap;
let buffer_size = heap_limit - heap;
if buffer_size < 64 { return OUT_OF_MEMORY; }

let src_stream = open(src_name, src_length, 'r');
if status(src_stream) != OK {

return write_error(CANT_OPEN, 11, src_name, src_length, src_stream);
}
let dst_stream = open(dst_name, dst_length, 'w');
if status(dst_stream) != OK {

return write_error(CANT_OPEN, 11, dst_name, dst_length, dst_stream);
}
let n = 0;
let result = 0;
loop {

n = read(src_stream, buffer, buffer_size);
if status(n) != OK {
return write_error(CANT_READ, 11, src_name, src_length, n);

}
result = write(dst_stream, buffer, n);
if status(result) != OK {

return write_error(CANT_WRITE, 12, dst_name, dst_length, result);
}
if n < buffer_size { return OK; }

}
}
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Type “edit src/copy/copy.toy”, enter this code, save it, and compile it
with “toyc copy src/base.toy src/copy/copy.toy”. To test it, type “copy
src/copy/copy.toy test.txt” to copy its own source code to a new file. Check
that this worked with “edit test.txt”.

27.5 List
The “list” utility prints the name of each file and directory in a given “directory”.
Here we call “directory” a component of a file name before a slash. For instance,
the file “src/copy/copy.toy” is considered as a “copy.toy” file inside the “copy”
directory, itself inside the “src” directory, itself inside the root directory (whose name
is empty). Thus, for instance, listing the files and directories in the root directory
should give “src”, but not “src/copy” or “src/copy/copy.toy” (since “copy” and
“copy.toy” are not inside the root directory). Similarly, listing the files and directories
in “src” should give “copy”, but not “src” or “copy/copy.toy”.

We start this utility with the “mem_compare” function, already used in the compiler,
and needed later on (an alternative is to add it in “src/memory.toy”):
fn mem_compare(ptr1: &u32, ptr2: &u32, size: u32) -> u32 {

let i = 0;
while i < size && load8(ptr1 + i) == load8(ptr2 + i) {

i = i + 1;
}
return size - i;

}

The next function computes the length of the first component of a file name,
i.e., until the first slash (included), if there is one. For instance, it returns 4 for
“src/copy/copy.toy”, whose first component is “src/” (we include the slash to
distinguish directory names from file names). It returns 8 for “copy.toy”, which has
only one component.
fn get_first_component_length(name: &u32, length: u32) -> u32 {

let i = 0;
while i < length && load8(name + i) != '/' { i = i + 1; }
if i < length { i = i + 1; }
return i;

}

The main function starts by checking that the command line argument, if any, is a
directory path. That is, a list of directory names separated by slashes and ending with
a slash (such as “src/copy/”):
static USAGE = ['U','s','a','g','e',':',' ',

'l','i','s','t',' ','[','p','a','t','h','/',']'];

static SEPARATOR = [' ',' '];
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fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let path_length = 0;
let path = sh_read_token(&args, args_end, &path_length);
if path_length > 0 && load8(path + path_length - 1) != '/' {
write(STANDARD_OUTPUT, USAGE, 19);
return INVALID_ARGUMENT;

}

It then uses a loop to get the (full) name of each file in the file system, one by one
(by reading the root directory – see Section 24.3.4). If this full name starts with the
path given as argument, it then gets the length of the first component of the rest of this
name. Finally, if this component has not already been written during the last iteration,
it writes it to standard output.

As an example, let’s assume that the input path is “src/” and that there are 4
files “copy”, “src/base.toy”, “src/copy/copy.toy”, and “src/copy/help.txt”.
The above loop skips the first because it does not start with the input path. It writes
“base.toy” for the second one (the first component after the input path), and “copy/”
for the third. And it does nothing for the fourth one because “copy/” has already been
written at the previous iteration.

const MAX_NAME_LENGTH: u32 = 256;
let name = mem_allocate(MAX_NAME_LENGTH, &heap, heap_limit);
let last_item = mem_allocate(MAX_NAME_LENGTH, &heap, heap_limit);
if name == null || last_item == null { return OUT_OF_MEMORY; }

let stream = open(name, 0, 'r');
let length = read(stream, name, MAX_NAME_LENGTH);
let last_length = 0;
let item: &u32 = null;
while length != 0 {

if length > path_length && mem_compare(name, path, path_length) == 0 {
item = name + path_length;
length = get_first_component_length(item, length - path_length);
if length != last_length || mem_compare(item, last_item, length) != ≀

≀0 {
write(STANDARD_OUTPUT, item, length);
write(STANDARD_OUTPUT, SEPARATOR, 2);
mem_copy_non_overlapping(item, last_item, length);
last_length = length;

}
}
length = read(stream, name, MAX_NAME_LENGTH);

}
return OK;

}

Type “edit src/list/list.toy”, enter the above code, save it, and compile it
with “toyc list src/base.toy src/memory.toy src/list/list.toy”. To test
it, type “list”, “list src/”, or “list dst/”, for example.
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27.6 Stat
Our last utility program, “stat”, gives some statistics about the file whose name is
given as command line argument. More precisely, it prints the number of bytes and
the number of lines of this file. It supports files which do not fit in RAM by reading
them in several steps if necessary.

We start with a function counting the number of lines between src and src_end
(excluded). This function counts the number of “new line” characters. More precisely,
to avoid counting a “new line” at the very end of a file as one line, it counts the number
of characters which are immediately preceded by a “new line”. This requires knowing
the character just before src, for files read in several steps. This is the purpose of
*last_char which, on return, contains the last character before src_end:

const NEW_LINE: u32 = 10;

fn line_count(src: &u32, src_end: &u32, last_char: &u32) -> u32 {
let count = 0;
while src < src_end {

if *last_char == NEW_LINE { count = count + 1; }
*last_char = load8(src);
src = src + 1;

}
return count;

}

The next functions, copied from our compiler (see Section 25.3.3), are needed to
write the file statistics as decimal numbers, or an error message if an error occurs:

fn write_integer(x: u32) {
let quotient = x / 10;
x = x - 10 * quotient + '0';
if quotient > 0 { write_integer(quotient); }
write(STANDARD_OUTPUT, &x, 1);

}
fn write_error(src1: &u32, length1: u32, src2: &u32, length2: u32, result: ≀

≀ u32) -> u32 {
write(STANDARD_OUTPUT, src1, length1);
write(STANDARD_OUTPUT, src2, length2);
return status(result);

