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Introduction

Billions of people are using computers or smartphones, which are computers before
being phones. One doesn’t need to understand how computers work to use them, but
if you want to know, this book might help you.

Popular science books about this topic intentionally leave out many details. On
the other hand, textbooks emphasize theoretical aspects and focus on a narrow topic.
This book is different. Its goal is to introduce how computer hardware and common
programming languages and operating systems work, via a practical example which
can be understood down to the smallest detail.

For this it proposes you to assemble and program your own toy computer. And
to make sure not to omit any details, it explains how you can do this from scratch,
without using any existing programming tool. It is organized in four parts:

o the first part briefly presents the main basic ideas used to design microprocessors,
which are the core component of a computer. This is necessary to understand the
main concepts used in the next parts. It ends with the presentation of a virtual, toy
microprocessor, which can be simulated online, and of a few programs using it.

o the second part explains how the components of your toy computer work, how they
can be programmed, and how to assemble them. Based on this, it then describes
how to build a basic system allowing programs to use the computer’s keyboard
and screen. Finally, it presents how an initial program can read and execute other
programs, based on this input and output system.

o the third part explains how a computer can be programmed in a language which can
be “easily” understood by humans, unlike the Os and 1s used by its microprocessor.
For this it describes how to progressively build a toy language, and a program which
can translate it into Os and Is that the microprocessor can execute. In order to give
you an idea of what common programming languages look like, this toy language
is an extremely simplified version of real and popular ones.

o the fourth part explains how users can easily store files and launch applications on
their computer, thanks to a (set of) program(s) called an operating system. For this
it describes how to progressively build a toy operating system for your toy computer.
For the same reason as above, this system is an extremely simplified version of real,
frequently used ones.

Target audience

This book is designed for people looking for a practical and fully detailed example
introducing how microprocessors, programming languages and operating systems
work. It does not explain the theories and principles behind this. If you want to
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learn them, you should read computer science textbooks instead (some references
are provided at the end of each part). Conversely, if you only want to understand the
general ideas, it is better to read popular science books instead.

How to read this book

You can read this book without actually assembling or programming a toy computer,
just to understand how this could be done. In this case you can skip the tutorial-like
sections, which describe concrete steps to follow (plug this wire here, type this on the
keyboard, press this button, etc). This is the case, in particular, of the “Experiments”
and “Compilation and tests” sections.

Alternatively, you can read this book while following the instructions on an
emulator. In this case you do not need to assemble a toy computer, nor to buy the
necessary components for this (described in Appendix A). Instead, simply use the
emulator provided at https://ebruneton.github.io/toypc/emulator.html. For this you
need a desktop or laptop computer (tablets and smartphones are not really usable for
this task).

Finally, you can buy the components, assemble them, and follow the instructions
for real. This is more costly but probably more fun than the previous methods. This
method also requires a desktop or laptop computer, with a USB port and capable of
running python3. You can also use all three methods: start with the first one, then
re-read the book with the second method and optionally with the third, if you feel
that you need to (typing a program is slower than reading it — this can trigger some
questions, and finding the answers yourself can give you a better understanding).

Note also that, if you are stuck or simply want to skip some steps, you can follow
the instructions of any chapter without doing those of the previous ones (once the
computer is physically assembled, if you choose this method). Hence, for instance,
you can skip the instructions of part 2, do those of part 3 on the emulator, and those of
part 4 for real. You can also already have a look at the final programs and operating
system obtained at the end of this book, on the emulator, by opening the following link:
https://ebruneton.github.io/toypc/emulator.html?script=backups/final.txt. See the
companion website of this book for more details (https://ebruneton.github.io/toypc/).


https://ebruneton.github.io/toypc/emulator.html
https://ebruneton.github.io/toypc/emulator.html?script=backups/final.txt
https://ebruneton.github.io/toypc/

PART

A Toy
Microprocessor






Introduction

Before programming a toy computer from scratch it is useful to have some basic ideas
about how computers work. For this, one method is to build a toy computer from
scratch. It is possible to build one for real from individual electromagnetic relays [5]
or transistors [18]. But this requires a lot of time and space, and a significant budget.
Moreover, the resulting computer would be too small to run or even store the toy
programs of this book. For this reason, this part presents how a toy computer could be
built, but does not give all the details necessary to physically build one. It is organized
as follows:

e Chapter | briefly presents binary numbers, which are the basis of how computers
work, and how to compute with them.

e Chapter 2 explains how an electric circuit can compute additions and subtractions
of binary numbers.

o Chapter 3 shows how loops in circuits can be used to memorize numbers, and in
particular the (intermediate) results obtained with the above arithmetic circuits.

e Chapter 4 shows how a circuit can control another, in order to make it perform a
series of computations, specified by a program.

e Chapter 5 puts everything together to obtain a toy microprocessor, and shows how
it can be programmed with a few examples.

Note Most of the circuits presented in this part are also available on CircuitVerse
(https://circuitverse.org/), an online digital circuit simulator. Thanks to it you can
interact with the circuits presented in this part, which helps getting a better and more
practical understanding of how they work. See the companion website of this book
for more details (https://ebruneton.github.io/toypc/).


https://circuitverse.org/
https://ebruneton.github.io/toypc/




Binary Numbers

As its name implies, a computer performs computations, on numbers. A number is
an abstract concept which can be represented in many different concrete ways. For
example, the number of days in a week can be represented with “seven”, “7”, “VII”,
etc. Some representation methods, also called numeral systems, are more practical
than others to perform computations. For instance, doing additions and multiplications
is easier in the arabic numeral system than in the roman one. In fact they are even
easier to do in the so called binary numeral system. Computers use it for this reason.
In order to understand how they work it is thus necessary to know first what binary
numbers are, and how to compute with them. This is the goal of this chapter.

1.1 Binary numbers

An arabic number such as 237 represents 2 times 100, plus 3 times 10, plus 7 times 1.
In mathematical notation this gives

237 =2%100+3%10+7%1=2%10>+3 % 10" + 7% 10°

where £ denotes 1 if n = 0, or z % x % ... x (n times) otherwise. In other words, an
arabic number is a sequence of digits between 0 and 9, where the i*" digit from the
right (counting from 0) represents a quantity of 10%.

A binary number is similar but uses two digits instead of ten, namely O and 1,
called bits. It is thus a sequence of bits, where the i* bit from the right (counting
from 0) represents a quantity of 2¢. For example

101, =1%224+0%2' +1%20=1%44+0x2+1%x1=5

where the subscript 2 indicates a binary number (to avoid confusions with arabic
numbers; 1015 = 5 # 101 = “one hundred one”). Another example is
111011015 = 1 %27 + 1520 + 152> 4+ 0% 2" + 1528 + 1522 4 0% 2" + 1% 2°
=1%128+1%64+1%324+0%x16+1%x8+1%x4+0x2+1x1
= 237
The leftmost bit of a binary number is called its most significant bit. Conversely,

the rightmost bit is called the least significant. The i*" bit from the right (counting
from 0), is called bit number ¢, or simply bit 4.



CHAPTER1 Binary Numbers
n 2" 2" | 2" —1 2" —1
0 1 12 0 0
1 2 102 1 1
2 4 1002 3 114
3 8 10002 7 1112
4 16 100002 15 1111-
5 32 1000002 31 11111,
6 64 10000002 63 111111»
7 128 100000002 127 11111115
8 256 1000000002 255 111111112
16 | 65536 | 100000000000000002 65535 | 1111111111111111»

TABLE 1.1 Some frequently used powers of 2, in arabic and binary notation.

Some numbers have a very simple binary representation and are frequently used.
For instance, 2" is a one followed by n zeros in binary, like 10™ in arabic notation.
Another example is 2" — 1, which is simply n ones (like 10™ — 1 is n nines in arabic).
Table 1.1 gives some examples of these numbers.

1.2 Arithmetic operations
1.21 Addition

Adding two binary numbers can be done as with arabic numbers. Namely one column
at a time, from right to left. For instance, adding 11010105 and 101110, can be done
as follows:

11 111 1
1101010

106
+ 101110 + 46
10011000 152

Starting from the right, we add 0 and 0, which gives 0. We then add 1 and 1, which
gives 2 = 105. Since this is more than one bit, we put the least significant one, here 0,
in the current column, and we carry the most significant one, here 1, in the column
on the left (shown in red). This is similar to the addition of the equivalent arabic
numbers, shown on the right, where 6 4- 6 gives 12, leading to a carry of 1.

We continue by adding 0 and 1, plus the carry from the previous column, which
gives 2 again. In the next step we add 1 and 1, plus the carry from the previous
column, which gives 3 = 115. We thus put 1 at the bottom of this column, and carry
1 in the next one. And so on for the remaining columns.

Although the overall process is the same for binary and arabic numbers, adding
binary numbers is much easier, as stated above. Indeed, there are only 2 % 2 = 4
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1.2 Arithmetic operations

resultbit: | a | b | a+b carrybit: | a | b | a+b
00 0 0|0 0
01 1 0|1 0
1 0 1 1 0 0
1 1 0 1 1 1
TABLE 1.2 The binary addition tables.
resultbit: | a | b | a-b carrybit: | a | b | a-b
0|0 0 0|0 0
0| 1 1 0|1 1
1 0 1 1 0 0
1 1 0 1 1 0

TABLE 1.3 The binary subtraction tables.

possible cases when adding two bits, but 10 * 10 = 100 cases when adding two
decimal digits. These four cases are summarized in Table 1.2.

1.2.2 Subtraction

Similarly, subtracting two binary numbers can be done as with arabic numbers. For
instance, subtracting 101110, from 11010102 can be done as follows:

1101010 106
— 101110 — 46
1111 1
0111100 060

Starting from the right, we subtract 0 from 0, and then 1 from 1, which gives
0 in both cases. In the next step, since we cannot subtract 1 from 0, we subtract it
from 105 = 2 instead, which gives 1. We thus put a 1 in the current column, and
a carry of 1 in the subtrahend on the left column (shown in red). This is similar to
the subtraction of the equivalent arabic numbers, shown on the right, where 0 — 4 is
replaced with 10 — 4, yielding the result 6 and the carry 1.

We continue by subtracting 1, plus the carry from the previous column (i.e., a
total of 2), from 1. Since this is not possible we subtract them from 115 = 3 instead,
which gives the result 1 and the carry 1. And so on for the remaining columns.

As with additions, there are only four possible cases when subtracting two bits,
which is much simpler than the hundred possible cases for decimal digits. These four
cases are summarized in Table 1.3.



CHAPTER1 Binary Numbers

1.2.3 Multiplication

Multiplying two binary numbers can also be done as with arabic numbers. Namely by
multiplying the first by each bit / digit of the second. And by adding the results, each
shifted by one bit / digit to the left from the previous one. For instance, multiplying
11010102 by 1011105 can be done as follows:

1101010

* 101110
0000000 106
1101010 * 46
1101010 636
1101010 424
0000000 4876

1101010

1001100001100

Here again, although the process is the same, multiplying binary numbers is
much easier than arabic numbers. Indeed, multiplying the first number by each bit
of the second boils down to multiplications by 0 or 1, which are trivial. By contrast,
multiplying an arabic number by a decimal digit requires using a multiplication table
with 100 possible cases. It also involves carries.

Some multiplications are even easier to do than with the general method described
above. In particular, multiplying « by 2" can be done by simply shifting x by n bits to
the left, i.e., by adding n zeros on the right. For instance, 11010105 = 106 multiplied
by 2% = 8 is simply 1101010000, = 848. This is similar to multiplications by 10"
in arabic notation (for example, 46 times 103 = 1000 is 46000). Shifting a binary
number x by n bits to the left is noted z < n.

The opposite operation, shifting « by n bits to the right, i.e., dropping the n least
significant bits, is noted = > n. It corresponds to dividing x by 2". For instance,
shifting 11010102 = 106 by 3 bits to the right gives 1101 = 13 = [106/23]. This
is similar to dropping the n least significant digits of an arabic number, which divide
it by 10™ (for example, 4876 shifted to the right by 2 digits is 48 = |4876/100]).
Dividing arbitrary binary numbers can be done as with arabic numbers, but is not
presented here.

1.2.4 Conversions

Computers do all their computations with binary numbers because, as shown above,
this is much easier to do than with arabic numbers. However, humans prefer to specify
inputs with arabic numbers, and to get results in arabic too. This requires converting
arabic numbers to binary ones, and vice versa.

IThe |z | notation designates the integer part of . For instance, 106/8 = 13.25 and [13.25] = 13.



1.3 Logical operations

One method to convert an arabic number to binary is to convert each digit from
left to right, and to multiply the result by 10 before adding the next digit. For instance,
to convert 46 to binary, we start by converting 4, which gives 1002. We multiply
this by 10 = 8 + 2, which can be done by shifting 100, by 3 bits and by 1 bit to the
left, and by adding the results: 1000002 + 10002 = 101000;. Finally we convert
6, which gives 1102 and we add this to the previous result, yielding 1011105. This
method is well suited for computers since it only involves computations on binary
numbers (plus a small conversion table for each digit from 0 to 9).

Another method consists in dividing the arabic number by 2 repeatedly. The
remainders give the bits of the equivalent binary number, from right to left. For instance,
dividing 46 by 2 repeatedly gives 23 (remainder 0), 11 (remainder 1), 5 (remainder
1), 2 (remainder 1), 1 (remainder 0), and O (remainder 1). The corresponding binary
number is thus 1011105. Since this method involves divisions on arabic numbers, it
is more adapted for humans than for computers.

Similarly, one method to convert a binary number to arabic is to “convert” each
bit from left to right, and to multiply the result by 2 before adding the next bit. For
instance, converting 101110, gives successively 1, 1 *2+0 =2,2%x2 41 = 5,
5%2+1=11,11%2+1 =23, and 23 * 2 + 0 = 46. Since this method involves
multiplications of arabic numbers, it is more adapted for humans. But it can also be
used on computers, if necessary.

Another method to convert a binary number is to divide it by 10 repeatedly. The
remainders, converted to arabic, give the digits of the equivalent arabic number, from
right to left. It is well suited for computers since it only involves computations on
binary numbers (plus a small conversion table for each binary number from 0 to
10012 = 9).

1.3 Logical operations

Binary numbers can also be used to perform logical operations, unlike arabic numbers.
A logical operation computes whether some proposition is true of false, depending on
the status of one or more other propositions. A proposition is a statement which is
either true or false.

Consider for example a keyboard. A proposition might be “the E key is currently
pressed”, “the left Shift key is currently released”, or “the e letter is currently pressed”.
They are either true or false, depending on the current state of the keyboard. These
propositions, noted KeyPressed(k), KeyReleased(k), and LetterPressed(l), are
not completely independent. Some can be computed from the others. For example,
we can compute KeyReleased (k) as the opposite of KeyPressed(k). This logical
operation is the negation, also called not, and is noted —:

KeyReleased(k) = —KeyPressed (k)

We can also compute whether the proposition “a Shift key is pressed” is true from
the above propositions. Indeed, this is the case if at least one of the two Shift keys is

9
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TABLE 1.4 The truth tables of not (=), and (A), or (Vv), and exclusive or (§).

pressed. This logical operation is the disjunction, also called or, and is noted V:
ShiftPressed = KeyPressed(LeftShift) V KeyPressed(RightShift)

The keyboard is in “uppercase mode” if a Shift key is currently pressed, or if caps
are locked, but not both (a Shift key reverses the effect of CapsLock). This logical
operation is the exclusive disjunction, also called exclusive or, and is noted &:

UppercaseMode = ShiftPressed @ CapsLocked

As a last example, we can also compute whether LetterPressed(E) is true from
KeyPressed(E) and UppercaseMode. Indeed, this is the case if both are true. This
logical operation is the conjunction, also called and, and is noted A:

LetterPressed(E) = KeyPressed(E) A UppercaseMode
LetterPressed(e) = KeyPressed(E) A =UppercaseMode

The above logical operations do not depend on the meaning of the propositions,
but only on whether they are true or false. And their result is either true or false. For
instance, — true is false, p A ¢ is true if and only if both p and g are true, p V ¢ is true
if at least one of p and q is true, etc. By representing true with 1 and false with 0,
they can be seen as operations on individual bits. This gives, for example, -1 = 0,
1A0=0,1A1=1,etc. By doing this for all possible cases we get the truth table of
each operation, represented in Table 1.4. Note that the truth tables of & and A are
identical to those giving the result and carry bit of a + b, respectively (see Table 1.2).
The result bit of a — b is also equal to a & b, and the carry bit is b A —a (see Table 1.3).
Hence, it suffice to know how to implement these logical operations with electric
circuits, or other technologies, in order to be able to implement arithmetic circuits.

We can then generalize these logical operations from individual bits to whole
binary numbers. By definition, a bitwise logical operation on two binary numbers is
done by applying it on each bit separately, column by column. Thus, for instance:

1100 1100 1100
A1010 v1010 @1010
1000 1110 0110

10



1.4 Hexadecimal numbers

This can be used to perform several logical operations in parallel (since there is
no carry each column can be computed independently of the others, possibly at the
same time). For instance, we can represent the current state of a 100 keys keyboard
with a 100 bits binary number S, using one bit per key. We can then do the following
operations, which are commonly used in many similar contexts:

o to check whether at least one letter key is pressed, we can compute S A L, where L
is the binary number whose *" bit is 1 if and only if the i*" key is a letter. If the
result is 0 no letter key is pressed, otherwise at least one is pressed.

e if a new set of keys if pressed, we can compute the representation of the new
keyboard state with S’ = SV P, where P represents the newly pressed keys. For
instance, if the 0*" and 37 keys are currently pressed, and if the user presses the
0" and 2"? keys?, we get S = 10015, P = 1015 and S’ = 11015. This correctly
represents the fact that the 0*", 27, and 3" keys are now pressed.

e if a new set of keys if released, we can compute the representation of the new
keyboard state with S’ = S A =R, where R represents the newly released keys.
For instance, if the 0" and 37 keys are currently pressed, and if the user releases
the third, we get S = 10015, R = 10002 and S” = 1. This correctly represents the
fact that only the 0*" key remains pressed.

1.4 Hexadecimal numbers

Binary numbers are very practical to perform computations, but are not very compact.
Arabic numbers are much more compact (a given number has about 3.3 less digits
than bits on average), but converting between binary and arabic is not so easy. To
solve these issues hexadecimal numbers are commonly used.

Hexadecimal numbers are like arabic numbers, but use 16 digits instead of 10.
They are called hex digits and are noted 0, 1, 2, 3,4, 5,6, 7, 8,9, A (= 10), B (= 11),
C (=12), D (= 13), E (= 14), and F (= 15). An hexadecimal number is thus
a sequence of hex digits, where the i*” hex digit from the right (counting from 0)
represents a quantity of 16¢. For instance

EDy = F16 % 16" + D16 % 16° = 14 % 16 + 13 = 237

where the subscript 16 indicates an hexadecimal number (to avoid confusions with
words or arabic numbers; 1014 = 16 # 10 = “ten”).

Each hex digit can be represented with up to 4 bits, and each group of 4 bits can
be represented with an hex digit, as shown in Table 1.5. It is thus very easy to convert
a binary number to hexadecimal: simply convert each group of 4 bits independently,
with Table 1.5. For instance, to convert 111011015, we convert 11105 (E'g), 11015
(D16), and concatenate the results, yielding £ D,¢. Conversely, to convert D¢
to binary we simply concatenate the conversions of F14 (11102) and D1 (11015),
yielding 111011015.

2A pressed key can be “pressed” again due to autorepeat.
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CHAPTER1 Binary Numbers

binary | hex | binary | hex | binary | hex | binary | hex
0000 0 0100 4 1000 8 1100 C
0001 1 0101 5 1001 9 1101 D
0010 2 0110 6 1010 A 1110 E
00M 3 0111 7 1011 B 1M F

TABLE 1.5 Conversion between binary and hexadecimal.

Hexadecimal numbers are thus compact (a given number has about 4 times less
hex digits and bits) and easy to convert to and from binary, which solves the above
issues. On the other hand, doing arithmetic computations with them is harder than
with arabic numbers (this involves tables with 16 x 16 = 256 entries). But this is not
necessary since we can convert them to binary, do computations in binary, and convert
the result back to hexadecimal.
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Logic Gates and
Arithmetic Circuits

As explained in the previous chapter, computing arithmetic operations on binary
numbers boils down to the computation of simple logical operations such as conjunc-
tions and exclusive disjunctions. This chapter explains how these operations can be
implemented with electric circuits, and then how these circuits can be combined to
perform arithmetic operations.

21 Transistors

In order to implement a logical operation with an electric circuit we first need a way to
represent 0 and 1 with some electric states. One possibility is to view a wire connected
to the ground as 0, and a wire connected to the power source (e.g., +5V) as 1. To
implement a circuit for —p, for instance, we can use an input wire for p, and an output
wire for the result —p. The circuit in the middle must then connect the output wire to
the ground (resp. power source) if the input wire is connected to the power source
(resp. ground). A simple switch can do this, provided it is controlled by the input
wire, instead of manually. In fact, as illustrated in the next sections, such switches are
sufficient to implement any logical operation.

An electric switch itself controlled by electricity connects or disconnects two
terminals, hereafter noted a and b, depending on the voltage or current in a third one,
noted c. One method to do this is to use a transistor. Another method is to use a relay.
Transistors are much more efficient than relays, and are used virtually everywhere.
But relays are simpler to understand and, for this reason, we use them in this chapter
to explain how logic gates work.

A relay can be built with an electromagnet controlling a metallic connector. There
are two types of relays connecting or disconnecting two terminals (see Figure 2.1):

e in a normally open relay, the a and b terminals are disconnected when no current is
flowing through the electromagnet. They are connected when the relay is active,
i.e., when there is a current in the electromagnet.

e in a normally closed relay, the a and b terminals are connected when the relay is
inactive, i.e., when there is no current in the electromagnet. They are disconnected
when it is active.

In the following we represent relays with the symbols illustrated in Figure 2.2. We
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Inactive Active
c a spring (at rest) ¢ a
J N
Normally open \\\\ | |W v A\ |'\/\/
b b

C

Normally closed \““ 'V\I sV \\\\ | I'\/\/

electromagnet / b ground b

FIGURE 2.1 The two types of relays used in this chapter. The electromagnet, when
active (right), attracts a metallic piece. This connects the « and b terminals of a
normally open relay (top), and disconnects those of a normally closed one (bottom).
When the electromagnet inactive, a spring moves the metallic piece away from it.

inactive inactive active inactive inactive active

0] o=+

mll o4

FIGURE 2.2 The symbols and colors used for normally closed (left) and normally
open (right) relays, as well as for wires and input (black) and output (blue) terminals
connected to the ground, to the power source (up triangle), or to nothing (in red).

draw input terminals connected to the ground (resp. power source) with a 0 (resp. 1)
inside a black square. Similarly, we use a O (resp. 1) inside a blue square for output
terminals connected to the ground (resp. power source). We represent those which
are not connected to anything with an X inside a red square. Finally, we draw wires
connected to the ground, to the power source, or to nothing in blue, green, and red,
respectively (see Figure 2.2).

2.2 Logic gates
221 NOT

A NOT gate is a circuit implementing the logical not operation. This gate can be built
with two relays controlled by the same input!. The first, normally closed, connects

n practice, with electromagnet relays, 0 can be represented with a terminal connected to the ground or
to nothing. Then a single normally closed relay is sufficient to build a NOT gate [5]. In this chapter we do
as if it was not the case. This leads to circuits which are much closer to those built with the most common
technology, namely Complementary Metal Oxide Semi-conductors (CMOS).

14



2.2 Logic gates

FIGURE 2.4 The four possible states of the AND (top) and NAND (bottom) gates.

the output to the power source by default. The second, normally open, connects the
output to the ground when active (see Figure 2.3). Hence, when the input is O the first
relay connects the output to the power source, i.e., sets it to 1 (while the second does
nothing). Conversely, when the input is 1, the first relay has no effect but the second
connects the output to the ground, i.e., sets it to O (see Figure 2.3).

2.2.2 AND and NAND

The AND gate is a circuit implementing the logical and operation. This circuit must
connect the output to the power source when both inputs are 1. This can be done with
two normally open relays connected in series. Conversely, this gate must connect the
output to the ground when at least one input is 0. This can be done with two normally
closed relays connected in parallel (see Figure 2.4).

The NAND gate implements the negation of the logical and, i.e., it computes
—(p A q). It can be obtained by connecting a NOT gate to the output of an AND gate.
But a simpler method is to switch the power source and the ground of the AND gate
or, equivalently, the upper and lower halves of this circuit? (see Figure 2.4).

2With the CMOS technology “normally closed” (resp. “open”) transistors are only used in the upper
(resp. lower) half of a gate. Hence a CMOS AND gate is built with a NAND gate followed by a NOT.
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FIGURE 2.5 The four possible states of the OR (top) and NOR (bottom) gates.

2.2.3 OR and NOR

The OR gate is a circuit implementing the logical or operation. This gate must connect
the output to the power source when at least one input is 1. This can be done with two
normally open relays connected in parallel. Conversely, this gate must connect the
output to the ground when both inputs are 0. This can be done with two normally
closed relays connected in series (see Figure 2.5).

The NOR gate implements the negation of the logical or, i.e., it computes —(p V q).
As the NAND gate, it can be obtained by switching the upper and lower halves of the
OR gate circuit (see Figure 2.5).

2.2.4 XOR

The XOR gate implements the exclusive or operation. The result of p @ ¢ is 1 when p
is 1 and g is 0, or when p is 0 and g is 1. This gate must thus connect the output to the
power source if at least one these two cases happens. This can be done with two sub
circuits, one for each case, connected in parallel. Each sub circuit must connect its
output to the power source when both inputs have a specific value. This can be done
with two relays connected in series: a normally open for p or ¢, and a normally closed
for —p or —q.

Conversely, the result of p & ¢ is 0 when both “pis O or gis 1” and “pis 1 or q is
0 are true. The same reasoning as above leads to two sub circuits connected in series,
where each sub circuit uses two relays connected in parallel. This lead to the final
circuit shown in Figure 2.6.

In the following, to simplify figures and to make it easier to distinguish each logic
gate, we represent them with their American National Standards Institute (ANSI)
symbols, shown in Figure 2.7.
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FIGURE 2.6 The four possible states of the XOR gate.
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FIGURE 2.7 The ANSI symbols of the NOT, AND, NAND, OR, NOR and XOR logic gates.

2.3 Multiplexers and demultiplexers

Logic gates can be assembled to create more and more complex circuits. A simple
example is the demultiplexer, shown below, and represented with the symbol on the

right:
i [ g i (]
L @ o af
5 0

This circuit copies its input 7 to the os output, i.e., to op if s = 0 or to oy if
s = 1. It sets the other to 0. It can be viewed as a “railroad switch” for signals. The
multiplexer, shown below and represented with the symbol on the right, does the
opposite:

This circuit sets its output o to the i input, i.e., to ig if s = 0, or to 47 if s = 1.

17
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Half-adder

FIGURE 2.8 Acircuitto add two 4-bit numbers (bottom) can be built with & full-adder
circuits (top right), each made of two half-adders (top left) and an OR gate. Here this
circuit computes 01113 + 00112 = 10102 (7 + 3 = 10).

2.4 Arithmetic circuits
2.41 Adder

As shown in the previous chapter, the addition of two bits is simply their exclusive
disjunction, with a carry equal to their conjunction. In other words, we can add two
bits with an XOR gate, plus an AND gate for the carry. The resulting circuit, called a
half-adder, is illustrated in Figure 2.8.

As explained in Section 1.2.1, adding two binary numbers a and b must be done
step by step, from right to left. At each step, one bit a; from a must be added to one
bit b; from b, and to the carry ¢;_; from the previous step. In other words, three bits
must be added at each step, but the above circuit can only add two. The solution is to
connect two copies of it: a first copy adds a; and b;, and a second adds c;_1 to the
result of the first. Each copy produces a new carry, but at most one of these can be
1. Indeed, if a; + b; gives a carry then the second stage necessarily adds ¢;_; to 0,
which cannot give a carry. Hence the new carry ¢; resulting from a; + b; + ¢;—1 can
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-------- < Half-subtractor -=---==---1""1"7 Full-subtractor
'

FIGURE 2.9 A circuit to subtract two 4-bit numbers (bottom) can be built with 4
full-subtractor circuits (top right), each made of two half-subtractors (top left) and
an OR gate. Here this circuit computes 10102 — 01112 = 00112 (10 — 7 = 3).

be computed with a disjunction of the carries from the two half-adders. This leads to
the full adder circuit shown in Figure 2.8.

Finally, to add two binary numbers with n bits each, we simply need to connect n
full-adder circuits, with the output carry ¢; of step 7 connected to the input carry ¢; 1
of step ¢ + 1 (see Figure 2.8).

2.4.2 Subtractor

Subtracting two binary numbers can be done with a very similar circuit. As shown in
the previous chapter, subtracting a bit b from a gives their exclusive disjunction (as
their addition), plus a carry equal to the conjunction of —a and b (versus of a and b for
an addition). In other words, a circuit to subtract b from a can be obtained by adding
a NOT gate in a half-adder circuit. The result, called a half-subtractor, is illustrated
in Figure 2.9.

Subtracting two binary numbers a and b must be done step by step, from right to
left. At each step, one bit b; from b, and the carry c;_; from the previous step, must
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FIGURE 210 A simple Arithmetic Unit which can perform additions, subtractions,
and comparisons of 4-bit numbers.

be subtracted from a bit a; from a. In other words, three bits must be subtracted at
each step, but the above circuit can only subtract two. The solution is to connect two
copies of it: a first copy subtracts b; from a;, and a second subtracts c;_; from the
result of the first. Each copy produces a new carry, but at most one of these can be 1.
Indeed, if a; — b; gives a carry then the second stage necessarily subtracts ¢; ;1 from
1, which cannot give a carry. Hence the new carry ¢; resulting from a; — b; — ¢;—1
can be computed with a disjunction of the carries from the two half-subtractors. This
leads to the full subtractor circuit shown in Figure 2.9.

Finally, to subtract two binary numbers with n bits each, we simply need to
connect 7 full subtractor circuits, with the output carry c; of step ¢ connected to the
input carry c;_; of step ¢ + 1 (see Figure 2.9).

2.4.3 Arithmetic and Logic Unit

As shown in Section 1.2.1, multiplying two binary numbers a and b boils down to
additions of left shifted copies of a, each multiplied by a bit of b. Furthermore, a; * b;
gives the same result as a; A b;. Hence a circuit to multiply two n-bit binary numbers
(yielding 2n bits) can be obtained with n copies of an n-bit adder, plus n? AND gates
to compute the a; A b; terms.

Comparing two n-bit binary numbers is also easy to do. Indeed:

e ¢ = b if and only if the n least significant bits of @ — b are equal to 0.

e ¢ > bif and only if at least one of the n least significant bits of a — b is different
from 0, and if there is no carry in the nt" column (counting from 0).

e ¢ < bif and only if at least one of the n least significant bits of a — b is different
from 0, and if there is a carry in the n'* column (counting from 0).
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2.4 Arithmetic circuits

Hence a subtractor circuit, plus a another computing whether its output (excluding the
carry) is different from 0, is sufficient to compare two numbers.

Finally, circuits computing bitwise logical operations on n-bit numbers are trivial
to implement. Indeed, we just need n copies of the corresponding logic gate, each
computing one bit of the result, independently of the others (i.e., in parallel).

All these circuits can be put together into a larger circuit called an Arithmetic
and Logic Unit. Such a circuit accepts two binary numbers as input, plus a third one
specifying an operation to perform on them. It produces as output the result of this
operation, on the given numbers.

For instance, a very simple Arithmetic “and Logic” Unit which can only perform
additions, subtractions, and comparisons is shown in Figure 2.10. If its subtract
input is 1 it subtracts its two 4-bit inputs. Otherwise it adds them. For this it uses a
subtractor circuit where the NOT gates are replaced with XOR gates, connected to
the subtract input. When this input is 0, the XOR gates behave as a simple wire
(p @ 0 = p), which gives an adder circuit. When subtract is 1 these gates behave
as NOT gates (p @ 1 = —p), yielding a subtractor. Finally, three OR gates compute
whether at least one bit of the output is 1. Together with the carry bit, this can be used
to compare the inputs, as explained above.