}

The main function reads as many bytes as possible from the source file, adds the
number of bytes (resp. lines) in this chunk to the total number of bytes (resp. lines),
and repeat these steps until the whole file is read:

static USAGE = ['U','s','a','g','e',':',' ',
's','t','a','t',' ','f','i','l','e'];

static CANT_OPEN = ['C','a','n',''','t',' ','o','p','e','n',' '];
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static CANT_READ = ['C','a','n',''','t',' ','r','e','a','d',' '];
static BYTES = [' ','b','y','t','e','s',' '];
static LINES = [' ','l','i','n','e','s'];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let length = 0;
let name = sh_read_token(&args, args_end, &length);
if name == null {

write(STANDARD_OUTPUT, USAGE, 16);
return INVALID_ARGUMENT;

}
let buffer = heap;
let buffer_size = heap_limit - heap;
if buffer_size < 64 { return OUT_OF_MEMORY; }

let stream = open(name, length, 'r');
if status(stream) != OK {

return write_error(CANT_OPEN, 11, name, length, stream);
}
let n = 0;
let bytes = 0;
let lines = 0;
let last_char = NEW_LINE;
loop {

n = read(stream, buffer, buffer_size);
if status(n) != OK {

return write_error(CANT_READ, 11, name, length, n);
}
bytes = bytes + n;
lines = lines + line_count(buffer, buffer + n, &last_char);
if n < buffer_size { break; }

}
write_integer(bytes);
write(STANDARD_OUTPUT, BYTES, 7);
write_integer(lines);
write(STANDARD_OUTPUT, LINES, 6);
return OK;

}

Type “edit src/stat/stat.toy”, enter the above code, save it, and compile
it with “toyc stat src/base.toy src/stat/stat.toy”. To test it, type “stat
src/stat/stat.toy”, for example.

27.7 Compiler improvements
Our compiler starts with the same functions as in the shared “src/base.toy” file (we
added them in Section 25.3.3). To avoid this duplicated code we can remove them
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and use the shared file instead. For this the easiest way is to split the compiler source
code and to discard the first part, as we did for the text editor. To do this, and to split
the second part in smaller, more manageable files, type edit “edit toyc.toy” and
edit this code as follows:
trash.txt~fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32 ≀

≀) -> u32;
...
}
~src/toyc/base.toy~fn panic_result() -> u32 [
...
}
~src/toyc/scanner.toy~static TC_CHAR_TYPES = [
...
}
~src/toyc/backend.toy~fn mem_allocate(size: u32, ptr_p: &&u32, ptr_limit: ≀

≀&u32) -> &u32 {
...
}
~src/toyc/parser.toy~fn sym_lookup(symbol: &Symbol, name: &u32, length: u3 ≀

≀2) -> &Symbol {
...
}
~src/toyc/toyc.toy~fn write_integer(x: u32) {
...

Finally, type “split toyc.toy” to actually split it. We can now take advantage
of this to reduce the amount of RAM required by the compiler. Indeed, the compiler
currently loads all its input files in RAM, next to each other (Figure 25.2). However,
after a source file has been compiled it is no longer needed, and we could delete it
from RAM before loading the next one. This would reduce the memory need to the
size of the largest source file, instead of their total size. But there is a catch: the
symbol names are pointers to the source code (see Figure 16.1). And they are still
needed after a file has been compiled (so that its symbols can be used in the next
files). To solve this issue we need to copy the symbol names somewhere else before
discarding the source code.

For this, type “edit src/toyc/parser.toy” and add the following function at
the end of this file. This function copies the names of each symbol in the list starting
with symbol, up to end_symbol (excluded). It copies each name in the compiler’s
heap. It also copies the names of the “nested” symbols, such as the field names in a
struct symbol (see Figure 19.1). Note that the parameter names in a fn symbol (see
Figure 19.2) are no longer needed after the corresponding function has been compiled.
fn tc_copy_symbol_names(self: &Compiler, symbol: &Symbol, end_symbol: &Sym ≀

≀bol) {
let name_copy: &u32 = null;
let i = 0;
while symbol != end_symbol {
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name_copy = mem_allocate(symbol.length, &self.heap, self.heap_limit);
i = 0;
while i < symbol.length {

store8(name_copy + i, load8(symbol.name + i));
i = i + 1;

}
symbol.name = name_copy;
if symbol.kind == SYM_STRUCT {

tc_copy_symbol_names(self, symbol.type, null);
}
symbol = symbol.next;

}
}

Then type “edit src/toyc/toyc.toy” and implement the above idea by updating
the main function as follows:

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
...

const MAX_CODE_SIZE: u32 = 12288;
const MAX_HEAP_SIZE: u32 = 24576;
const MIN_SRC_SIZE: u32 = 256;

...
let stream = 0;
let src_size = 0;
let last_copied_symbol = compiler.symbols;
while in != null {

...
in = sh_read_token(&args, args_end, &in_length);
tc_copy_symbol_names(compiler, compiler.symbols, last_copied_symbol);
last_copied_symbol = compiler.symbols;

}
...
}

That is, remove the “src = src + src_size;” statement so that each new source
file is loaded “on top” of the previous one. And replace it with a call to the above
function to copy the symbol names not already copied in previous iterations. Also, to
make space for the copied names in the Compiler’s heap, increase its size from 18 to
24 KB.

To test these changes, type “toyc toyc2 src/base.toy src/toyc/base.toy
src/toyc/scanner.toy src/toyc/backend.toy src/toyc/parser.toy src/to
yc /toyc.toy” to recompile the compiler from these new source files, into a new
program. There should be no error. Finally, to check that “toyc2” works correctly,
use it to recompile itself with “toyc2 toyc src/base.toy src/toyc/base.toy
src/toyc/scanner.toy src/toyc/backend.toy src/toyc/parser.toy src/to
yc/toyc.toy”. You can then use “delete” to delete the “toyc.toy”, “trash.txt”,
and “toyc2” files, no longer needed.

501



CHAPTER 27 Utilities

27.8 Shell improvements
The command line used at the end of the previous section is quite long to type and can
be hard to remember. Saving it in a file can solve the latter issue, but not the former
(since we cannot copy paste text). To solve this we improve the shell so that it can run
commands stored in a file, called a script.

More precisely, we add an optional command line argument to the shell. If present,
this argument should be the name of a file containing some commands, one per line.
To support commands longer than 100 characters, which is the maximum line length
in the text editor, these lines can be wrapped with backslash characters. For instance,

copy edit edit.old
toyc edit src/base.toy\
src/edit/edit.toy

corresponds to two commands, namely “copy edit edit.old” and “toyc edit
src/base.toy src/edit/edit.toy”.