To conclude this chapter, it should be noted that a relay takes some time to switch
between its active and inactive states (because its moving metallic piece cannot move
instantly). This is the case for transistors too. Consequently, the output of a logic gate
does not change instantly when its inputs change. And this is the same for all circuits.
The more logic gates there is between an input and an output, the longer it takes for an
input change to propagate to the output. These propagation delays must be taken into
account in some circuits, including some presented in the next chapters.

21






Register and
Memory Circuits

The very basic Arithmetic Unit presented in the previous chapter can perform several
operations, but only one at a time. To do a sequence of operations one has to memorize
intermediate results, or to note them somewhere. For instance, to add a, b, and ¢, one
has to set the inputs to a and b, memorize the output a + b, and replace the inputs with
a + b and ¢ (changing the inputs immediately changes the output, hence one cannot
directly “copy” it to an input). To avoid this mental or manual work, a solution is to
use additional circuits to memorize intermediate results. This chapter explains how
this can be done with logic gates.

3.1 Memory cells
311 SRlatch

A circuit which can memorize a single bit must have some inputs to set the value to
memorize, and an output equal to the last memorized value, noted ). One possibility
is to use one input to sef the memorized value to 1, noted .S, and another to reset it to 0,
noted R. Connecting S to the power source should change () to 1, but connecting it to
the ground should not change () to 0 (otherwise this circuit would have no “memory”).
Likewise, setting R to 1 should reset @) to 0, but setting it to 0 should not change Q.
In particular, when both S and R are 0, ) should keep its memorized value, which
canbe Oor 1.

The above requirements lead to a circuit whose output is not completely determined
by its current inputs, unlike all the circuits presented so far (since () can be 0 or 1
when S = R = 0). To achieve this a solution is to use a “hidden” input equal to the
last value of @, noted Q),st. Then @ can be defined as a function of its inputs again
(Q = Qrast if S = R = 0). By definition Q) is the last output of the circuit, which
leads to a loop:

s [0 ;
LT I

When S = R = 0, @ should be equal to the (), input. For this the circuit in the
above box cannot simply connect ) to (1.5, since an electric current cannot flow in a
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CHAPTER 3 Register and Memory Circuits

loop. A solution is to use two NOT gates in series instead. Indeed, this leads to a loop
which has two stable states, ) = 0and Q = 1:

To set @) to 1 we need to force the output of the right NOT gate to 1 or, equivalently,
to force the output of the left NOT gate to 0. The latter can be done by replacing the
left NOT gate with a NOR gate connected to .S:

Indeed, this NOR gate behaves like a NOT gate when S = 0 (since ~(zV0) = —x),
but forces its output to 0 when S = 1 (because —(x V 1) = 0). Similarly, we can set
Q@ to 0 when R = 1 by replacing the remaining NOT gate with a NOR gate connected
to R. This yields the following circuit, called an SR latch:

e SEDle

If S = R = 1 the two NOR gates force their output to 0. Switching from this
state to S = R = 0 make them behave as NOT gates again, but starting with their
input and output equal to 0. This state is unstable: depending on which gate updates
its output to 1 first, the end result can be Q = 0 or Q = 1 (or, in theory, an infinite
oscillation between 0 and 1). For this reason S and R must not be set to 1 at the same
time. Note that the above unstable state also occurs when the circuit is powered on. In
the following we assume that the R input of each SR latch is briefly set to 1 when
circuits are powered on, so that their initial state is always 0.

3.1.2 Dlatch

Using set and reset inputs is only one possibility to change the memorized value Q).
Another is to set @ to the current value of some “data” input, noted D, when a “copy”
input, noted C, is 1 (and to keep it unchanged when C' = 0). In other words, () should
be setto 1 when D = 1 and C = 1, should be reset to 0 when D = 0 and C' = 1, and
should keep its value when C' = 0. This is easy to do with an SR latch and 3 more
gates to convert D and C to appropriate values of S and R:
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31 Memory cells

This circuit is called a D latch. One advantage, compared to the SR latch, is that it
does not have forbidden inputs such as S = R = 1. Indeed, thanks to the gates in
front of the SR latch, this case can never happen.

3.1.3 Dflip-flop

As long as C' = 1, the output ) of a D latch changes each time D changes. This is not
practical to memorize the value of D at a precise moment, unless C' remains equal to
1 only for a very brief time (but long enough to allow the SR latch to stabilize to a
potentially new state). To solve this issue, a possibility is to make sure that D does not
change while C' = 1. This can be done with two D latches in series, using opposite
values for C, as shown below:

D [ il
b [0 "
Cht
c |:]-[-[><>—v-0 :
_________________________ D latch
Indeed:

e when C' = 1 the output D1 of the first D latch does not change when D changes,
because Cy = 0. Hence the output of the second D latch does not change either,
although its C'; input is 1. In other words, the first D latch makes sure that D; does
not change while C; = 1, as required.

e when C' = 0 the output D; of the first D latch changes each time D changes,
because Cy = 1. But then C; = 0 and thus the output @ of the second D latch
does not change.

e when C' changes from 1 to 0, the first D latch memorizes the value of D and its
output D, changes to this potentially new value. But this takes some time, whereas
(' changes immediately when C' changes. Hence, when D, changes, C is already
0, and thus Q) does not change.

e when C changes from 0 to 1, the first D latch keeps its state, i.e., D1 remains equal
to the current value of D (this was the case since C was last set to 0). But C'; also
changes from O to 1. The second D latch thus memorizes D, and () changes to D.

In summary, this circuit!, called a D flip-flop, memorizes the value of D at the
precise moment when C' changes from O to 1, and keeps its state otherwise. In the
following, to simplify figures and to make it easier to distinguish memory cells, we
represent SR latches and D flip-flops as shown in Figure 3.1.

10ther circuits can achieve the same effect, with less gates and transistors (especially with relays [5]).
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SR latch D flip-flop

FIGURE 3.1 SR latches and D flip-flops are represented with their currently memo-
rized value inside a large black square. The D flip-flop symbol differs from the SR
latch symbol with a small black triangle on its C input.

3.2 Memory circuits

To memorize an intermediate result of the Arithmetic Unit we need to memorize n bits
simultaneously. This is easy to do with n flip-flops connected to the same C' input:

13 12 1 10

""""""""""""""" 4-bit register

03 02 01

This circuit is called a register. It memorizes its input when C' changes from 0 to
1. Its output is the last memorized value.

To memorize several intermediate results we can connect the n outputs of the
Arithmetic Unit to several n bit registers. We can then choose in which register to
store this output by activating the C' input of only one of these registers. For instance,
the following circuit can store a 4-bit number in one of 3 registers:

However, getting the value from one these registers is not very easy because this
circuit has too many output wires. To make it easier to use we can add one more input
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3.2 Memory circuits

FIGURE 3.2 The four possible input combinations of a tristate buffer and the corre-
sponding outputs (left). A tristate buffer is like a normally open relay (right).

per register, to optionally connect its outputs to n shared output wires. For this we
can connect the i*” flip flop of each register to a shared output wire o; via a normally
open relay:

Together with additional inputs G ;, connected to the control inputs of all the relays
of the j*" register, this allows connecting or disconnecting a whole register to the
shared output wires. Normally open relays used in this way are called tristate buffers
and are represented as shown in Figure 3.2. Their name comes from the fact that their
output can have 3 states: 0, 1, or “disconnected”.

In the above circuit G and G; must not be simultaneously set to 1. Indeed, doing
so could connect together the outputs of two flip flops with different states, resulting
in a short circuit. More generally, with more than 2 registers, at most one G'; input
must be set to 1 at a time. This can be done with a binary decoder. A binary decoder
with k inputs ag, ai, ... ax—1 has ok outputs og, 01, . .. 0ok _7. It sets its output o; to
its ¢ input, and all the others to 0, where j is the binary number ag_; ... ajag. This
circuit can be implemented with several demultiplexers, as illustrated in Figure 3.3.

We can connect it to 2" registers as shown in Figure 3.4. This new circuit connects
the outputs of the binary decoder to the G; inputs of the registers and, via AND gates
connected to a new w input, to their C'; inputs. This forms a Random Access Memory
(RAM), called this way because it allows reading and writing (i.e., to get and set)
values in any order. For instance, with the circuit in Figure 3.4:

e reading the value of the j** register can be done by setting the asa,aq inputs to the
bits of 7 in binary. The value is then obtained on the 03020109 outputs. 7 = asaiag
is called the address of this register.
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FIGURE 3.4 A Random Access Memory (RAM) storing eight 4-bit values. This circuit
currently reads the value at address asaiap = 0112 = 3, namely 11102. Setting w to
1 would write the input value igiziiio = 10112 at address 3.
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e writing a value v in the j”” register can be done by setting ¢372%1%¢ to the bits of
v in binary, by setting the asajag inputs to the bits of j in binary, and finally by
changing w from 0 to 1. The last step changes the C' inputs of all the flip flops of
the j register, making it memorize the shared inputs 437571 0.

This basic circuit uses one address per group of 4 bits. In practice, most computers
use one address per group of 8 bits, called a byte. They also use much more than 3
bits per address. A 10-bit address can refer to 219 = 1024 bytes, called a kilobyte
(KB). A 20-bit address can refer to 1024 kilobytes, called a megabyte (MB). And a
30-bit address can refer to one gigabyte (GB — 1024 megabytes).

3.3 Bus

The above RAM circuit can store several intermediate results, but it has only one input
address and one output value. Hence it is not sufficient, for instance, to directly add or
subtract two intermediate results with the Arithmetic Unit. To solve this we can use
two separate registers as input of the Arithmetic Unit, provided we have a way to copy
values from the RAM to one or the other of these registers.

A circuit which can copy values from one register to another, or from a register
to RAM or vice-versa, is called a bus. A 1-bit bus connecting n flip-flops is easy to
build. We just need to connect the D input of each flip flop to a common wire, and to
connect their ) output to this same wire via a tristate buffer, as in the RAM circuit:

writeA [0 ° i
readA i
H

writeB [0}

readB

1-bit bus

The above circuit can copy the value from A to B by setting readA to 1 and then by
changing writeB from 0 to 1. The first step connects A’s output to the bus and thus to
the D input of B. The second step memorizes this value in B. Conversely, this circuit
can copy the value from B to A by setting readB to 1 and then by changing write A
from O to 1. It easy to generalize to 3 or more flip-flops. It can also be generalized
to an n-bit bus, to copy values between 2 or more n-bit registers, or the RAM. For
instance, the circuit in Figure 3.5 can copy values between two 3-bit registers. It is
made of three copies of the 1-bit bus, with shared “read” and “write” inputs. Copying
3-bit values from A to B or vice versa can be done as with the 1-bit bus.

To maintain a register connected in “read mode” to the bus we can memorize the
“read” inputs in SR latches. And, to make it easier to read another register, we can
connect the S input of each latch to the R input of all the others (so that setting one
resets the others — as in the RAM, at most one register must be connected to the bus
at a time). For instance, the circuit in Figure 3.6 sets readA to 1, readB to 0, and
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FIGURE 3.5 A 3-bit bus (right) connected to two 3-bit registers (left).

selectA [1} - z 1 1] readA
selectB [0} X o 1] reads
selectC [0} . z o 1o readc

FIGURE 3.6 A possible “controller” for a 3-bit bus, to maintain one of the 3 registers
connected to the bus.

readC to 0 when selectA is 1, and keeps them in this state even if selectA is reset to 0.
Similarly, it sets readB (resp. readC) to 1, and resets the others to 0, when selectB
(resp. selectC) is 1. At most one “select” input must be set to 1 at a time.

3.4 Example

We can now use the circuits presented in this chapter to memorize the intermediate
results of an Arithmetic and Logic Unit (ALU). The circuit in Figure 3.7 connects the
ALU from Figure 2.10 (with 3 bits only to simplify) to 3 input bits, a RAM, and two
registers named RO and R1, via a bus, as schematized in Figure 3.8.

Thanks to the bus, this circuit can copy values from any source (Input, RAM,
RO, or the ALU’s output) to any sink (RAM, RO, or R1), which gives 4 x 3 = 12
possibilities. For example, computing a + b — ¢ can be done as follows:

e set the input to a and copy it in RO. For this, first send a pulse on selectINPUT (i.e.,
set it to 1 for a short time and then reset it to 0). Then send a pulse on writeRO (this
memorizes a when writeR0O changes from O to 1).
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FIGURE 3.7 A 3-bit Arithmetic Unit (bottom) connected to 3 input bits (top right), a &
values RAM (top left), and 2 registers RO and R1 (middle), via a bus (right).

31



CHAPTER 3 Register and Memory Circuits
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Arithmetic Unit
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FIGURE 3.8 The block diagram corresponding to Figure 3.7.

e set the input to b and copy it in R1 by sending a pulse on writeR1 (there is no need
to send a pulse on selectINPUT first since the bus controller keeps the last selected
source connected).

e set and maintain “subtract” to 0, send a pulse on selectALU, and wait a short time
until the ALU has computed a 4 b. Then store the result in RO by sending a pulse
on writeRO.

e set the input to c and copy it in R1 by sending a pulse on selectINPUT, followed by
a pulse on writeR1.

e set and maintain “subtract” to 1, send a pulse on selectALU, and wait a short time
until the ALU has computed a + b (in RO) minus ¢ (in R1). Then store the result in
RO by sending a pulse on writeRO.

At this stage we can use the is_not_zero and carry outputs, for instance, to test if
a+b— cisequal to 0, or to compare a + b and c. We can also store a + b — c in
RAM for later use. For this it suffice to send a pulse on selectRO0, followed by a pulse
on w, after having set a;ag to the desired destination address.
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Thanks to registers and memory circuits we can use an Arithmetic and Logic Unit
to perform computations without having to mentally memorize intermediate results.
Instead, as shown in the previous chapter, we can simply send a series of pulse signals
on the correct inputs, and in the correct order. But this requires to memorize this
procedure. And executing it manually is very slow and error-prone, even if the circuit
does each operation very quickly. To solve the first issue a solution is to store some
description of the desired procedure in Random Access Memory. To solve the second
one we can use new circuits to execute this procedure for us, by sending the appropriate
pulses. This chapter explains how this can be done.

41 Instructions

A procedure such as the one presented in Section 3.4 could be described in an abstract
way as “read 3 numbers a, b, and ¢ in input, compute a + b — ¢, and write the result
in RAM at address x”. However, representing such descriptions with one or more
numbers which can be stored in RAM is not easy. And figuring out which pulses to
send to execute them would also be quite complicated.

This procedure can also be described as a sequence of elementary actions: “wait an

CLIY3

input value”, “send a pulse on selectInput”, ’send a pulse on writeR0”, “wait an input
value”, ’send a pulse on writeR1”, etc. Each action can easily be represented with a
small number (e.g., O for “wait an input value”, 1 for “send a pulse on selectlnput”,
etc). And each action is easy to execute. However, such a description is hard to design
and to understand for humans (because its high level meaning is lost in the details).

A trade-off is to describe this procedure with more abstract actions, but not too
abstract either, called instructions. For instance, an instruction could be “wait an input
value and store it in R0”, “add the values in RO and R1 and store the result in R0O”, or
“copy the value in RO in RAM, at address 3”. As shown below, such instructions are
not too complex to represent with a number, called their encoding (to store them in
memory). And they are still quite simple to execute (each instruction only requires
sending 2 or 3 pulses at most). Finally, a sequence of instructions is less hard to design
and to understand than the corresponding sequence of pulses (but still quite hard; we
address this problem in Part 3).

Simple procedures, also called programs, can be described with a sequence of
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instructions, to be executed one after the other. For this we can store their encoding one
after the other in memory, i.e., at consecutive addresses. Then, after the instruction at
address a 1s executed, the one at address a¢ + 1 should execute!.

411 Jump instructions

Some programs need to repeat the same sequence of instructions two or more times.
For instance, a “calculator” program needs to repeat forever the same sequence (read
two numbers in input, compute and output their sum, repeat). In other words, after
the last instruction of the sequence is executed, the instruction at the next address
should not be executed. Instead, execution should restart at the first instruction of the
sequence. This can be described with a so called jump instruction. A “jump to a”
instruction specifies that the next instruction to execute is the one at address a.

In many cases a sequence of instructions must be repeated a precise number of
times. For instance, to compute a % b with the circuit of Figure 3.7, we can repeat
b times a sequence adding a to RO (initially set to 0). Then, after a has been added
to RO, there are two cases: either we need to repeat the sequence again, or we need
to continue with the rest of the program (e.g., output the result a * b). This can be
described with a conditional jump instruction. Such an instruction either jumps to a
given address, or continues to the instruction at the next address, depending on some
condition (for instance, whether RO is equal to O or not).

4.2 Atoy instruction set

To illustrate the above discussion we define in this section a concrete set of instructions
for a circuit such as the one in Figure 3.7 (i.e., with a RAM and two registers RO and
R1 as input of a very basic Arithmetic Unit). These instructions are the following:

e Memory:

o the Load instruction copies the value at a given address a into the RO register.
o the Store instruction copies the value in the RO register at a given address a.

e Arithmetic:

o the Add instruction adds the value at address a to the value in the RO register,
and stores the result in RO.

e the Subtract instruction subtracts the value at address a from the value in the RO
register, and stores the result in RO.

e Jumps:

o the Jump instruction specifies that the next instruction to execute is the one at
address a.

1Assuming that each encoded instruction can fit in the n bits between two consecutive addresses.
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o the Jump If Zero instruction specifies that the next instruction to execute is the
one at address a if the value in RO is equal to 0. Otherwise execution continues
with the instruction at the next address.

e the Jump If Carry instruction specifies that the next instruction to execute is the
one at address a if the last Add or Subtract instruction produced a non-zero carry
bit. Otherwise execution continues with the instruction at the next address.

e Input and output:

o the Input instruction waits for the user to press a button, and then copies the
value on the input wires into the RO register.

o the Output instruction displays the value in the RO register, and then waits until
the user presses a button.

421 Encoding

The above instruction set contains 9 instructions. We can thus give them numbers
from 0 to 8, called operation codes, or opcodes. This requires at least 4 bits to encode
each instruction. But all instructions except the last two have an associated address
a, called an operand. This operand must also be encoded as part of the instruction,
which requires more bits.

In the following we assume that the memory contains 2° = 32 bytes, each with
their own address, and that RO, R1, and the Arithmetic Unit work on 8-bit values. We
then use 5 bits per address, and we encode each instruction in one byte, as follows:

LDR RO + mem8[qd] 001  a |
STR RO — mem8|a] 000  a
ADD RO < RO+ mem8|a] 0,10  a
SUB RO < RO — mem§|a) 011 a |
jmp jump to a 100  a |
IFZ if RO = 0 then jump to a 101  a |
IFC if carry # 0 then jump to a 110 a,
IN RO < input 1110 |
ouT RO — output 1111

The left column is the instruction mnemonic, an abbreviation of the instruction
name. The middle column is a symbolic description of the effect each instruction.
Here dst < srcor src — dst means a copy of the value in src into dst, and mem3|a]
means the 8-bit value at address a. Finally, the right column is the binary number
corresponding to this instruction, i.e., its encoding. For instance, the encoding of
the LDR 7 instruction, which copies the byte at address 7 = 1115 into RO, is 0015
followed by 7 encoded in 5 bits, 001115, which gives 001001115 = 39.

35



CHAPTER 4 Control Circuits

4.2.2 Example program

With the above instruction set a “calculator” program adding numbers in an endless
loop can be implemented as follows:

IN RO < input 11100000 0
STR RO — memS8|6] 00000110 1
IN RO < input 11100000 2
ADD RO < RO + mem8]6] 01000110 3
OUT RO — output 11110000 4
JMP  jumpto 0 10000000 5
(data) the a number 00000000 6

where the left part gives the symbolic description of each instruction, and the right
part their encoding and their address (in gray).

The first two instructions read a number a as input and store it at address 6. The
next two instructions read a second number b, and add « to it. The last two instructions
output the value in RO, which at this stage contains a + b, and jump back to the first
instruction to add two new numbers. The next byte after these five instructions is the
one used to store a.

4.2.3 Notes

Adding two 8-bit numbers can give a 9-bit number. For instance, 111111115 = 255
plus 1 gives the 9-bit number 1000000002 = 256. However, the registers and the
memory can only store 8-bit numbers, and the Arithmetic Unit can only use 8-bit
numbers as input. Hence, in practice, and unless a program does something special
with the carry bit (with the IFC instruction), all additions are modulo 28 = 256. This
means that adding a and b does not give a + b but the remainder of the division of a + b
by 256. Itis noted (a +b) mod 256, where z mod m is defined as « — |x/m ] * m.
For instance, adding 255 and 1 gives 02.

Similarly, subtracting two numbers can give a negative result, but the registers
and the memory can only store nonnegative numbers. Hence, in practice, and unless
a program does something special with the carry bit, all subtractions are modulo
256 too. For instance, subtracting 1 from 0 gives 255 because —1 mod 256 =
—1—|—1/256] %256 = —1 — (—1) % 256 = 255 (recall that |y | means the integer
part of y).

When a + b differs from (a+b) mod 2™ we say that there is an (integer) overflow
(where n is the Arithmetic Unit’s “bit width”). We say the same when a — b # (a — b)
mod 2", ax b # (axb) mod 2", etc. With an Arithmetic Unit such as the one in
Figure 2.10, there is an overflow if and only if the carry output is 1.

2This modular arithmetic is used in everyday life with hours. For example, 10 a.m plus 5 hours is 3 p.m
because (10 +5) mod 12 = 3.
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4.3 Control circuits

We now have a way to describe a sequence of instructions with some numbers stored
in memory. The next step, as described in the introduction of this chapter, is to
build a circuit to automatically execute these instructions. Which means sending a
corresponding sequence of pulse signals on the registers, memory, and bus circuits.
For instance, to execute an IN instruction with the circuit in Figure 3.7, one needs to:

e connect the input wires to the bus by sending a pulse on “selectInput”.
e wait for the user to press a button.
e store the input value in RO by sending a pulse on “writeR0”.

More generally, all instructions can be executed by sending appropriate pulses
1) on the correct wires, 2) in the correct order, and 3) at appropriate times (signals
must have time to propagate throughout the circuit between two pulses). The first two
items can be ensured with circuits of the following form:

wirel  wire2 wire3 wire4
g il
c[@
When this circuit is powered on “wirel” and “wire2” change from O to 1 due to

the NOT gate. Changing c from 0 to 1 (and back to 0) makes the first and second D
flip-flops memorize 1. This resets “wirel” and “wire2” to 0, and sets “wire3” to 1:

wirel  wire2 wire3 wire4

T
Cé [t It [t

Changing c from 0 to 1 (and back to 0) again makes the second and third flip-flops
memorize 0 and 1, respectively. This resets “wire3” to 0, and sets “wire4” to 1:

wirel  wire2 wire3 wire4

oo
o I PP

Finally, changing c from O to 1 (and back to 0) one more time resets “wire4” to 0:

wirel  wire2 wire3 wire4

-Dc 0 0

'—t%
v
v
—1
v

=k
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In other words, with a series of pulses on the ¢ input, one gets two simultaneous
pulses on “wirel” and “wire2”, followed by a pulse on “wire3” and then on “wire4”:

c | I | ;
wirel : i

wire2

wire3 power on |

wire4 | time.

Each wire pulse starts and ends at the precise moment when ¢ switches from 0 to
1. This shows that, with circuits like the one above, it is possible to send pulses on
specific wires, in a specific order. The only requirement is the ability to send a series
of pulses on a shared input ¢, which can be done with a clock.

4.31 Clock

A clock is a circuit which generates a signal switching between 0 and 1 at a constant
frequency. A clock can be implemented in many ways. For instance, one could use
a pendulum acting on a switch. But this would not be very practical, and can not
produce high frequencies. Instead, a frequently used method is to use the oscillations
of a crystal. Crystals can oscillate one million times per second or more (i.e., at 1 MHz
or more). In the following we represent a clock with the symbol on the left:

perigpd .
clock timg

A clock generates the signal shown above (right). A period, also called a clock
cycle, is the time between successive pulses. The clock frequency is the number of
pulses per second, i.e., the inverse of its period. Increasing the frequency increases the
number of instructions which are executed per second. However, the frequency cannot
be increased without limit. Indeed, there must be enough time between two pulses
for signals to propagate throughout the circuit. For instance, computing an addition
in an Arithmetic Unit takes some time, because the input values have to propagate
through all its logic gates, up to the carry output. If a pulse is sent to write the sum in
a register before this delay, a wrong result will be stored.

4.3.2 Control loop

A circuit like the one above can generate a sequence of pulses to execute one instruction.
But each type of instruction needs a different sequence of pulses to be executed. The
solution is to use several circuits like this, one per type of instruction. And to connect
them to a binary decoder, so that the correct subcircuit is used depending on the
instruction opcode. For instance, if there are only 4 different opcodes, we can use a
circuit similar to the following:
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wire0-2 wire0-3 ,
b { b H
10 ) i

wire1-2 wirel-3 |
1 1 !
a4 O :

wire2-2 wire2-3 |
1 1 !
. S
wire3-2 wire3-3 |
b { b { H
0 '

14 EXECUTE :

Depending on the two bits of the instruction opcode, opiopg, the above circuit
sends pulses on “wire0-1" to “wire0-3”, or on “wirel-1" to “wire1-3”, etc. Before this
the instruction must be read in memory, so that op; opg contain the correct values. This
can be done, as shown later, with a so called FETCH circuit sending an appropriate
sequence of pulses. Finally, after the instruction has been executed, the next one must
be fetched, decoded, and executed. For this it suffice to connect the outputs of the
EXECUTE subcircuit back to the input of the FETCH circuit:

BBl

In this way we get a pulse which loops forever in the FETCH, DECODE and
EXECUTE circuits, each time going through a specific EXECUTE subcircuit.

4.4 A toy control unit

To illustrate the above discussions we design in this section a very basic control unit
for the circuit of Figure 3.8 (with an 8-bit architecture, i.e., an 8-bit Arithmetic Unit,
8-bit registers, etc). As its name implies, a control unit controls the rest of the circuit,
called the processing unit (i.e., the Arithmetic and Logic Unit, the registers, the bus,
etc). It does so by executing instructions stored in memory. We assume here that
these instructions are those defined in Section 4.2.
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FIGURE 41 A basic control unit (yellow background) for the circuit in Figure 3.8
(white background), with the instruction set of Section 4.2.

The core part of our example control unit is a control loop circuit with FETCH,
DECODE, and EXECUTE subcircuits, as presented above. To implement it we need
two new registers, in addition to RO and R1 (see Figure 4.1):

e the Program Counter (PC) register stores the address of the instruction being
currently executed or, once it has been executed, the address of the next instruction
to execute. Since addresses use only 5 bits, this register is a 5-bit register.

o the Instruction Register (IR) stores the encoding of the instruction being currently
executed. This 8-bit register stores a copy of the original instruction in memory.
This is necessary to have access to its value during its execution, which might
require reading or writing values at other addresses in memory.

Once an instruction has been executed, the Program Counter value must be
incremented by one to execute the next instruction. Unless the last instruction was a
jump. In this case the Program Counter value must be replaced with the operand of
this jump instruction. To do this we include two more circuits in our control unit (see
Figure 4.1):

e a 5-bit incrementer, which computes “PC+1”, i.e., the value in the Program Counter
register plus 1. This is an adder circuit similar to the one in Section 2.4.1, simplified
for the case where one input is always 1.

e a 5-bit address bus, to which we connect the Program Counter, the output of the
above incrementer, and the 5 least significant bits of the Instruction Register (i.e.,
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the address operand). This bus is also connected to the address decoder of the
RAM and thus selects which address to read or write to.

Thanks to these components, we can increment the Program Counter by connecting
the output of the incrementer to the address bus, and by sending a pulse on “writePC”
to store this value (see Figure 4.1). Likewise, we can replace the Program Counter
with the operand of a jump instruction by connecting the Instruction Register to the
address bus, and by sending a pulse on “writePC”.

4.4 FETCH circuit

With the above architecture, fetching an instruction can be done as follows:

e send simultaneous pulses on “selectPC” and “selectRAM” to read the value in
memory at the address stored in the Program Counter, and to get it on the data bus.

e send a pulse on “writeIR” to write this value in the Instruction Register.

e send a pulse on “selectIR” to prepare reading or writing a value at the address
operand of the new instruction. Technically this step is part of the instruction’s
execution, but we include it in the FETCH circuit to avoid duplications (it is
common to all instructions except IN and OUT).

4.4.2 DECODE circuit

Decoding an instruction can be done with a binary decoder with 3 inputs, namely
the 3 most significant bits of the Instruction Register. Plus a single demultiplexer,
controlled by the 4*" most significant bit, in order to distinguish the IN and OUT
instructions (the 3 most significant bits are 111, for both instructions).

4.4.3 EXECUTE circuit
The EXECUTE circuit has 9 subcircuits, one per type of instruction:

LDR This subcircuit sends a pulse on “writeR0” to store the value read from memory
at the instruction’s address operand (selected by the last step of the FETCH circuit).
It then increments the PC value with a pulse on “selectPC+1”, followed by one on
“writePC”.

STR This subcircuit sends a pulse on “selectR0”, followed by a pulse on w to store
RO’s value in memory, at the instruction’s address operand (selected by the last step
of the FETCH circuit). It then increments the PC value, as above.

ADD This subcircuit sends a pulse on “writeR1” to store the value at the instruction’s
address operand in R1. It then sends a pulse on “selectALU” to get the sum of the
values in RO and R1 on the bus, followed by simultaneous pulses on “writeR0” and
“writeCarry” to write it in RO and Carry. It then increments the PC value as above.
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SUB This subcircuit is almost the same as the ADD subcircuit. It just sends an
additional pulse on “subtract”, at the same time as the “selectALU” pulse. These
pulses last until the one on “writeR0” starts. This ensures that the correct result, the
difference of RO and R1 values, is written in RO.

JMP This subcircuit just sends a pulse on “writePC” to replace the Program Counter
with the instruction’s address operand (selected by the last step of the FETCH circuit).

IFZ This subcircuit has two branches. The first, executed if the value in RO is 0, is the
same as the JMP subcircuit. The second, executed if RO’s value is not 0, increments
the PC value as for non-jump instructions. The two branches are connected to a
demultiplexer controlled by the “z 0” signal (see Figure 4.1):

pecone (L —— )
s notzero ]

is not zero

IFC This subcircuit is almost the same as the IFZ one, except that its demultiplexer is
controlled by the value of the Carry register.

IN This subcircuit sends a pulse on “selectlnput”, and then waits until a button is
pressed. This can be done with a loop similar to the control loop, with a demultiplexer
to either wait, or to continue with the next instruction:

selectinput writeRO

DECODE-—‘—LD'> 0 |
D-l- button pressed [0]

In the latter case, this subcircuit sends a pulse on “writeR0”, and then increments the
Program Counter as above.

OUT This subcircuit sends a pulse on “selectR0” and then waits until a button is
pressed, with the same method as above. It then increments the Program Counter’s
value.
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A Toy Microprocessor

Thanks to control circuits we can now run a program stored in memory in an automated
way, which is much faster and safer than using a processing unit manually. Together, a
control unit and the processing unit it controls form a Central Processing Unit (CPU),
also called a microprocessor. This chapter presents a very simple one, based on the
design introduced in the previous chapter. It also illustrates its capabilities with two
example programs.

5.1 Implementation

The circuit in Figure 5.1 is a microprocessor for the instruction set of Section 4.2. It
is based on the circuit of Figure 3.7 (extended to an 8-bit architecture), augmented
with the control unit designed in Section 4.4. Its physical layout matches more or less
the block diagram in Figure 4.1. This section only presents the parts of this circuit
which have not been explained in the previous chapters.