To implement this new feature, type “edit src/shell/shell.toy” and edit this
code as follows. First add new messages for errors related to the script file:

static CANT_FIND = ['C','a','n',''','t',' ','f','i','n','d',' '];
static CANT_OPEN = ['C','a','n',''','t',' ','o','p','e','n',' '];
static CANT_READ = ['C','a','n',''','t',' ','r','e','a','d',' '];

Then add the following function, after “sh_run”. This function reads the script
file whose name is given as argument and runs its commands with sh_run. It reads
the file one character at a time, and unwraps each command into the same src buffer
(from one of the shell’s Command struct – see Figure 25.1). When the end of the file is
reached, or a “new line” not preceded by a backslash, it runs the command between
src and src_end (excluded) and then clears the buffer. Otherwise, it appends each
new character to the buffer, unless it is a “new line” preceded by a backslash (in which
case the backslash is deleted). It ends by writing to standard output the text written in
the shell’s output buffer by all the executed commands.

fn sh_run_script(self: &Shell, name: &u32, length: u32) -> u32 {
let stream = open(name, length, 'r');
if status(stream) != OK {
write(STANDARD_OUTPUT, CANT_OPEN, 11);
write(STANDARD_OUTPUT, name, length);
return status(stream);

}
let src = &self.commands.data;
let src_end = src;
let c = 0;
let n = 0;
loop {
n = read(stream, &c, 1);
if status(n) != OK {
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sh_print(self, CANT_READ, 11);
sh_print(self, name, length);
break;

} else if n == 0 {
sh_run(self, src, src_end);
break;

} else if c == NEW_LINE {
if src_end > src && load8(src_end - 1) == '\' {
src_end = src_end - 1;

} else {
sh_run(self, src, src_end);
src_end = src;

}
} else if src_end - src < MAX_COMMAND_LENGTH {

store8(src_end, c);
src_end = src_end + 1;

}
}
write(STANDARD_OUTPUT, self.output_begin, self.output_end - self.output_ ≀

≀begin);
return status(n);

}

Finally, update the main function to call “sh_run_script” if the shell is launched
with a command line argument, or the interactive command editor otherwise. Also
add some code to initialize the shell’s output buffer with the content of a “banner” file,
if it exists, in order to display a welcome message in interactive mode:

static BANNER = ['s','r','c','/','s','h','e','l','l','/',
'b','a','n','n','e','r','.','t','x','t'];

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
let shell = sh_new(&heap, heap_limit);
if shell == null { return OUT_OF_MEMORY; }
let length = 0;
let name = sh_read_token(&args, args_end, &length);
if name != null {
return sh_run_script(shell, name, length);

}
let stream = open(BANNER, 20, 'r');
let n = 0;
if status(stream) == OK {
n = read(stream, shell.output_begin, MAX_OUTPUT_SIZE);
if status(n) == OK { shell.output_end = shell.output_begin + n; }
close(stream);

}
return sh_run_editor(shell);

}
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Once this is done compile this new shell version with “toyc shell src/base.toy
src/memory.toy src/gpu.toy src/shell/shell.toy”. Then create a banner file
by typing “edit src/shell/banner.txt” and enter the following text (we name
our operating system “Toys”, as its kernel file):
Welcome to

_____
|_ _|__ _ _ ___

| |/ _ \| | | / __|
| | (_) | |_| \__ \
|_|\___/ \__, |___/

|___/

Type 'list' for a list of available commands.

To test these changes, type “shell” to start a new shell. This should display the
above banner before the prompt. Type Escape to return in the initial shell, and then
create the following test script with “edit script.sh”:
list src/
list\
src/toyc/

Finally, run this script with “shell script.sh”. This should list the content of
the “src” and “src/toyc” directories.

27.9 Final steps
To finalize our operating system we can split the kernel source code (to take advantage
of our compiler improvements) and delete the files which are no longer needed. For
this type “edit toys.toy”, edit this file as follows:
src/toys/drivers.toy~fn os_init(code: &u32, heap: &u32, stack: &u32);
...
}
~src/toys/filesystem.toy~struct DiskBlock {
...
}
~src/toys/processes.toy~struct Context {
...
}
~src/toys/systemcalls.toy~fn os_sleep(millis: u32) -> u32 {
...
}
~src/toys/toys.toy~fn hard_fault_handler() {
...

and type “split toys.toy” to split it. To check that everything is correct, type
“edit src/toys/BUILD”, enter the following script:
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toyc toys src/toys/drivers.toy src/toys/filesystem.toy\
src/toys/processes.toy src/toys/systemcalls.toy src/toys/toys.toy

and type “shell src/toys/BUILD” to run it, i.e., to recompile the kernel from the
split files. There should be no error. We can also add a build script for the compiler,
and in fact for each program, since we improved the shell precisely for this. To this
end, create the following files with the text editor:

src/toyc/BUILD:
toyc toyc src/base.toy src/toyc/base.toy src/toyc/scanner.toy\
src/toyc/backend.toy src/toyc/parser.toy src/toyc/toyc.toy

src/copy/BUILD:
toyc copy src/base.toy src/copy/copy.toy

src/delete/BUILD:
toyc delete src/base.toy src/delete/delete.toy

src/edit/BUILD:
toyc edit src/base.toy src/gpu.toy src/edit/edit.toy

src/list/BUILD:
toyc list src/base.toy src/memory.toy src/list/list.toy

src/reboot/BUILD:
toyc reboot src/base.toy src/reboot/reboot.toy

src/shell/BUILD:
toyc shell src/base.toy src/gpu.toy src/memory.toy src/shell/shell.toy

src/stat/BUILD:
toyc stat src/base.toy src/stat/stat.toy

For consistency with the other source files, copy “boot.toy” to the src directory
with “copy boot.toy src/boot/boot.toy” and create a script to compile it:

src/boot/BUILD:
toyc boot src/boot/boot.toy

Finally, delete all the files which are no longer needed: boot.toy, edit.toy,
edit2, hello, hello.toy, script.sh, shell.toy, shell2, split, split.toy,
test.txt, and toys.toy. After this the file system content should be the one in
Table 27.1 (the file sizes can differ if you used some spaces instead of tabulations, for
instance). For reference, these files are also provided in the companion website of this
book (https://ebruneton.github.io/toypc/).
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Name Size Lines
src/base.toy 2264 87
src/gpu.toy 1488 49
src/memory.toy 348 14
src/boot/BUILD 28
src/boot/boot.toy 1489 67
src/copy/BUILD 41
src/copy/copy.toy 1619 48
src/delete/BUILD 47
src/delete/delete.toy 568 19
src/edit/BUILD 53
src/edit/edit.toy 5727 225
src/list/BUILD 56
src/list/list.toy 1621 51
src/reboot/BUILD 47
src/reboot/reboot.toy 496 18
src/shell/BUILD 71
src/shell/banner.txt 176
src/shell/shell.toy 6580 231
src/stat/BUILD 41
src/stat/stat.toy 1827 67
src/toyc/BUILD 123
src/toyc/backend.toy 7708 247
src/toyc/base.toy 1601 77
src/toyc/parser.toy 21873 760
src/toyc/scanner.toy 4245 148
src/toyc/toyc.toy 3067 92
src/toys/BUILD 123
src/toys/drivers.toy 9032 269
src/toys/filesystem.toy 7529 273
src/toys/processes.toy 5564 196
src/toys/systemcalls.toy 7244 240
src/toys/toys.toy 2919 103
Total 95615 3281

Name Size
copy 744
delete 476
edit 2404
list 916
reboot 464
shell 2414
stat 830
toyc 9926
toys 6822
Total 24996

TABLE 27.1 The final content of the file system, containing the complete source code
(left) and compiled code (right) of the Toys operating system. To which the compiled
boot loader code, not part of the file system, must be added (less than 256 bytes).
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28
CHAPTER

Snake Game

The Toys operating system is now complete. It can of course be improved in numerous
ways, but this book is already quite long. Thus, instead of doing this, and since toys
are made to play, we use it in this last chapter to implement a small “snake” game.