5.1 Input and output

The input is made of 8 pins which are connected to the bus via tristate buffers, plus a
Light Emitting Diode (LED). When on, the LED indicates that the microprocessor is
waiting a value on the input pins. The user must set them to 0 or 1 as desired, and
press a button when done. Similarly, the output is made of 8 pins connected to the
bus, plus a LED. When on, the LED indicates that a value is available on the output
pins, and that the user must press a button to resume the execution of the program.

The two LEDs are connected to the two loops inside the EXECUTE subcircuit
(for the IN and OUT instructions), which wait for the user to press a button. In this
way they are turned on when an IN or OUT instruction starts, and turned off when the
button is pressed.

The button is a push button, used for both IN and OUT instructions. Due to its
speed, the microprocessor might execute several instructions during the time this
button stays pressed. In particular, it might execute several IN or OUT instructions. In
this case the user would not have the time to enter a second value, or to read the first
output value. To avoid this, the push button is connected to a circuit which generates
a short pulse (lasting one clock cycle) when it transitions from the “open” to the
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FIGURE 5.1 A toy microprocessor, implementing the instruction set of Section 4.2,
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and its 25 bytes Random Access Memory and 7 bytes Read-Only Memory.
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“closed” state. It is then necessary to release and press again this button to generate a
new pulse. The pulse generator circuit is the following:

push button O—I—O—'DOD—

R

The output of the D flip-flop is the push button’s state at the previous clock cycle.
Hence the output of the AND gate is 1 if and only if the button is currently pressed,
and was not pressed at the previous clock cycle. In other words, it is 1 only when the
button transitions from the “open” to the “closed” state, as desired.

51.2 Boot program

To run a program with our microprocessor we first need to store it in memory (as we
assumed earlier, all flip-flops are initially 0, and thus all the memory too). But we no
longer have any manual control over the memory, since we transferred it to the control
unit. Hence the only way to store anything in memory is to use a program reading
values in input and writing them in memory. But then we need to store this program
in memory first! To solve this chicken and egg problem, a solution is to store it in a
Read-Only Memory (ROM), i.e., a memory containing immutable values.

This is what the memory circuit in Figure 5.1 does: values at addresses 0 to 25
excluded (which is noted [0, 25] = [0, 24]) can be read and written, but values at
addresses [25, 32[ cannot be modified. On the other hand, the latter do not need to
be initialized first. They can thus contain a program which is ready to be executed
when the microprocessor boots, i.e., when it is powered on. The ROM in Figure 5.1
contains the following boot program:

LDR RO < mem8[2/] 00111000 25
ADD RO < RO + mem8[31] 0,10]1 1111 26
STR RO — mem8[24] 000j11000 27
IN RO ¢« input 1110(0000 28
IFZ  if RO = 0O then jump to 0 101100000 29
JMP  jump to 24 100(11000 30
(data) the value 1 00000001 31

Moreover, the Program Counter register uses NOT gates around its three most
significant bits, which give it the initial value 11100, = 28. Hence, when it boots,
our microprocessor starts by executing the IN instruction at address 28. It thus waits a
value v in input. If this value is not 0, the instruction at address 30 jumps to address
24. Initially, the value at this address, in RAM, is 0. This corresponds to a STR 0
instruction, which thus stores vy at address 0. The next 3 instructions, in [25, 27[, add
1 to the value at address 24. This value thus becomes 1, which corresponds to STR 1.
Hence, after a second value v; is read in input, and if it is not 0, the new instruction at
address 24 stores v; at address 1. And so on with the next input values: v, stored at
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address 2, vs at address 3, etc. This loop ends when the input value is 0. In this case
the IFZ instruction at address 29 jumps to address 0. The effect is to run the program
Vg, V1, - - . Up, Stored in memory by the previous steps, starting at address 0.

5.2 Example programs

The above microprocessor can run several “useful” programs. A first example is the
adder program of Section 4.2.2. To run it, one first need to enter its 6 instructions with
the boot program, followed by a 0 value. After that the programs reads two values in
input, outputs their sum, and repeats these two steps forever.

5.21 Multiplier

Another example is a program to compute products. Since the Arithmetic Unit cannot
perform multiplications, nor shifts (see Section 1.2.3), we need a program computing
them with repeated additions. The general algorithm, i.e., the specification of the
main steps that this program must follow, is the following:

1. read two numbers a and b in input, and initialize c to 0.

2. if b =0 go to step 4.

3. otherwise, subtract 1 from b, add a to ¢, and go back to step 2.

4. output ¢ and go back to step 1 to compute another product.

This algorithm executes step 3 b times, and thus adds a to ¢ b times. Hence, when
b = 0, c contains a * b and can be output. Assuming that a, b, and c are stored at
addresses A, B, and C, respectively, and that the values at addresses ZERO and
ONE are 0 and 1, this gives the following (abstract) instructions:

e step 1: IN, STR A (store an input value in a), IN, STR B (store an input value in b),
LDR ZERO, STR C (store 0 in c).

e step 2: LDR B, IFZ “step4”.

e step 3: SUB ONE, STR B (subtract 1 from B, still in R0O), LDR C, ADD A, STR C
(add a to ¢), IMP “step2” (go back to step 2).

e step 4: LDR C, OUT (output ¢), IMP 0 (go back to step 1).

Step 1 has 6 instructions, and thus step 2 starts at address 6. Step 2 and 3 have
a total of 8 instructions, and thus step 4 starts at address 6 + 8 = 14. We can thus
replace IFZ “step4” with IFZ 14, and JMP “step2” with JMP 6. We can also store a,
b, ¢, 0, and 1 after the last instruction, i.e., starting at address 17 (since there are 17
instructions). In the following we use ONE = 17, ZERO = 18, A =19, B = 20
and C' = 21. This leads to the following machine code, i.e., a list of instructions in
binary form that the machine (the microprocessor) can directly execute:

IN RO« input 1.1.10[0000] o
STR RO — mem§[19] 000170011 1
IN RO « input 11100000 2
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STR RO — mem8[20] 00010100 3
LDR RO < mem8J[18)] 00110010 4
STR RO — mem8|[21] 000j10101 5
LDR RO « mem8[20] 00110100 6
IFZ if RO = 0 then jump to 1/ 10101110 7
SUB RO + RO — mem8[17] 01110001 8
STR RO — mem8[20] 000(1 0100 9
LDR RO ¢« mem8[2!] 00110101 10
ADD RO < RO + mem8[19] 010(1 0011 11
STR RO — mem8|[21] 00010101 12
JMP  jumpto 6 10000110 13
LDR RO < mem8[21] 00110101 14
OUT RO — output 1111[000,0 15
JMP  jumpto 0 10000000 16
(data) the value 1 00000001 17
(data) the value 0 00000000 18
(data) the a number 00000000 19
(data) the b number 00000000 20
(data) the c number 00000000 21

To run it one fist need to enter its 17 instructions, plus the ONE value, followed
by a 0, with the boot program.

5.2.2 Prime numbers enumerator

A third and last example is a program which outputs all the prime numbers less than or
equal to 255 (the maximum value of an §-bit number). For this the general algorithm
is the following:

1. add 1 to n, supposed initially equal to 1.

2. if n is prime go to step 4.

3. go back to step 1.

4. output n and go back to step 1 to find the next prime number.

This algorithm tests each number n one by one, in increasing order, and starting
from n = 2. Step 2 needs to check whether n can be divided by some number f in
[2, n|. For this, a simple method is to check all values of f in decreasing order, from
n — 1 to 2. Step 2 can then be replaced with the following algorithm:

1. initialize f to n.

2. subtract 1 from f.

3. if f = 1, nis prime, stop (all f values have been tested and no divisor was found).
4. if f does not divide n, go back to step 2.
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Finally, to check whether f divides n or not, and since the Arithmetic Unit cannot
perform divisions, we can use an algorithm which repeatedly subtracts f from n. If
this process ends with O then f divides n, otherwise it does not:

. initialize r to n.

. subtract f from r.

. if r =0, f divides n, n is not prime, stop.

. if r < 0, f does not divide n, stop.

. go back to step 2 to continue the division of n by f.

[ O S

By putting together the above partial algorithms we get the following complete

algorithm:

1. add 1 to n, supposed initially equal to 1, and initialize f to n.
. subtract 1 from f.
. if f = 1 then n is prime, go to step 9.
. initialize r to n.
. subtract f from 7.
if r = 0, f divides n, n is not prime. Go to step 1 to try the next n.
. if r < 0, f does not divide n, go back to step 2 to try the next f.
. go back to step 5 to continue the division of n by f.
. output n and go back to step 1 to find the next prime number.

Assuming that n and f are stored at addresses N and F’, respectively, that the
value at address ONE is 1, and by storing r in RO, this gives the following (abstract)
instructions:

step 1: LDR N, ADD ONE, STR N (add 1 to n), STR F (initialize f to n).
step 2: LDR F, SUB ONE, STR F (subtract 1 from f).

step 3: SUB ONE, IFZ “step 9” (if f — 1 = 0 go to step 9).

step 4: LDR N (initialize r to n).

step S5: SUB F (subtract f from r).

step 6: IFZ 0 (if » = 0, go back to step 1).

step 7: IFC “step 2” (if r < 0, go back to step 2).

step 8: JMP “step 57

step 9: LDR N, OUT, JMP 0 (output n and go back to step 1).

Finally, with the same method as for the multiplier program, we can replace IFZ
“step 97, IFC “step 27, IMP “step5” with IFZ 14, IFC 4, and JMP 10, respectively.
And we can store n, f and 1 after the last instruction, i.e., starting at address 17. By
using ONE = 17, N = 18, and F' = 19 we get the following machine code:

LDR RO + mem§[18] 0oo0tltoo010] o
ADD RO ¢+ RO + mem8[17] 010]1000.1 1
STR RO — mem8[18] 00010010 2
STR RO — mem8[19] 00010011 3
LDR RO ¢+ mem8[19] 00110011 4
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SUB RO ¢+ RO — mem8[17] 01110001 5
STR RO — mem8([19] 000j10011 6
SUB RO + RO — mem8[17] 0,11/10001 7
IFZ  if RO = 0 then jump to 1/ 101/01.110] 8
LDR RO + mem8[18)] 00110010 9
SUB RO + RO — mem3[19] 01110011 10
IFZ  if RO = 0 then jump to 0 10100000 11
IFC  if carry # 0 then jump to 4 11000100 12
JMP  jump to 10 10001010 13
LDR RO « mem8[18)] 00110010 14
OUT RO — output 11110000 15
JMP  jump to ! 10000001 16
(data) the value 1 00000001 17
(data) the value n 00000001 18
(data) the value f 00000000 19

To run it one fist need to enter its 17 instructions, plus the ONE and initial n
values, followed by a 0, with the boot program.
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Conclusion

Microprocessors are made of electrically controlled switches, assembled into logic
gates, themselves assembled into arithmetic and logic circuits, registers, memories,
and control circuits. Most of them use the architecture presented in this part, made
of a control unit, a processing unit, input and output mechanisms, and a memory
containing data and instructions. It is called the von Neumann architecture because it
was first published by John von Neumann in 1945.

The toy microprocessor presented in the previous chapter is extremely limited,
especially because it can only address 32 bytes of memory. To solve this problem, most
modern microprocessors use a 32 or 64-bit architecture. A 32-bit architecture is based
on 32-bit registers, buses, and Arithmetic and Logic Units. A 32-bit microprocessor
generally use 32-bit addresses, and can thus use up to 232 = 4 GB of memory. It can
also perform computations on 32-bit values, called words!. However, even with more
memory, microprocessors can only do computations on numbers. But then how can
computers create or edit text, music or videos?

Data representation

The answer is that text, sound, images, videos, or in fact any information, can be
represented with numbers. And doing some computations on these numbers can edit
this information.

For instance, one could represent letters from “a” to “z” with numbers from 0 to
26 (excluded), letters from “A” to “Z” with numbers from 26 to 52 (excluded), a space
with 52, a dot with 53, etc. Then, for instance, a program reading bytes and adding
26 to those smaller than 26 can capitalize text. A program can also edit text based
on keys typed by the user, as shown in Chapter 14. Or transform text into program
instructions which, as explained in Section 4.2, can also be represented with numbers
(see Part 3).

Similarly, one can digitize sound, which is a pressure wave, by measuring the
pressure many times per second, and by storing each measurement in one byte (or
more). Then, for instance, a program reading pairs of bytes, and computing their
average, can mix two sound samples to produce a new one.

Likewise, one can digitize an image by decomposing it in a grid of pixels (for
“picture element”), and by representing the luminosity of each pixel with one byte
(from O for black to 255 for white). These values can then be stored in memory one
after the other, for example from left to right and from top to bottom. Then, for
instance, a program reading bytes and subtracting them from 255 can compute the

1A word is a 32-bit value in a 32-bit microprocessor, a 64-bit value in a 64-bit microprocessor, etc.
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negative of an image. A color image can be represented in a similar way, with 3 values
per pixel (for the intensity of the red, green, and blue components). And a video can
be represented as a sequence of images (typically 24 or 25 per second).

Further readings

The design of our toy microprocessor, although sufficient to explain the main ideas,
is not fully representative of real ones. For instance, real microprocessors do not
wait for input values. Instead, when a new input value is available, it interrupts the
microprocessor (like a notification or a phone call interrupts what you are doing). To
learn more about the design and architecture of real microprocessors, you can read
the following books:

e “Digital Design and Computer Architecture, RISC-V Edition” [12]. This book
presents the CMOS technology (the most frequently used to build real micro-
processors), gives more details about logical operations (negation, conjunctions,
disjonctions, etc), explains how programs can be used to design complex cir-
cuits, and presents some advanced microprocessor architectures used to improve
performance.

e “Computer Architecture” [10]. This book gives a historic perspective on computer
design, gives more details about number systems, data representation, input and
output mechanisms, etc. It also presents several microprocessor architecture styles.
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Introduction

This part has two goals. The first one is to assemble the hardware components of our
toy computer, mainly a keyboard, a screen, and an Arduino Due board. This board
provides in a single chip a microprocessor, various memories, and integrated circuits
to control external devices (such as light emitting diodes, motors, sensors, but also
keyboards or displays). We present how these components work, how to connect them
together, and how programs can use them. The second goal of this part is to install on
this assembled computer a very basic input and output system, using the keyboard
and the screen, in order to make it completely autonomous.

Normally the Arduino Due is not autonomous: it requires an external computer
to be used. The usual process is the following. Users write their application (e.g.,
a mobile robot controller) with a text editor in some programming language. They
transform it with a program called a compiler into machine code that the Arduino can
execute. Finally, they send this machine code with a third program to the Arduino, as
a series of Os and 1s (via a USB cable). All this happens on an existing computer,
with already existing programs (operating system, text editor, compiler, etc).

Since our goal in this book is to program a toy computer from scratch, we should
in theory avoid using any existing computer, already programmed. Otherwise we
would need to show how this existing computer was programmed in the first place (the
answer is from yet another already programmed computer — and so on). To solve this
chicken and egg problem, we should instead send Os and 1s “manually” to the Arduino.
Doing this completely by hand, with a switch, is not possible because the Arduino
expects to receive these Os and 1s by groups of 8 bits, each group being transmitted at
115,000 bits per second (i.e., in about 70us). Of course, no one can operate a switch
at this speed. Instead, we could build a small digital circuit, connected to a keyboard,
which would send a specific group of 8 bits at 115,200 bits per second each time a key
is pressed (for instance the group 01000000, for ’A’, 01000001, for B, etc). This
circuit would not need to be programmed, which would avoid the above chicken and
egg problem. However, doing this would be very impractical and error-prone (typos
would be hard to detect without a visual feedback, i.e., some kind of display).

In this part, we therefore use an external computer to program the Arduino.
However, we try to use it in a minimal way to show convincingly that avoiding its
use altogether would be possible. In particular, instead of using a text editor and a
compiler to produce the Os and 1s from a program written in some programming
language, we compute these bits manually. The only program we use on the external
computer is the one used to send these bits to the Arduino, at the expected speed.
Moreover, we use this method only to install a small initial program on the Arduino,
namely a very basic input and output system. Its goal is to read other programs (still
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in binary form at first) input on a keyboard connected to the Arduino, to output them
on a screen also connected to the Arduino, and to execute them. In other words, its
goal is to make our toy computer completely autonomous, i.e., to avoid any further
need of an external computer (including in Parts 3 and 4).

In order to do this, our basic input output system has the following components:

e a keyboard driver. Connecting a keyboard to the Arduino does not “just work”. A
small program is needed on the Arduino to decode the signals sent by the keyboard
and to interpret them as characters. This small program is called a keyboard driver.

e a “graphics card” driver. Similarly, connecting a display to the Arduino does not
“just work”. For the display we want to use, things are even worse: we can’t even
connect the display directly to the Arduino because it does not have the necessary
connector. To solve this we use an intermediate board, which we call the graphics
card. It can connect to the display on one end, and to the Arduino on the other. But
here again, a small program is needed on the Arduino to send the correct signals
to the graphics card, in order to display the desired characters on the screen. This
small program is the graphics card driver.

e a memory editor. This extremely basic editor uses the above drivers to display the
memory’s content on the screen (in hexadecimal format), and to allow the user
to edit it, with the keyboard. It can also execute a program at a given location in
memory. These features allow users to store programs in memory and to run them.

e a virtual machine. Even if the above programs are small, they would still require
hundreds of machine code instructions, which use a complicated binary format.
Writing all these instructions manually is possible but painful and error prone. In
order to simplify this a bit, we use a tiny virtual machine. This program simulates a
virtual microprocessor using very simple instructions called bytecode instructions.
This small program must be written in Arduino Due’s machine code but, once
this is done, all other programs can be written in simpler bytecode instructions
(simulated by the virtual machine). This is what we do for the above drivers and
the memory editor.

The rest of this part presents the hardware components of our toy computer, shows
how they are assembled, and explains how our input output system is built and installed
on the Arduino. It is organized as follows:

o Chapter 6 gives an overview of the Arduino Due board and of its main chip. We use
this at the end to control a LED with commands sent “manually” to the Arduino.

o Chapter 7 gives an overview of the microprocessor inside the Arduino’s main chip.
It presents a subset of its registers and instructions. We use this at the end to blink
a LED, with a first program made of a few machine code instructions.

o Chapter 8 builds on this to implement our toy virtual machine, written in Arduino’s
machine code, and to store it in flash memory.

e Chapter 9 presents the clock used by the Arduino, and explains how to change
its frequency. We then use this knowledge to implement a small program, using
bytecode instructions, to set the clock to its maximum frequency.
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e Chapter 10 presents how Liquid Crystal Displays work in general, how our specific
Thin Film Transistor display works, what the graphics card is doing, how to
communicate with it from the Arduino, and how to use it. It then provides the
graphics card driver implementation. We test it at the end to display the traditional
“Hello, World!” message.

e Chapter 11 presents how keyboards work in general, and PS/2 keyboards in particular.
It then provides a small keyboard driver. We test it at the end with a small “echo”
program, which simply displays on screen each key typed on the keyboard.

e Chapter 12 uses all the previous components to implement a basic memory editor,
finally making our toy computer completely autonomous.
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First Steps with the
Arduino Due

This chapter gives a short overview of the Arduino Due board. We use this at the end
to control a LED with commands sent “manually” to the Arduino.

But first, why do we use an Arduino Due? The short answer is that it is well
suited for our purpose. A longer answer is the following. First of all, desktop and
laptop computers already include a Basic Input Output System (the BIOS), using the
keyboard and the screen. We do not have to use it, but since our goal is to program a
toy computer from scratch, it is better if we really have to implement a BIOS.

Single board computers, such as Raspberry Pi boards, are complete computers on
a single printed circuit board. They can run usual operating systems such as Windows
or Linux. They generally do not have a BIOS but, at least for Raspberry Pi boards,
they have a complex boot process which makes it hard to start completely from scratch,
with a few hand-written machine code instructions.

Single board microcontrollers are even simpler than single board computers. As
their name suggest, they provide two things:

e a microcontroller. This is a single chip which contains everything we need for a
toy computer: a microprocessor, volatile and non-volatile memory, and dedicated
circuits to control external devices in a simple way.

e a printed circuit board on which the microcontroller is soldered. A microcontroller
alone is just a chip, which would be hard to use directly. Its pins are very small, yet
they need to be connected to a power source, to external devices which have “large”
connectors, etc. The board makes this easy to do.

Single board microcontrollers do not have a BIOS and generally have a simpler
boot process than single board computers. We therefore chose such a board to build
our toy computer. More specifically, we chose the Arduino Due board because it is
easy to use completely from scratch. And also because Arduino is a very popular
platform for makers. In this way, after having built your toy computer with it, you will
have everything you might need to reuse the Arduino Due for other purposes.

6.1 Overview of the Arduino Due

The Arduino Due board is based on the SAM3X8E microcontroller from Atmel, which
is presented in the next section. This microcontroller is soldered on a printed circuit

59



CHAPTER 6 First Steps with the Arduino Due

board (see Figure 6.1), which connects its 144 pins — 36 on each side of the chip — to
several other components on this board, including:

o 86 female header pins on 3 sides of the board. These pins provide a convenient way
to connect wires to the otherwise very tiny pins of the microcontroller itself. Each
board pin has a number and/or a name printed next to it (some of them are shown,
in white, in Figure 6.1). Most of these board pins are directly connected to the
SAM3XSE pins, whose names are shown in yellow in the figure. For instance, pin
19 is connected to the PA10 pin of the microcontroller, pin 13 is connected to the
PB27 pin, etc. Likewise, the “GND” (ground) and “3.3V” pins are connected to
the USB ports, which provide power, and to the microcontroller. They can be used
to power external devices which require a 3.3V power source. As an exception, the
“5V” pin is not connected to the microcontroller. It can be used to power external
devices which require a 5V power source, such as PS/2 keyboards. All the other
pins of the board output 3.3V, and only support up to 3.3V inputs.

e A few male header pins, including 6 very close to the microcontroller, labeled
“SPI”. These male pins are also directly connected to corresponding pins of the
microcontroller, including the PA25, PA26 and PA27 pins (see Figure 6.1).

e A few built-in LEDs. A green one, labeled “ON” indicates when the card is
powered. The one next to it, orange and labeled “L”, is connected to the PB27 pin
of the microcontroller. It can be turned on and off by programs running on the
microcontroller.

e Two micro-USB ports. They can be used to power the card. At the same time,
they can also be used by the microcontroller’s boot assistant, a program which
can read and execute other programs sent by an external computer. Finally, the
“native” port can be used to plug USB devices, for instance a keyboard, to be used
by applications running on the microcontroller. However, doing so requires a USB
driver program, and writing one from scratch is not a trivial task.

o A “RESET” button, in a corner of the board. Pushing this button is equivalent to
turning off and on again the whole card. In particular, it erases the content of the
volatile memory, and restarts the microcontroller from a well defined initial state.

e An “ERASE” button. Pushing this button while the card is powered erases the
content of the non-volatile memory. This is equivalent to erasing the content of the
hard drive of a desktop or laptop computer.

The components and connections of the Arduino Due which are used in the rest of
this book are shown in Figure 6.1. If you want to know more, the full list can be found
on the Arduino Due web page at https://store.arduino.cc/products/arduino-due. This
page links to specifications of the full mapping between the board pin names and the
microcontroller pin names [3], and of all the board components and connections [11].

At this stage we can do our first tests with the Arduino. First, connect one of its
USB ports to your computer with a USB cable, or directly to an outlet with a USB
phone charger. The “ON” and “L”’” LEDs should be on. As shown in Figure 6.1, the
“L” LED is connected on one end to pin PB27, which is also connected to pin 13. The
other end is connected to the ground. With a male-male wire, connect the “GND” and
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FIGURE 6.1 The components of the Arduino Due board [3, 11] used in this book.
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13 pins. What happens? The LED turns off because it is no longer powered. Finally,
remove the wire and unplug the Arduino.

6.2 Overview of the Atmel SAM3XS8E

As indicated above, the Arduino Due is based on the Atmel SAM3XS8E [8]. This
section gives a brief overview of the main internal components of this microcontroller,
ignoring those we don’t need in our toy computer. The next sections and chapters give
more details about each of them. These components are the following (see Figure 6.2):

an ARM Cortex-M3 microprocessor, which has a 32-bit architecture and can execute
up to 84 million instructions per second. It contains sub components such as a
System Timer (SysTick) and a Memory Protection Unit (MPU). See Section 7.1.
512 KB of non-volatile flash memory, split in two memory banks of 256 KB, each
with its own controller (to erase data, flash new data, etc). See Section 6.5.

16 KB of ROM, providing a boot assistant. As explained earlier, this program can
read and execute other programs sent by an external computer. See Section 6.4.

e 96 KB of volatile RAM, split in one bank of 64 KB and one bank of 32 KB.
e 4 Parallel Input Output (PIO) controllers, named A, B, C and D. Each controller

manages up to 32 pins of the microcontroller. For instance, controller A manages
the 30 pins named PAO to PA29, while controller D manages only 10 pins named
PDO to PD9. Each pin can be configured as an input or as an output. See Section 6.6.
Many peripheral controllers to communicate with a large variety of external devices.
These include a Serial Peripheral Interface (SPI) controller to interact with devices
supporting the SPI protocol (see Section 10.3), and a Universal Synchronous
Asynchronous Receiver Transmitter (USART) for external devices using a serial
connection (i.e., transmitting one bit at a time — see Section 11.2). There is also a
Pulse Width Modulation (PWM) controller (which can be used to control motors,
loud speakers, etc), an Analog to Digital converter, etc. The peripheral controllers
do not interact with the microcontroller pins directly, but instead go through the
PIO controllers (see Figure 6.2).

A Power Management Controller (PMC), connected to an external crystal oscillator.
This component provides clock signals (in green in Figure 6.2) to the other
components, including the microprocessor and the peripheral controllers. It can
generate clock signals at various frequencies. See Section 9.1.

A Reset Controller (RSTC), which resets all the components to their initial state
when the RESET button, connected to the “NRST” pin of the microcontroller, is
pushed on the Arduino board.

A Watchdog Timer (WDT), which also resets all the components to their initial state
(via the Reset Controller) when the timer expires. To avoid being reset, the program
running on the microcontroller must periodically reset this timer (or disable it).

A memory bus interconnecting all these components, thus allowing the micropro-
cessor to use them. See Section 6.3.

The SAM3X8E microcontroller contains many other components, not shown in
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FIGURE 6.2 The components of the SAM3X8E microcontroller [8] used in this book.

Figure 6.2. A more complete diagram can be found in Figure 2-3 at page 6 of the
SAM3X/3A Series Datasheet [8]. This very long reference manual (1459 pages!)
gives an exhaustive description of all the components, except the microprocessor
itself (described in other reference manuals, including the 858 pages long Armv7-M
Architecture Reference Manual [17]). The next sections and chapters give a summary
of the parts of these manuals that we need to program our toy computer.

6.3 Memory bus

Each component inside the microcontroller, except the memory banks, contains one
or more 32-bit “registers” which allow the microprocessor to interact with it. For
instance, the Parallel Input Output A controller has a 32-bit register whose bits reflect
the input voltage of the pins connected to it. For instance, if the pins PA2 and PAS are
at 3.3V and if all the other PA pins are at OV, then all the bits of this register are 0,
except bits 2 and 5 (i.e., the value of the register is 1001005 = 36). Another register of
this controller allows the microprocessor to set the voltage of the desired pins to 3.3V.
For example, writing the value 17 = 10001 in this register, sets pins PAO and PA4 to
3.3V, and leaves the other pins unchanged.
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FIGURE 6.3 The memory map after a full erase, showing how memory banks and
microcontroller registers (bottom) are mapped to memory addresses (top).
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These registers must not be confused with the microprocessor registers. The latter
can be used directly by arithmetic instructions, such as “add the value of register
number 1 to the value of register number 3 and store the result in register number
4. This is not the case of the former. Instead, each microcontroller register has a
predefined memory address, and can only be used by reading or writing values in
memory, at this address. For example, the Parallel Input Output A controller registers
mentioned above have the addresses 400EOE30,4 and 400EOE3C1¢. If the only PA
pins at 3.3V are PA2 and PAS, then the value in memory at address 400EOE30¢ is 36.
Similarly, writing the value 17 at memory address 400EOE3C;¢ sets the pins PAO and
PA4 to 3.3V

The role of the memory bus is to send each memory access request to the
component or memory bank which is responsible for it. In the previous example, the
bus sends the load request for address 400EOE30;¢ to the PIO A controller, because
this is the component responsible for this address. It does the same with the store
request for address 400EOE3C; ¢, for the same reason.

In order to do this, the bus must have a “map” of the memory, indicating which
component “lives” at which address(es). After a full erase, with the ERASE button,
this memory map is the one illustrated in Figure 6.3. An important thing to note is
that different addresses can map to the same physical location (just as a building at the
intersection between two roads could have two addresses, one per road):

e The 16 KB the ROM memory bank are mapped to the addresses in [0,400014[
(4000,6=16 KB), but also to the addresses in [4000;4,8000;4[, and so on up to
[7C00016,800004¢[. In total, this physical memory region is mapped 32 times in
the 512 KB “Boot” region in Figure 6.3. It is also mapped 64 more times in the
1 MB “ROM?” region, between addresses 10000016 and 20000016 (excluded).

e The 64 KB of the RAMO memory bank are mapped 8 times in the first 512 KB of
the “RAM” region, between addresses 20000000,¢ and 20080000,¢ (excluded).

Provided a few other registers of this controller are set up correctly, see Section 6.6.
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e The 32 KB of the RAM1 memory bank are mapped 16 times in the second 512 KB
of the “RAM?” region, between addresses 2008000014 and 2010000046 (excluded).

Another thing to note is that most memory addresses are not mapped to anything.
This is the case, for instance, of the 510 MB between the “ROM” and “RAM” regions,
and of a 1 GB range before the “System” region (see Figure 6.3). These regions are
“reserved” for future versions and should not be used.

The registers of the microcontroller components are mapped in the “Controllers”
region, a 1 MB region starting at address 40000000,¢. This includes the Parallel Input
Output controllers, the Serial Peripheral Interface controller, the Power Management
Controller, etc. Some details of this region are presented in the next sections and
chapters, for the registers we need (a full description of the whole memory map can
be found in chapter 7 of [8], which refines the map defined in chapter 4 of [16]).

Finally, as illustrated in Figure 6.3, the registers of the microprocessor’s internal
components, such as the System Timer and the Memory Protection Unit, are mapped
in the last part of the memory, starting at address EO000000,4 (only a few kilobytes
inside this 1 GB region are actually used).

In the following we do not use the whole RAM region, but only its central part, in
[2007000016,20088000+¢[ (see Figure 6.3). This is the only part where the two RAM
banks are seen as a contiguous sequence of 96 * 1024 bytes, without repetition.

6.4 Boot assistant

When it is reset after a full erase, the Arduino Due runs its boot assistant program,
stored in ROM (like the boot program of Section 5.1.2). As said earlier, this program
can read and execute other programs, sent by an external computer. This section
explains how. We use this at the end to explore the Arduino’s memory.

6.41 User interface

The boot assistant, in an endless loop, waits a for request sent by an external computer,
executes it, and returns a response. A request is a sequence of characters ending with
a sharp (#). The boot assistant supports 12 types of requests. The main ones are the
following:

e waddress, # reads a 32-bit word in memory at address, and returns the result (both in
hexadecimal). For example, w2008000C , # returns the word at address 2008000C¢.

o Waddress,value# writes the 32-bit hexadecimal value in memory, at address. For
example, W2008000C, 1234ABCD# writes 1234ABCD1¢ at address 2008000C .

o haddress ,# and Haddress ,value# do the same thing, but for 16-bit half words.

e oaddress,# and Oaddress,value# do the same thing, but for bytes.

o Gaddress# runs the program starting at address. More precisely, it runs the program
starting at the address stored in memory at address—+4. This command is explained
in more details in Section 7.5.3.
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e Vi returns the boot assistant’s version number.

Using these requests, an external computer can send a program to the Arduino,
word by word (or byte by byte), and can then run it on the Arduino.