28.1 Requirements
In this game the player uses the arrow keys to control a “snake” moving at constant
speed across the screen. The goal is to “eat” as many “apples” as possible. Each time
the snake eats one, its get longer and a new apple appears at random in a free spot.

The snake is represented with a contiguous series of green square cells, from head
to tail. The apple is represented with a red cell (there is only one apple at any given
time). At each time step the head moves in the same direction as in the previous
step or, if an arrow key was pressed, in the arrow direction. The body follows it, as
illustrated in the following example:

move up move right
headtail

If the head hits a “wall” (the screen boundary) or the snake’s own body, the game
is over. If the head moves in the apple cell the tail does not move, which increases the
snake’s length:

move rightlength=8 length=9

Then a new apple appears at random in a free cell. If the player is extremely
good there might be no free cell left, in which case the game is over. The score is the
number of apples eaten.

28.2 Data structures
In order to implement the above requirements we need to store in memory the current
state of the game. For this we start by dividing the screen in a grid of cells. Each
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struct Game {
cell_states
free_cells
num_free_cells 46
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FIGURE 28.1 The game state on the right is represented with the struct on the left,
containing pointers to the cell states and the free cells, and the (x, y) coordinates of
the head, tail and apple. The state of a free cell is its index in the free cells list. This
list contains the (x, y) coordinates of each free cell. The state of a used cell is the
direction towards the next used cell.

cell is uniquely identified by its (x, y) coordinates, with x increasing from left to
right and y from top to bottom (see Figure 28.1). We can then store the current apple
position with its grid coordinates. Storing the current snake state is more complex.
One possibility is to store a list of (x, y) coordinates, representing the cells occupied
by the snake, from head to tail. We can then move the snake by adding a new element
at the beginning of the list, and by removing the last element (unless the snake eats
the apple). However, this method has two drawbacks:

1. to determine if the head hits the body we need to iterate over each element of the
list, and check whether it is equal to the head.

2. there is no easy way to find a free cell to place a new apple. The best we can do is
try a cell c at random, and then iterate over each snake cell to check if c is free or
not. If not, we need to repeat this process until a free cell is found.

To mitigate this we can use an additional grid data structure, storing the current
state of each cell: used or free. This state is easy to update when moving the snake,
and avoids a loop over the snake’s list of cells in 1) and 2). But this is not sufficient to
avoid trying cells at random until a free one is found.

To solve this issue we introduce a third data structure, namely a list of all the free
cells, identified by their (x, y) coordinates. Finding a free cell is then very easy: just
pick any element in this list at random. But we then need to remove this cell from the
list of free cells. We also need to update this list when moving the snake. For instance,
we need to remove the new head cell from the list of free cells. This requires finding a
cell in this list, given its coordinates. To do this without iterating over this list (we are
trying to avoid any loop), we can store more than a “used or free” state for each cell.
More precisely, we can store for each free cell its index in the list of free cells. This
gives two data structures referencing each other (see Figure 28.1):
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FIGURE 28.2 Left: changing the (4, 2) cell to a free cell. Right: changing the free cell
(0, 1) to a used cell is done by replacing it with the last cell in the free cells list.

• a grid data structure storing the state of each cell, i.e., whether it is used or free and,
if so, its index in the list of free cells.

• a list of all the free cells, specified by their (x, y) coordinates in the grid data
structure.

Finally, to avoid a third data structure for the list of snake cells, we encode this
list in the grid structure. More precisely, we store for each used cell the direction of
the next used cell (towards the head). Then the only other additional state which is
needed are the coordinates of the head and tail cells (see Figure 28.1).

28.2.1 Operations
In order to move the snake the new head cell must be changed from a free cell to a
used cell. And the old tail cell must be changed from a used cell to a free cell. With
the above data structures, these operations can be done as follows:

• to change a cell (x, y) to a free cell (see Figure 28.2, left):

1. add the (x, y) element at the end of the free cells list. Note n the new size of
this list.

2. change the state of the (x, y) cell in the grid to “free, stored at index n− 1” in
the free cells list.

• to change a free cell (x, y) to a used cell, replace this cell in the free list with the
last free cell, in order to avoid a “hole” in this list (see Figure 28.2, right):

1. get the free cell index stored in the (x, y) cell of the grid, noted i.
2. set the state of the (x, y) cell of the grid to “used”.
3. get the (x′, y′) coordinates in the last element of the free cells list.
4. change the free cell index stored in the (x′, y′) cell of the grid to i.
5. change the coordinates in the ith element of the free cells list to (x′, y′).
6. remove the last element of the free cells list.

To place a new apple we need to choose a random cell in the free cells list. For
this it suffice to choose a number at random between 0 and n (excluded), where n is
the size of this list. But the microprocessor has no instruction for this. The solution is
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to use values which look random. For instance, 0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12,
15, 14, 9 seems to contain the numbers between 0 and 16 (excluded) in random order.
In fact each value vt+1 is computed from the previous one vt with vt+1 = 5vt + 3
mod 16. More generally, using vt+1 = a.vt + b mod m, can give values which
look random if a, b, and m are well chosen (for instance, a = b = 1 is a bad choice).
The Knuth & Lewis parameters, a = 1664525, b = 1013904223, and m = 32, are
frequently used. They give all the values between 0 and 232 (excluded) in “random”
order, without repetitions.

28.2.2 Encoding
We store the elements of the free cells list one after the other in a buffer, using one
byte for each coordinate. The x (resp. y) coordinate of the ith free cell (counting
from 0) is thus at offset 2i (resp 2i+ 1) from the beginning of this buffer.