6.4.2 Communication protocol

The above requests must be sent character by character, by using the ASCII code [14].
This American Standard Code for Information Interchange assigns a number to each
letter. For instance, # is represented with 35 = 00100011,. Thus, to send a #, the
external computer must send the byte 001000115 to the Arduino, one bit at a time,
starting with the least significant one. This can be done in 3 different ways:

o via the pin 0 / RXO0 on the Arduino board. In this case each byte must be sent at
115,200 bauds, i.e., bits per second. Responses from the boot assistant are sent in
the same format on pin 1 / TX0. As said in introduction of Part 2, this method
could theoretically be used to program the Arduino without any external computer.

e via the USB “programming port” (see Figure 6.1). This port is connected, via a
small chip, to the above RX0 and TXO pins. This small chip (an ATmegal6U2
microcontroller, with only 512 bytes of RAM) converts the USB signals into the
above format.

e via the USB “native port” (see Figure 6.1). This port is directly connected to an
USB controller component in the SAM3XS8E (not shown in Figure 6.2).

6.4.3 Experiments

Lets put what we learned so far into practice. For this you need a small program
on your computer to send requests to the Arduino, via a USB cable. Download
https://ebruneton.github.io/toypc/scripts.zip, unzip it, and follow the installation
instructions in its README file. Open a terminal on your computer, hereafter called
the “host”, and go to the directory containing the unzipped files. Then, connect the
Arduino Due’s native port to your computer with a USB cable. Press the ERASE
button for about 2 seconds, then press the RESET button. At this stage the boot
assistant is running on the Arduino and is waiting for requests.

In the host terminal, type python3 boot_helper.py to connect to the Arduino
(for completeness, this script is also given in Appendix E). You should see a prompt >.
Type V# and press Enter to check that everything works fine. You should see the boot
assistant’s version number (which might differ from the one shown here):
user@host:~$ python3 boot_helper.py
>V#
v1.1 Dec 15 2010 19:25:04

Lets read some words in the “Boot” region (see Figure 6.3). Type the following
requests, and observe the responses:
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>w10, #
0x001000C7
>w4010,#
0x001000C7
>w8010, #
0x001000C7

This shows that the ROM is indeed mapped several times in this region (the @x prefix
means that the following value is in hexadecimal; it is not part of the value itself). We
could also check that it is mapped several times in the “ROM” region too (try reading
the values at 10001014 or 1040104¢). A look at the “Flash” region shows that all its
bits have been erased to 1s:

>W80000, #
OXFFFFFFFF
>W80004 , #
OXFFFFFFFF

Lets now try to write some words in memory. We can first check that the ROM is
really read-only, by trying to write in it:
>W10,12345678#
>w10,#
0x001000C7

The write has no effect, as expected. Writes in “Flash” have no effect either:

>W80000, 12345678#
>W80000, #
OXFFFFFFFF

In fact it is possible to write in flash memory, but this requires a more complex process,
explained in Section 6.5. Lets now try to write some value in the “RAM” region. The
first 4 KB of RAM are used by the boot assistant, and we don’t want to change them.
Lets use the first word after this:

>W20071000,12345678#
>w20071000,#
0x12345678

It works! Here we could check again that the RAMO bank is mapped several times in
the “RAM” region (try reading the value at 200810006). A more interesting test is to
read the 4 bytes starting at 200710001 4:

>020071000,#
0x78
>020071001 ,#
0x56
>020071002,#
0x34
>020071003,#
0x12
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We see that the least significant byte of 1234567814, namely 781, is stored at address
2007100016. The most significant one, 121, is stored at address 200710034. This is
called the little endian order. The opposite — least significant byte at 200710034 and
most significant at 2007100046 — is called the big endian order.

Finally, lets see what happens if we try to read a value in the “reserved” region
after the “ROM” region:
>W200000,#
ERROR: no response from device.

You should see nothing during Ss, then the host program exits with an error message.
This is because the boot assistant crashed while trying to read a reserved memory
address! In such cases you can restart it by pressing the RESET button on the Arduino.
You can then restart the boot_helper.py program. To exit it normally, type exit#
(this command is not sent to the Arduino; instead the host program stops itself).

6.5 Flash controller

Flash memory has the advantage of being non-volatile. Unfortunately, this comes
with a cost: the memory must be erased before it can be written, and erasing it is slow
(a few milliseconds, whatever the number of bytes erased). It is thus impractical to
write into it word by word (this is why, as we saw above, writing values directly in
flash memory has no effect). Instead, to amortize this cost, flash memory is divided
into pages of 256 bytes (or 64 words), and is erased and written one page at a time.
This process is controlled by an Enhanced Embedded Flash Controller (EEFC), one
per flash memory bank (see Figure 6.2). This section presents these controllers, and
shows how they can be used via the boot assistant.

6.51 Memory pages
Erasing and writing a page into flash memory requires the following process:

1. Write the 64 words of the page into 64 internal “registers”, shared between the two
flash controllers. All the registers must be written to, even if we only care about
some of them (otherwise the next step does not work).

2. Ask the flash memory bank’s controller to write the content of these registers into
a specific page, which is erased first. The page is identified by its index, from O to
1023 (included).

3. Wait a few milliseconds until the flash controller is done writing the registers in
memory. During this time the flash memory bank cannot be used, and the above
registers must not be modified.

The first step of the above process is simple, because the above 64 internal registers
are mapped repeatedly (2048 times) inside the 512 KB “Flash” region. This means
that writing a word in this memory region writes a value in one of these registers?.

2In this region, writing a word at an address which is not a multiple of 4 is not supported. Writing half
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Name Type EEFCO EEFC1

Mode Register Read-Write | 400E0A00,6 | 400E0C0046
Command Register | Write-Only | 400EQAQ4:s | 400E0CO416
Status Register Read-Only | 400E0A08:s | 400E0C08:¢

TABLE 6.1 The Enhanced Embedded Flash Controller registers used in this book.

Note that these registers are only used for writes. Reading a value in this region reads
the flash memory, not these internal registers.

The second step is done by writing a specific value in the Command Register of the
memory bank’s controller (see Table 6.1). This 32-bit value must have the following
binary form, where password = 5A16, command = 3 (which means “erase and
write page”), and argument is the page index:

’ password ‘ argument ‘ command
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The third step is done by reading the Status Register of the memory bank’s
controller repeatedly, until its least significant bit is 1. Indeed, this bit is O while the
controller is writing the page into flash memory, and 1 when the process is done.

To illustrate this, lets assume we want to write the fourth page (counting from 0)
controlled by the second flash controller, i.e., the 64 words in [C040014,C0500,6[. We
first need to write the 64 words at these addresses (writing them in [800001,8010016[,
for instance, would work too, since the registers are mapped there too). We must then
write the 5A00040315 command in the EEFC1 Command Register, i.e., at address
400E0C04;¢. Finally, we need to wait until bit O of the EEFC1 Status Register, at
address 400E0CO08¢, is 1.

6.5.2 Boot mode

Besides controlling the flash memory banks, the flash controllers also control 3
additional bits of non-volatile memory: bit 0 (security), bit 1 (boot mode selection),
and bit 2 (flash selection). In this book we use only the boot mode selection bit. When
this bit is 0, which is the case after a full erase, the memory mapped in the “Boot”
region [0,80000+4[ is the ROM (see Figure 6.3). When it is 1, the memory mapped in
this region is the flash memory (see Figure 6.4).

These bits can be modified with the EEFCO Command Register. With the values
password = 5A1g, command = Big, and argument = n, bit n is set to 1. With
command = C4 instead, bit n is reset to 0. Thus, writing SA00010B;4 at address
400E0A04 ¢ sets the boot mode selection bit to 1, and writing SA00010C 4 instead
resets it to 0. In both cases, the least significant bit of the Status Register is set to 1
when the operation completes, as for a page write command.

words or bytes is not supported either.
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FIGURE 6.4 The memory map when the “boot mode selection” bit is 1, showing
how memory banks and microcontroller registers (bottom) are mapped to memory
addresses (top).

6.5.3 Experiments

We can now put this new knowledge into practice. First, connect the Arduino to your
computer, open a terminal as you did in Section 6.4.3, and start the boot_helper.py
program:

user@host:~$ python3 boot_helper.py

Lets then write some values in the fourth page of the second flash memory bank,
[C04001¢6, C050016], as described in Section 6.5. We first need to write the values in
the internal registers of the flash controllers. This is a bit painful because we need to
write 64 values (you can ‘“cheat” by using copy paste):

>WC0400, 1#
>WC0404 , 24
>WC0408, 3#
>WCo40C , 4#
>WC0410, 54
>WCo414, 6%
>WC418, 7#
>WC041C, 8#
>WC0420, 9%
>WC0424, 104
>WC0428,114#
>WC42C, 124
>WC0430,134#

>WCO434,14#
>WC0438, 154
>WCO43C, 164
>WC0440, 174
>WC0444 184
>WCQ448, 194
>WC44C, 204
>WC0450, 214
>WCO454 , 224
>WC458 , 234
>WCO45C, 244
>WCO460, 254
>WCO464 , 264

>WC0468, 274
>WCO46C, 284
>WC0470, 294
>WC0474, 304
>WC0478, 314
>WCe47C, 324
>WC0480, 334
>WC0484 , 344
>WC0488, 354
>WC048C, 364
>WC0490, 374
>WC0494 , 384
>WC0498 , 394

>WCO49C, 40#
>WCO4AQ, 414
>WCO4A4, 424
>WCO4A8, 43#
>WCO4AC, 444
>WCO4BO, 454
>WC04B4 , 46#
>WCO4BS, 47#
>WCO4BC, 48#
>WCO4CO, 49#
>WCO4C4, 504
>WCO4C8, 51#
>WCO4CC, 52#

>WC4D0, 534
>WCO4D4 , 544
>WCO4D8 , 554
>WC4DC, 564
>WCO4EQ, 574
>WCOAE4 , 584
>WCQA4ES , 594
>WCO4EC, 604
>WCO4FQ, 614
>WCO4F4, 624
>WCOAFS, 634
>WCOAFC, 644

We then write the “erase and write page” command in the Command Register, and
check that it is done with the Status Register:

>W400E0C0Q4 , 5A000403#

>w400EQCO8 , #
0x00000001

Finally, we can check that the operation was successful by reading some values in the
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page we just wrote:
>wC0408, #
0x00000003
>WC424 , #
0x00000010

>exit#

We can also verify that these values are not lost when the Arduino is turned off. For
this, unplug the Arduino, plug it again, and read again the value at C042414:
user@host:~$ python3 boot_helper.py

>wC0424 , #
0x00000010

Let us now test the boot mode selection bit. Set this bit to 1 as described above:
>W400EQAQ4,5A00010B#

The page we just wrote is now mapped in the “Boot” region as well, offset by 512 KB
from the “original” (see Figure 6.4), i.e., in [4040014,40500+4][:

>wA0408 , #
0x00000003

Now reset the boot mode selection bit. This maps the ROM again in the “Boot” region:
>W400E0AQ4 ,5A00010CH#
>w40408 , #

0xBOQ4F8CA
>exit#

Finally, press the Arduino’s ERASE button for a few seconds, to erase the page we
wrote, and unplug it.

6.6 Parallel Input Output controller

To conclude this chapter, we present here the Parallel Input Output (PIO) controllers.
They are an important part of the microcontroller, since all the peripheral controllers
use them to access the microcontroller’s pins. We use this at the end to turn a LED on
and off via the boot assistant.

6.6.1 User interface

The main goal of the PIO controllers is to enable the microcontroller to communicate
with external devices. Another important goal is to enable the microprocessor and the
peripheral controllers (USART, SPI, etc — see Figure 6.2) to share the microcontroller’s
pins in a principled way (i.e., one at a time). If each peripheral controller was using
its own private pins, then the SAM3XS8E chip would need much more than 144 pins
to connect all of them. Hopefully, users rarely need to use them all at the same time.
The pins can thus be used by a subset of the peripherals for some time, then used by
another subset, and so on.
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FIGURE 6.5 A simplified view of the circuit and registers (in gray) controlling the
output of each pin. The input part is not shown. See Figure 31-3 in [8].

This sharing is done as follows: each peripheral controller uses a fixed set of pins,
but a pin can be used by up to two peripherals. For instance, the USART peripheral
always uses pins PA10 and PA11 to receive and transmit data — this can’t be changed.
But PA10 can also be used by the Digital-to-Analog peripheral. Similarly, PA11 can
also be used by the Analog-to-Digital peripheral. In addition, all the PIO pins can also
be used directly by the microprocessor. This means that each pin can be controlled by
up to 3 entities (one at a time): two peripherals, hereafter named A and B3, and the
Microprocessor.

To choose the entity controlling a pin at a given time, each PIO controller has the
following registers (see Figure 6.5 — here we use the PIO A controller as an example;
the others work in the same way):

e The PIO Status Register: if its nth bit is 1, then the PAn pin is controlled by the
microprocessor. This register can only be read. Writing to it has no effect. Instead,
one must write in the PIO Enable Register (resp. the PIO Disable Register) to set
(resp. clear) bits in the Status Register. For instance, writing 1015 in the Enable
Register sets bits 0 and 2 to 1 in the Status Register, and leaves the other bits
unchanged. Writing 10005 in the Clear Register sets bit 3 to 0 in the Status Register,
and leaves the other bits unchanged.

o The Output Status Register: if the PAn pin is controlled by the microprocessor, then
the nth bit of this register indicates if this pin is an output (bit equal to 1), or a pure
input (bit equal to 0). As for the Status Register, this register can only be read. It

3For PA10, peripheral A is the USART, and peripheral B is the Digital-to-Analog converter.
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Name Type PIOA PIOB

PIO Enable Register Write-Only | 400EOE00;¢ | 400E1000:6
PIO Disable Register Write-Only | 400EOEO4:6 | 400E1004:¢
PIO Status Register Read-Only | 400EOE08:6 | 400E1008:6
Output Enable Register Write-Only | 400EOE10:6 | 400E101016
Output Disable Register Write-Only | 400EOE1416 | 400E101416
Output Status Register Read-Only | 400EQE18:6 | 400E1018:6
Set Output Data Register Write-Only | 400EOE30,6 | 400E103046

Clear Output Data Register Write-Only | 400EQE34:s | 400E103416
Output Data Status Register Read-Only | 400EOE38,5 | 400E1038:5

Pull-up Disable Register Write-Only | 400EOE60;6 | 400E106016
Pull-up Enable Register Write-Only | 400EOE64;5 | 400E10646
Pull-up Status Register Read-Only | 400EOE68,s | 400E1068:6

Peripheral AB Select Register | Read-Write | 400E0E70.5 | 400E107046

TABLE 6.2 The Parallel Input Output registers used in this book.

can only be changed via the Output Enable Register or the Output Disable Register.

e The Output Data Status Register: if the PAn pin is controlled by the microprocessor,
and if it is configured as an output, then the nth bit of this register defines the pin’s
output value. This register can only be changed via the Set Output Data Register or
the Clear Output Data Register.

e The Peripheral AB Select Register: if the PAn pin is not controlled by the
microprocessor, then the nth bit of this register indicates whether this pin is
controlled by peripheral A (bit equal to 0) or B (bit equal to 1). Unlike the above
registers, this register can be read and written. If a pin is controlled by a peripheral,
this peripheral decides whether it should be used as an output or not and, if yes,
which value to output.

In addition to this, i.e., independently of which entity controls it, each pin can
optionally be connected to the 3.3V power source via a pull-up resistor (see Figure 6.5).
When a pin is configured as an input but is not connected to an external device, this
resistor “pulls” the pin voltage up to 3.3V. Without it, a disconnected pin could be
at any voltage, depending on external interferences. Note that setting a pin’s output
value to 0 with the above registers sets the pin voltage to OV (if it is configured as an
output), even if the pull-up resistor is enabled. The Pull-up Status Register indicates
which pins have their pull-up disabled: if its nth bit is 1, then the pull-up is disabled.
This register is read-only. It can only be modified by writing into the Pull-up Disable
Register or the Pull-up Enable Register.

A simplified representation of a small part of the digital circuit controlling each
pin is represented in Figure 6.5. The addresses of some of the registers of each PIO
controller are given in Table 6.2. The full circuit and the complete list of registers can
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be found in Chapter 31 of [8].