We represent a used cell with a number from 0 to 3, encoding the direction of
the next used cell (0 for left, 1 for right, 2 for up, and 3 for bottom). We represent a
free cell with its index in the list of free cells, plus 4. Hence, a cell state less than 4
represents a used cell, while a cell state greater than or equal to 4 denotes a free cell.
To support “large” grids (up to 65532 cells) we store each state on 16 bits. We store
them one after the other in a buffer, from left to right and from top to bottom. Hence,
if the grid width is W cells, the state of the (x, y) cell is at a offset 2(x+ y.W ) from
the beginning of this buffer.

28.3 Implementation
The screen has 30 rows of 100 characters, but each character is 8× 16 pixels. To get
square cells we represent each cell with 2 characters, yielding 30 rows of 50 cells. We
reserve the first line to display the current score, which leaves a play area of 29 rows
and 50 columns:

const WIDTH: u32 = 50;
const HEIGHT: u32 = 29;
const LEFT: u32 = 0;
const RIGHT: u32 = 1;
const UP: u32 = 2;
const DOWN: u32 = 3;

The following struct implements the data structures discussed above. The first
two fields are pointers to the grid of cell states and to the list of free cells. The seed
field contains the last vt value computed with the Knuth & Lewis random number
generator:

struct Game {
cell_states: &u32,
free_cells: &u32,
num_free_cells: u32,
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head_x: u32,
head_y: u32,
tail_x: u32,
tail_y: u32,
apple_x: u32,
apple_y: u32,
direction: u32,
score: u32,
seed: u32

}

The following functions are used to read and write values in the grid of cell states
and in the list of free cells. They use the offsets explained in the previous section:
fn game_get_cell_state(self: &Game, x: u32, y: u32) -> u32 {

return load16(self.cell_states + 2 * (x + y * WIDTH));
}
fn game_set_cell_state(self: &Game, x: u32, y: u32, state: u32) {
store16(self.cell_states + 2 * (x + y * WIDTH), state);

}
fn game_get_free_cell_coords(self: &Game, index: u32, x: &u32, y: &u32) {
*x = load8(self.free_cells + 2 * index);
*y = load8(self.free_cells + 2 * index + 1);

}
fn game_set_free_cell_coords(self: &Game, index: u32, x: u32, y: u32) {
store8(self.free_cells + 2 * index, x);
store8(self.free_cells + 2 * index + 1, y);

}

The next functions use them to change a used cell into a free cell, and vice versa
(with the algorithms and encodings presented in Sections 28.2.1 and 28.2.2):
fn game_free_cell(self: &Game, x: u32, y: u32) {

let free_cell_index = self.num_free_cells;
game_set_cell_state(self, x, y, free_cell_index + 4);
game_set_free_cell_coords(self, free_cell_index, x, y);
self.num_free_cells = free_cell_index + 1;

}

fn game_use_cell(self: &Game, x: u32, y: u32, direction: u32) {
let free_cell_index = game_get_cell_state(self, x, y) - 4;
game_set_cell_state(self, x, y, direction);
let last_free_cell_index = self.num_free_cells - 1;
let last_x = 0;
let last_y = 0;
game_get_free_cell_coords(self, last_free_cell_index, &last_x, &last_y);
game_set_free_cell_coords(self, free_cell_index, last_x, last_y);
game_set_cell_state(self, last_x, last_y, free_cell_index + 4);
self.num_free_cells = last_free_cell_index;

}
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We can use them to create a new Game data structure, with its cell grid and free
cells list buffers, and to initialize all the cells to free cells:

fn game_new(heap_p: &&u32, heap_limit: &u32) -> &Game {
let game = mem_allocate(sizeof(Game), heap_p, heap_limit) as &Game;
let cell_states = mem_allocate(2 * WIDTH * HEIGHT, heap_p, heap_limit);
let free_cells = mem_allocate(2 * WIDTH * HEIGHT, heap_p, heap_limit);
if game == null || cell_states == null || free_cells == null {

return null;
}
game.cell_states = cell_states;
game.free_cells = free_cells;
game.num_free_cells = 0;
let y = 0;
let x = 0;
while y < HEIGHT {

x = 0;
while x < WIDTH {

game_free_cell(game, x, y);
x = x + 1;

}
y = y + 1;

}
return game;

}

The following functions implement the Knuth & Lewis random number generator,
and use it to place a new apple (they assume there is at least one free cell). The
generated numbers are in [0, 232[, but we need a value in [0, n[, where n is the size of
the free cells list (n ≤ 50 ∗ 29 = 1450). For this we use the 11 most significant bits1
of a random number, modulo n:

fn random(seed: &u32) -> u32 {
*seed = *seed * 1664525 + 1013904223;
return *seed;

}
fn modulo(x: u32, m: u32) -> u32 { return x - (x / m) * m; }

fn game_new_apple(self: &Game) {
let index = modulo(random(&self.seed) >> 21, self.num_free_cells);
game_get_free_cell_coords(self, index, &self.apple_x, &self.apple_y);

}

To draw the apple, and to move the snake, we just need to draw a red cell, a green
cell (for the new head), or a black cell (to erase the old tail). We thus implement a
function to draw a cell in a given color. Since we reserved the first line for the score,

1The least significant bits are “less random”. For instance, in the 0, 3, 2, 13, 4, 7, 6, 1, 8, 11, 10, 5, 12,
15, 14, 9 sequence shown above, numbers are alternatively even and odd, i.e., bit 0 is 0, 1, 0, 1, 0, 1, . . .
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and use 2 characters per cell, the (x, y) cell corresponds to row y + 1 and to columns
2x and 2x+ 1. To fill these characters with the given color we draw two spaces with
this color as background color (the graphics card has 3 registers to set it, using the
same format as for the foreground color – see Section 10.2.2 and [13]).

fn gpu_set_background(r: u32, g: u32, b: u32) {
gpu_set_register(96 /*Background Color 0*/, r);
gpu_set_register(97 /*Background Color 1*/, g);
gpu_set_register(98 /*Background Color 2*/, b);

}
fn draw_cell(x: u32, y: u32, r: u32, g: u32, b: u32) {
gpu_set_background(r, g, b);
gpu_set_cursor(2 * x, y + 1);
gpu_draw_char(' ');
gpu_draw_char(' ');
gpu_set_background(0, 0, 0);

}

The next 3 functions are used to draw the score in the top-left corner:

static SCORE = ['S','c','o','r','e',':',' '];
static GAME_OVER = ['G','a','m','e',' ','o','v','e','r','!'];

fn draw_integer(x: u32) {
let quotient = x / 10;
if quotient > 0 { draw_integer(quotient); }
gpu_draw_char(x - 10 * quotient + '0');

}
fn draw_string(src: &u32, length: u32) {

let i = 0;
while i < length {

gpu_draw_char(load8(src + i));
i = i + 1;

}
}
fn draw_score(score: u32) {
gpu_set_cursor(0, 0);
draw_string(SCORE, 7);
draw_integer(score);

}

The following function places an initial snake in the middle of screen, using 6
cells and moving left, draws it, places and draws the apple, and finally initializes and
draws the score. It does not initialize the seed on purpose, otherwise the apple would
always be at the same initial position. Instead, the seed gets whatever value was here
in memory (most likely the last seed value from a previous run of this game).

fn game_init(self: &Game) {
self.head_x = WIDTH / 2;
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self.head_y = HEIGHT / 2;
self.tail_x = self.head_x + 5;
self.tail_y = self.head_y;
self.direction = LEFT;
self.score = 0;
let x = self.head_x;
while x <= self.tail_x {

game_use_cell(self, x, self.head_y, LEFT);
draw_cell(x, self.head_y, 0, 7, 0);
x = x + 1;

}
game_new_apple(self);
draw_cell(self.apple_x, self.apple_y, 7, 0, 0);
draw_score(0);

}

The function below moves the snake in the current direction, and returns OK if this
is valid, or INVALID_STATE otherwise. It starts by updating the head position and
detecting collisions with the “walls”:

fn game_update(self: &Game) -> u32 {
let old_head_x = self.head_x;
let old_head_y = self.head_y;
if self.direction == LEFT {

if self.head_x == 0 { return INVALID_STATE; }
self.head_x = self.head_x - 1;

} else if self.direction == RIGHT {
if self.head_x == WIDTH - 1 { return INVALID_STATE; }
self.head_x = self.head_x + 1;

} else if self.direction == UP {
if self.head_y == 0 { return INVALID_STATE; }
self.head_y = self.head_y - 1;

} else if self.direction == DOWN {
if self.head_y == HEIGHT - 1 { return INVALID_STATE; }
self.head_y = self.head_y + 1;

}

It then checks if the head hits the body. If not, it updates the old and new head
cells, and draws the new one:

if game_get_cell_state(self, self.head_x, self.head_y) < 4 {
return INVALID_STATE;

}
game_set_cell_state(self, old_head_x, old_head_y, self.direction);
game_use_cell(self, self.head_x, self.head_y, 0);
draw_cell(self.head_x, self.head_y, 0, 7, 0);

If the head just moved in the apple cell, it places and draws a new apple (if there is
at least one free cell left), and then updates the score:

514



28.3 Implementation

if self.head_x == self.apple_x && self.head_y == self.apple_y {
if self.num_free_cells == 0 { return INVALID_STATE; }
game_new_apple(self);
draw_cell(self.apple_x, self.apple_y, 7, 0, 0);
self.score = self.score + 1;
draw_score(self.score);
return OK;

}

Finally, if the apple was not eaten, this function ends by freeing the current tail
cell, erasing it on screen, and updating the tail position to the next used cell (using the
direction stored in the old tail cell):

let tail_direction = game_get_cell_state(self, self.tail_x, self.tail_y);
game_free_cell(self, self.tail_x, self.tail_y);
draw_cell(self.tail_x, self.tail_y, 0, 0, 0);
if tail_direction == LEFT {

self.tail_x = self.tail_x - 1;
} else if tail_direction == RIGHT {

self.tail_x = self.tail_x + 1;
} else if tail_direction == UP {

self.tail_y = self.tail_y - 1;
} else if tail_direction == DOWN {

self.tail_y = self.tail_y + 1;
}
return OK;

}

We can finally implement the main function of the game. This function starts by
clearing the screen, hiding the cursor (see Section 10.2.1), creating and initializing
the game data structures, and drawing this initial state:
const ESCAPE_KEY: u32 = 27;
const ARROW_LEFT_KEY: u32 = 235;
const ARROW_RIGHT_KEY: u32 = 244;
const ARROW_UP_KEY: u32 = 245;
const ARROW_DOWN_KEY: u32 = 242;

fn main(args: &u32, args_end: &u32, heap: &u32, heap_limit: &u32) -> u32 {
gpu_set_single_buffer();
gpu_clear_screen();
gpu_set_register(64 /*Memory Write Control 0*/, 128 /*Hide cursor*/);
gpu_set_color(0, 7, 0);
let game = game_new(&heap, heap_limit);
if game == null { return OUT_OF_MEMORY; }
game_init(game);

It continues by waiting for a short time, updating the current direction if an arrow
key was pressed, updating the game state in memory and on screen, and by repeating
this until the game is over:
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let c = 0;
loop {

sleep(125);
read(KEYBOARD, &c, 1);
if c == ESCAPE_KEY { break; }
else if c == ARROW_LEFT_KEY { game.direction = LEFT; }
else if c == ARROW_RIGHT_KEY { game.direction = RIGHT; }
else if c == ARROW_UP_KEY { game.direction = UP; }
else if c == ARROW_DOWN_KEY { game.direction = DOWN; }
if game_update(game) != OK {

gpu_set_cursor(44, 0);
gpu_set_color(7, 0, 0);
draw_string(GAME_OVER, 10);
read(STANDARD_INPUT, &c, 1);
break;

}
}
gpu_set_register(64 /*Memory Write Control 0*/, 224 /*Show cursor*/);
return OK;

}

28.4 Compilation and play
Type “edit src/snake/snake.toy” and enter the above code. For reference, we also
provide this code in the snake.txtfile in https://ebruneton.github.io/toypc/sources.zip.
Then use the text editor again to create the following build file:

src/snake/BUILD:
toyc snake src/base.toy src/memory.toy src/gpu.toy src/snake/snake.toy

Finally, type “shell src/snake/BUILD” to compile the game and “snake” to
play with it!
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Conclusion

An operating system manages the resources and the peripherals of a computer, such
as the memory, the disk, the keyboard, the screen, etc. It also provides a simple and
safe way for processes to use them, via system calls. In this part we built a very basic
monotasking operating system, in several steps. Starting from a basic input output
system and a compiler, in the Flash1 memory bank, we progressively built and stored
in the Flash0 bank an initial, self-hosting operating system. Then, using this system
alone, we improved its kernel and added some utility programs.

The resulting computer is much easier to use than what it was at the beginning of
this part, but can still be improved in many ways. For instance, if a process enters
in an infinite loop because of a bug, we currently have no way to stop it other than
rebooting the computer. To solve this we could use a combination of keys, detected
in the keyboard interrupt handler, to stop the current process. Incidentally, we could
also improve the keyboard driver to support combinations of keys, such as Ctrl+C
or Ctrl+V. Another possible improvement is to format the Flash1 memory bank, no
longer needed, into free blocks added to the Flash0 file system (to get more disk
space). Alternatively, we could format the Flash1 bank with a better file system
format, for instance with hierarchical directories. We could then build a new kernel
version, supporting this new file system, and store it in this new disk. By successively
switching between the two memory banks like this, we could then improve our kernel
in arbitrary ways (in the limit of the available memory and disk space).

Further readings
Another possible improvement is to switch to a multitasking operating system, capable
of running several processes concurrently. But this is a complex task, which impacts
almost all parts of the system. To know how this can be done, or to know more about
operating systems in general, you can read one of the following books:
• “Modern Operating Systems” [20]. This book presents the fundamental concepts

used in operating systems, and discusses several strategies to implement each aspect
(processes, memory management, file systems, peripherals, etc). It starts with
processes, discusses all the problems related to their concurrent execution, and
presents methods to solve them.
• “Operating Systems Design and Implementation” [21]. This book is from the same

author and contains many sections also present in [20]. But it has a more practical
point of view and presents the source code of a real operating system, small enough
to be included in the book.
You can also visit the OSDev website (https://wiki.osdev.org), which provides
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many more resources about operating systems. It contains for instance a list of operating
systems, including educational ones such as MentOS (https://mentos-team.github.io/)
and xv6 (https://pdos.csail.mit.edu/6.828/2023/xv6.html), used for teaching in
universities. Finally, you can also read “Project Oberon: the design of an operating
system and compiler” [23] (a second edition is available online), which describes a
small self-hosting operating system and its compiler.
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APPENDIX

Bill of Materials

The table below lists all the necessary components to assemble our toy computer,
with their price as of July 2024. It is important to use the exact Arduino, display,
driver board and keyboard models listed here. Otherwise they might not work with
the programs presented in this book.

Assembling these components requires some soldering tasks. The tools necessary
for this are not included here (you can avoid buying them if you have access to a
makerspace).

Part Net price
Arduino Due
Cortex M3 84MHz, 512 KB Flash, 96 KB RAM, 3.3V
https://store-usa.arduino.cc/products/arduino-due

$48

7′′ TFT Display
800x480 pixels with Touchscreen
https://www.adafruit.com/product/2354

$35

RA8875 Driver Board
for 40-pin TFT Touch Displays - 800x480 max
https://www.adafruit.com/product/1590

$40

Miniature Keyboard
PS/2 and USB interface
https://www.adafruit.com/product/857

$30

4 channel Logic Level Converter
https://www.sparkfun.com/products/12009 $4

Half Sized Breadboard - 400 Tie Points
https://www.adafruit.com/product/64 $5

Male/Male Jumper Wires - 20 x 3′′ (75mm)
https://www.adafruit.com/product/1956 $2

Female/Male Jumper Wires - 20 x 3′′ (75mm)
https://www.adafruit.com/product/1953 $2

Total $166

TABLE A.1 The Bill of Materials of our toy computer.
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ASCII codes

The table below lists the character codes defined by the “American Standard Code for
Information Interchange” used in this book. The full list can be found in [14].

Code Char
08 BackSpace
09 Tab
0A Enter
1B Escape
20 Space
21 !
22 "
23 #
24 $
25 %
26 &
27 ’
28 (
29 )
2A *
2B +
2C ,
2D -
2E .
2F /
30 0
31 1
32 2
33 3
34 4

Code Char
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?
40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M

Code Char
4E N
4F O
50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D ]
5E ^
5F _
60 ‘
61 a
62 b
63 c
64 d
65 e
66 f

Code Char
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o
70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F Delete
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IBM PC Set 2 scancodes

The table below lists the scancodes which are emitted by each key of the MCSaite
keyboard (see Table A.1) when it is pressed or released. This is a subset of the IBM
PC Set 2 scancodes (https://wiki.osdev.org/PS/2_Keyboard#Scan_Code_Set_2).

Key Press Release
F9 01 F0,01
F5 03 F0,03
F3 04 F0,04
F1 05 F0,05
F2 06 F0,06
F12 07 F0,07
F10 09 F0,09
F8 0A F0,0A
F6 0B F0,0B
F4 0C F0,0C
Tab 0D F0,0D
‘ ~ 0E F0,0E
Alt (left) 11 F0,11
Shift (left) 12 F0,12
Ctrl (left) 14 F0,14
q Q 15 F0,15
1 ! 16 F0,16
z Z 1A F0,1A
s S 1B F0,1B
a A 1C F0,1C
w W 1D F0,1D
2 @ 1E F0,1E
c C 21 F0,21
x X 22 F0,22

Key Press Release
d D 23 F0,23
e E 24 F0,24
4 $ 25 F0,25
3 # 26 F0,26
Space 29 F0,29
v V 2A F0,2A
f F 2B F0,2B
t T 2C F0,2C
r R 2D F0,2D
5 % 2E F0,2E
n N 31 F0,31
b B 32 F0,32
h H 33 F0,33
g G 34 F0,34
y Y 35 F0,35
6 ^ 36 F0,36
m M 3A F0,3A
j J 3B F0,3B
u U 3C F0,3C
7 & 3D F0,3D
8 * 3E F0,3E
, < 41 F0,41
k K 42 F0,42
i I 43 F0,43
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Key Press Release
o O 44 F0,44
0 ) 45 F0,45
9 ( 46 F0,46
. > 49 F0,49
/ ? 4A F0,4A
l L 4B F0,4B
; : 4C F0,4C
p P 4D F0,4D
- _ 4E F0,4E
’ " 52 F0,52
[ { 54 F0,54
= + 55 F0,55
CapsLock 58 F0,58
Shift (right) 59 F0,59
Enter 5A F0,5A
] } 5B F0,5B
\ | 5D F0,5D
BackSpace 66 F0,66
1 (keypad) 69 F0,69
4 (keypad) 6B F0,6B
7 (keypad) 6C F0,6C
0 (keypad) 70 F0,70
. (keypad) 71 F0,71
2 (keypad) 72 F0,72

Key Press Release
5 (keypad) 73 F0,73
6 (keypad) 74 F0,74
8 (keypad) 75 F0,75
Escape 76 F0,76
NumLock 77 F0,77
F11 78 F0,78
+ (keypad) 79 F0,79
3 (keypad) 7A F0,7A
- (keypad) 7B F0,7B
* (keypad) 7C F0,7C
9 (keypad) 7D F0,7D
ScrollLock 7E F0,7E
F7 83 F0,83
Alt (right) E0,11 E0,F0,11
End E0,69 E0,F0,69
ArrowLeft E0,6B E0,F0,6B
Home E0,6C E0,F0,6C
Insert E0,70 E0,F0,70
Delete E0,71 E0,F0,71
ArrowDown E0,72 E0,F0,72
ArrowRight E0,74 E0,F0,74
ArrowUp E0,75 E0,F0,75
PageDown E0,7A E0,F0,7A
PageUp E0,7D E0,F0,7D

Key Press Release
PrintScreen E0,12,E0,7C E0,F0,7C,E0,F0,12
Pause E1,14,77,E1,F0,14,F0,77
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Compiler error codes

The table below gives the meaning of the error codes which can be output by the
compiler implemented in Part 3.

Code Meaning
1 0116 Out-of-memory

10 0A16 Unexpected end of input
11 0B16 Printable character expected
12 0C16 Quote character expected
20 1416 Unexpected token
21 1516 Integer token expected
22 1616 Identifier token expected
23 1716 End of input expected
24 1816 Instruction opcode expected
25 1916 Comparison operator expected
30 1E16 Already defined symbol
31 1F16 Already resolved symbol
32 2016 Undefined forward reference
33 2116 Undefined symbol
34 2216 Function name expected
35 2316 Illegal identifier expression
36 2416 Illegal address-of operator argument
37 2516 Unreachable statement
38 2616 Illegal left hand side assignment expression
39 2716 Break statement outside of a loop
40 2816 Unreachable statement
41 2916 Missing return
42 2A16 Illegal raw struct type
43 2B16 Expression type mismatch
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Code Meaning
44 2C16 Illegal raw struct expression type
45 2D16 Illegal void expression type
46 2E16 Function call argument type mismatch
47 2F16 Struct name expected
48 3016 Expression with struct pointer type expected
49 3116 Expression with pointer type expected
50 3216 Expression with integer type expected (left hand side)
51 3316 Expression with integer type expected (right hand side)
52 3416 Different pointer types on left and right hand sides
53 3516 Incorrectly typed add or sub expression
54 3616 Comparison of expression with different types
55 3716 Unexpected return value in void function
56 3816 Missing return value in non-void function
57 3916 Illegal use of null in let statement
58 3A16 Function parameter type does not match forward declaration
59 3B16 Function parameter count does not match forward declaration

100 6416 Const instruction argument overflow
101 6516 Stack instruction argument overflow
102 6616 Heap instruction argument overflow
103 6716 Branch instruction argument overflow
104 6816 Branch with link instruction argument overflow
105 6916 Too many registers used
106 6A16 Static instruction argument overflow
107 6B16 Too many function parameters
108 6C16 Too many function arguments
109 6D16 Return instruction argument overflow
110 6E16 Unaligned destination buffer
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Boot Assistant scripts

The following sections list the source code of the scripts used in Part 2 on the host
computer.

E.1 boot_helper.py

import serial

# Initialize the serial port to communicate with the SAM-BA program,
# as described in section 20.4.1 of the SAM3X / SAM3A Datasheet.
try:

serial_port = serial.Serial(port='/dev/ttyACM0', baudrate=115200,
parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE,
bytesize=serial.EIGHTBITS, timeout=5, write_timeout=1)

except:
exit('ERROR: could not open serial port.')

def run(command, verbose=False):
serial_port.write(bytearray(command.encode('ascii')))
if command.endswith('#'):

bytes = bytearray()
while True:

byte = serial_port.read()
if len(byte) != 1:
exit('ERROR: no response from device.')

if chr(byte[0]) == '>':
result = bytes.decode('ascii').lstrip()
if verbose:

print(f'{result}>', end='')
return result

bytes.append(byte[0])

# Flush the connection and switch the SAM-BA Monitor to ASCII mode.
serial_port.flush()
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run('T#', verbose=True)

if __name__ == '__main__':
# Main loop (read commands from stdin, run them).
while True:
try:

commands = input().replace('#', '#\').split()
except (EOFError, KeyboardInterrupt):

exit('')
for command in commands:

if command.strip() == 'exit#':
exit()

run(command, verbose=True)

E.2 flash_helper.py

import os
import re
import stat
import boot_helper

# Check if stdin is a file. If not, we assume it is an interactive terminal.
stdin_from_file = stat.S_ISREG(os.fstat(0).st_mode)

def wait_ready(register):
while boot_helper.run(f'w{register:08X},#').strip() != '0x00000001':

pass

class Page:
def __init__(self, index):

self._index = index
self._address = index * 256 + 0x80000
self._values = []
self._dirty = False
print(f'Reading page {self._index}...', end='')
for i in range(0, 64):

address = self._address + 4 * i
value = boot_helper.run(f'w{address:08X},#').strip()
self._values.append(value[2:])

print(' Done.')

def set(self, index, value):
if value != self._values[index]:

self._values[index] = value
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self._dirty = True

def flash(self):
if not self._dirty:

return
print(f'Writing page {self._index}...', end='')
for i in range(0, 64):

address, value = self._address + 4 * i, self._values[i]
boot_helper.run(f'W{address:08X},{value}#')

if self._index < 1024:
command = 0x5A000003 | (self._index << 8)
boot_helper.run(f'W400E0A04,{command:08X}#')
wait_ready(0x400E0A08)

else:
command = 0x5A000003 | ((self._index - 1024) << 8)
boot_helper.run(f'W400E0C04,{command:08X}#')
wait_ready(0x400E0C08)

for i in range(0, 64):
address = self._address + 4 * i
value = boot_helper.run(f'w{address:08X},#').strip()[2:]
if int(value, 16) != int(self._values[i], 16):

exit(f'ERROR: page write failed at address {address:08X}')
print(' Done.')

# Main loop (read commands from stdin, run them).
pages = {}
while True:
try:

commands = input().replace('#', '#\').split()
except (EOFError, KeyboardInterrupt):

if stdin_from_file:
print('Done.', end='')

exit('')
for command in commands:
command = command.strip()
if command == 'exit#':

exit()
if command == 'flash#':

for _, page in sorted(pages.items()):
page.flash()

pages = {}
print('>', end='')
continue

if command == 'reset#':
boot_helper.run('W400E0A04,5A00010B#') # Set boot from flash.
wait_ready(0x400E0A08)
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reset = 'W400E1A00,A500000D#'
boot_helper.serial_port.write(bytearray(reset.encode('ascii')))
exit()

match = re.match(r"W([0-9A-Fa-f]{1,8}),([0-9A-Fa-f]{1,8})#", command)
if match:

address, value = int(match.group(1), 16), match.group(2)
if address >= 0x80000 and address < 0x100000:

if address % 4 != 0:
exit(f'ERROR: invalid address {address}.')

page, word = (address - 0x80000) // 256, (address % 256) // 4
if page not in pages:

pages[page] = Page(page)
pages[page].set(word, value)
if not stdin_from_file:

print('>', end='')
continue

boot_helper.run(command, verbose=not stdin_from_file)
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Programming a toy computer from scratch
This book introduces how computer hardware, programming languages and operating
systems work, via a practical example which can be understood down to the smallest
detail. For this it explains how you can assemble and program a toy computer, in an
entirely bottom-up way, without using any existing programming tool. The end result
is a toy, monotasking operating system with a command line shell, a text editor, a
compiler, and a few utilities, in less than 3300 lines.
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