6.6.2 Experiments

Lets put this new knowledge into practice. We know that the “L’” LED on the board is
connected to pin PB27 (see Figure 6.1). We have seen above how to control a pin
by writing values in memory. And we have already used the boot assistant to write
values in memory. Thus, we should be able to control the LED via the boot assistant.
For this, connect the Arduino to your computer and open a terminal as you did in
Section 6.4.3. Lets first check which entity controls the PB27 pin, by reading the PIO
Status Register:

user@host:~$ python3 boot_helper.py

>W400E1008, #
OXOFFFFFFF

We see that bit 27 is 1, meaning that the pin is controlled by the microprocessor.
Lets check the Output Status Register and the Output Data Status Register:
>W4Q0E1018, #
0x00000000
>W400E1038, #
0x00000000

They are both 0, meaning that the pin is not used as output, i.e., it is disconnected
from the PIO controller circuit. Yet the LED is on. This probably means that the
pull-up resistor is enabled. We can check this by reading the Pull-up Status Register:
>W400E1068, #
0x00000000

All bits are 0, in particular bit 27, meaning that the pull-up is not disabled, i.e., it
is enabled as we suspected. Let us now configure the pin as an output, by setting the
27" bit (= 227 = 8000001¢) to 1 in the Output Status Register. As said above, this
must be done by using the Output Enable Register:

>W400E1010, 8000000#

At this point you should see that the LED is off! Indeed we just configured the
pin as an output, and we saw above that the output value in the Output Data Status
Register was 0. The pin has thus been connected to the ground, as we did with a wire
at the end of Section 6.1. We can turn the LED on again by setting the pin’s output
value to 1, with the Set Output Data Register:

>W400E1030, 8000000#

You can now exit# and unplug the Arduino.
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Cortex M3

This chapter gives a short overview of the Arduino Due microprocessor, the ARM
Cortex M3. This knowledge is necessary to go beyond our first steps with the Arduino,
in the previous chapter. We use it at the end to write our first program, to blink a LED.

71 Overview of the Cortex M3

The Cortex M3 microprocessor has a core instruction processing part and a few
other internal components (see Figure 6.2). The instruction processing part loads
instructions from memory, decodes them and executes them, in an endless loop. These
instructions form the Cortex M3 machine language. They are encoded in 16 or 32 bits,
and must always start at even addresses. They can be divided in 3 main categories,
namely data processing, load and store, and conditional and jump instructions:

e The data processing instructions perform arithmetic and logic operations (addition,
multiplication, bitwise and, etc). They can only operate on values stored in registers
(or encoded in the instruction itself), and can only store the result in registers. The
Cortex M3 has 16 32-bit registers available for this purpose, named RO to R15. An
example data processing instruction is “add the values in R1 and R2, and store the
result in R5”.

e The load and store instructions load values from memory into registers, and store
values from registers in memory. An example load instruction is “load the value
from memory at the address in R3, offset by 10, and put the result in RO”. If R3
contains 60, this instruction loads the value at address 70 and store it in RO.

e The conditional and jump instructions can modify the normal flow of execution.
Instructions are normally executed sequentially, in increasing address order. In
other words, in the normal case, after the instruction 7 at address «a is executed,
the instruction at address a + 2 (or a + 4 if 7 is a 32-bit instruction) is executed.
This can be changed with conditional instructions or jump instructions. As their
name suggest, conditional instructions are skipped if some condition is met. And
jump instructions cause the execution flow to jump, i.e., to continue at an arbitrary
address.

The other components of the Cortex M3 include a timer, an interrupt controller,
and a memory protection unit (they are presented in more details later in this book):
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e The timer component, called SysTick, can be used to measure time. It decrements a
24 bit counter by 1 at each clock cycle, and restarts it to a configurable value when
it reaches 0.

e The interrupt controller, called the Nested Vector Interrupt Controller (NVIC),
provides another way to modify the normal execution flow, other than the conditional
and jump instructions. It handles errors, also called exceptions, such as trying to
read the memory at a reserved address. It also handles external events, also called
interrupts, such as the reception of some data on an input pin. When an error or
event occurs, the NVIC causes the execution flow to jump to a predefined handler
address, associated with each error or event source.

e The memory protection unit can be used to control memory accesses. It can divide
the memory into regions, and can associate different access rights with each region.
For instance, one region can be made inaccessible, another read-only, etc. This can
be used to protect programs from each other, i.e., to avoid a crash in a program
to crash another one, or to prevent a program from reading sensitive data (e.g.,
passwords) in another program’s memory (see Chapter 26).

7.2 Registers

As said above, the Cortex M3 instructions can use 16 registers named RO to R15. The
first 13 registers can be used for any purpose, but the last 3 have specific usages. They
are called the Program Counter, Link Register and Stack Pointer, and their main goal
is to make it easier to split programs into smaller building blocks called subroutines.
This section presents these registers and how subroutines work.

721 Program Counter

The R15 register is also called the Program Counter (PC). This register contains the
address of the currently executing instruction. More precisely, just before executing
an instruction at address a, it contains the value a. However, during the execution of
an instruction at address a, the PC contains the value a + 4.

Writing into the PC is also possible, and causes a jump. Since instructions must
start at even addresses, the least significant bit of the jump address is always ignored.
For instance, attempting to write 17 into the PC actually writes 16, and jumps to
address 16. In fact, due to historical reasons!, some instructions require writing
a + 1 into the PC in order to jump to the instruction at address a. a + 1 is called the
instruction’s interworking address.

7.2.2 Link Register

The R14 register is also called the Link Register (LR). Some jump instructions, called
branch with link, set this register to the interworking address of the next instruction

1Some ARM processors support two instruction sets. They use this bit to specify the instruction set to
use after the jump. The Cortex M3 supports only one instruction set but still uses this mechanism.
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Memory
BL ... a BL ... a
ADD | MUL |a +4 Branch with Link ADD | MUL |a + 4
_—

.. | SUB |b .. | SUB |b

Registers before BL after BL
RO LR | PC RO LR | PC
42 a 42 a+5 b

FIGURE 71 The Link Register. Branch with Link (BL) instructions set the LR to the
interworking address of the next instruction (here MUL) when jumping to another
instruction (here SUB). Copying the LR into the PC “resumes” execution (here at MUL).

Memory push
X{b X% X\/
o o @ 31 41 59 26|a —4<—SP
12 34 56 78|a <SP 12 34 56 78|a
A1 B2 C3 D4|a+4 A1 B2 C3 D4|la+4
pop

FIGURE 7.2 The Stack Pointer. When the SP contains the value a, pushing a 32-bit
value, here 3141592646, stores it at address a — 4 and updates the SP to a — 4. Popping
gets the value stored at the address given by the SP, and adds 4 to the SP.

in sequential order. For instance, a 32-bit branch with link instruction at address a,
jumping to address b, sets the LR to a + 5. This allows the code starting at b, when its
task is done, to “resume” the execution of the initial code sequence, i.e., to jump to
the instruction at a + 4. For this, it just needs to write the value stored in the LR into
the PC (see Figure 7.1).

7.2.3 Stack Pointer

The R13 register is also called the Stack Pointer (SP). A stack is similar to a pile of
plates: one can only add, or push, a value (a plate) on top of the stack (the pile), not
inside it. Similarly, one can only remove, or pop, a value from the top of the stack. A
pointer is a register or memory location which contains the address of some value,
called the pointer target. The Stack Pointer contains the address of the top stack value.
It is used by two instructions called PUSH and POP, which can push the values in
some registers into the stack, and pop values from the stack into registers. This stack
is called descending? because pushing a new value decreases the Stack Pointer’s value.
For instance, if the SP contains the value a, pushing = means storing x in memory at

2Note that it may look ascending, if addresses are representing in ascending order from top to bottom.
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Memory
BLb BL b BLb BL b
S B 1 S B 1
— L_—— — L_—— — L_—— — L_——
ADD [PUSH ADD |PUSH ADD [PUSH ADD |PUSH
BL ¢ BL ¢ BL ¢ b+4 BL ¢
—_ L —_ L —_ L —_ L
— L —— — L —— — L_— — L_—
= > a+5|s—4 a+5
1234|s & 1234]s | 1234 1234
Registers (1) (2) afterBLb i (3) beforeBLc (4) afterBLc
SP | s SP | s | SP |54 SP |s—4
LR | .. LR [a+ 5| LR |a+5 LR [b+9
PC | a PC | b PC [b+4 PC | ¢

FIGURE 7.3 Nested subroutine calls. Before doing a branch with link to ¢ (3), subrou-
tine B pushes the LR (i.e., the interworking return address a + 5 in A) onto the stack

(2).

address a — 4, and updating the SP value to a — 4 (see Figure 7.2).

Note: from now on we use register names to designate either the register itself, or
the value it contains, depending on the context. For instance, in “add R1 and R2 and
store the result in R3”, R1 and R2 designate the values stored in these registers, while
R3 designates the register itself.

7.2.4 Subroutines

The main goal of the above registers is to organize programs into smaller subprograms
of increasingly higher abstraction levels, in a similar way as digital circuits, or even
living organisms, are organized (made of atoms, grouped in molecules, grouped
in cells, grouped in organs, grouped into organisms). For instance, a program to
draw figures could have a subprogram to draw text, which could itself use a “sub”
subprogram to draw characters. The advantage of this method is that each level can be
understood and programmed without knowing how the lower levels work internally.
At the machine code level considered here, these subprograms are called subrou-
tines. A subroutine is a list of instructions, some of which can call other subroutines.
After it has been executed, a subroutine returns to the subroutine which called it. A call
from an instruction at address a in subroutine A (e.g., “draw figure”), to subroutine B
(e.g., “draw text”), is a jump to B’s first instruction, preceded by instructions allowing
B to return in subroutine A. This includes storing the (interworking) return address
a+ 5 in the Link Register, as described above. However, this is generally not sufficient.
Consider the case where subroutine B needs to call a third subroutine C (e.g., “draw
character”), from address b + 4 (see Figure 7.3). It cannot simply store its own
(interworking) return address b + 9 in the Link Register, otherwise it would loose
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the value a + 5 already stored there, and would no longer be able to return to A! To
solve this, B needs to save the current LR value first. The solution is to push it on the
stack. This is generally done at the very beginning of each subroutine (see Figure 7.3).
Returning to the caller, i.e., to A, can then be done by popping this value from the
stack, into the PC.

7.3 Instruction set

The Cortex M3 machine language has about 100 instructions. However, some
instructions have several variants and several encodings, on 16 or 32 bits. For instance,
the ADD instruction has 4 variants and 14 encodings. In total, there are more than
350 different encodings. Here we present only the main instructions and encodings
used in this book (about 40 — a few more are presented later), and we give only a short
overview for each. All the details about all the instructions can be found in [17].

7.31 Data processing instructions

ADD Rz« Rz+c 00110 2 |

C
ADD Rz < Rz + Ry 0001100 y T 2,
ADD  SP ¢ SP +4xc 101100000[ ¢ |
ADD Rz SP+4dxc 1ot1ot1] = [ e

The ADD instruction adds two registers, or a register and a constant, depending
on the variant used, and stores the result in a register. For instance, the first variant,
Rz <+ Rz + ¢, adds the constant c to register Rz and stores the result in Rz. It is
encoded on 16 bits. The most significant ones are fixed to 001105. The next 3 bits
define which register is used, from RO to R7. The last 8 bits define the constant to add
to this register. For instance, by replacing z with 115 = 3 and ¢ with 1011015 = 45 we
get the instruction R3 <— R3 + 45. Its encoding is obtained by replacing z and ¢ with
their values in the encoding schema, yielding 00110011001011015 = 332D+5.

SUB Rz« Rz—c oot 1] = | e
SUB Rz + Rz — Ry 0001101 ¥y T 2
SUB  SP« SP—4dxc 101100001] e
MUL Rz <« Rz#Rz 0100001101 a [ =z

The SUB and MUL instructions perform subtractions and multiplications. Note
that additions, subtractions, and multiplications are done modulo 232 and can thus
overflow (see Section 4.2.3).

UDIV Rz <+ Rz /Ry
’1111111‘ %l ‘1111111‘ lyl ‘11111111110111111101111‘ lipl ‘

1
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The UDIV instruction, encoded on 32-bit, performs integer divisions, such as
[14/4]| = 3. Ra, Ry, and Rz must not be the SP or the PC.

AND Rz« RzARz 0100000000 o | =

Il Il Il Il

ORR Rz + RzV Rz 0100001100 = z

1 1 1 1

The AND instruction performs bitwise AND operations, such as 10105 A 11004 =
10004. Similarly, the ORR instruction performs bitwise OR operations, such as 10105
V 11005 = 1110,.

ISL Rz« Rr<c 00000/ ¢ z | 2

Il Il Il Il Il Il

LSL Rz + Rz <« (Rx mod 32) 0100000010 = z

1 1 1 1

The Logical Shift Left (LSL) instruction shifts the 32 bits of a register to the left
by a certain amount. For instance, shifting the value 10111015 to the left by 3 inserts
3 zeros on the right (and drops the 3 most significant bits), yielding 10111010005.
Shifting to the left by n bits is equivalent to multiplying by 2" (modulo 232).

LSR Rz« Rz>c¢ 00001] ¢ z | 2

Il Il Il Il Il Il

LSR Rz + Rz > (Rx mod 32) 0100000011 =z z

1 1 1 1

The Logical Shift Right (LSR) instruction shifts the 32 bits of a register to the
right by a certain amount. For instance, shifting the value 10111015 to the right by
3 drops the 3 least significant bits, yielding 10115. Shifting to the right by n bits is
equivalent to dividing by 2".

MOV Rz« c 00100 =z
MOV  Rz:z « Rz 01000110 = | 2

The Move (MOV) instructions “move” (or more precisely copy) a value from a
register or a constant into a register. The 2;:2g notation above denotes a concatenation
of binary numbers. For instance, replacing z; with 15 and zy with 0115 gives 10115,
and thus Rz1:29 = R11. The MOV: Rz;:z9 < Rz instruction can thus access the 16
registers RO to R15.

MOVW Rz « C3:C2:C1:Co

’0‘ cll ‘ 1 id 1 ‘ 1 1 1 CO

1 I\ 1 1 1

1 111111110‘62‘11010111010‘ 1613 1 ‘

The Move Wide (MOVW) instruction copies a 16-bit constant into a register,
which must not be the SP or the PC. It can copy values up to 65535, whereas the MOV
instruction is restricted to values up to 255.

MOVT RZ[3116] < C3:C2:C1:C
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%’1 ‘ 1 1 lclol 1 1 111111110‘62‘11011111010‘ lclgl ‘

The Move Top (MOVT) instruction copies a 16-bit constant into the 16 most
significant bits of a register (which must not be the SP or the PC), leaving the others
unchanged. Together with MOVW, it can be used to load a 32-bit constant in a
register. For this, first load the least significant bits with MOVW (which erases the
most significant bits), then load the most significant bits with MOVT.

CMP  compare(Rx, c) 010111011‘ T ‘ 1 ¢

Il Il Il Il Il Il

CMP  compare(Rz,Ry) 0111010101011101110‘ Y, ‘ T

The Compare (CMP) instructions compare two registers, or a register and a
constant. They store the comparison result, e.g., whether Rz is less than, equal
to, or greater than Ry in a special register, different from the RO-R15 ones. This
special register, similar to the Carry register in Section 3.4, is used by conditional
instructions? (see Section 7.3.4).

ADR Rz «+ LPCJ4 — C9:C1:Co
0]

Cll ‘ 1%1 ‘ 1 1 lclol 1 ‘111111110‘02‘]101]10111011111111

The Address To Register (ADR) instruction subtracts a constant from the PC and
stores the result in a register (which must not be the SP or the PC). More precisely, it
subtracts a constant from the largest multiple of 4 which is less than or equal to the PC,
noted | PC]4. For instance, if the PC value is 102 = 4 % 25 + 2, then |PC]4 = 100.
If the PC value is 100, then | PC|4 = 100. Do not forget also that when an instruction
executes, the PC value is the address of this instruction plus 4. Hence, an ADR
instruction at address a subtracts a constant from |a + 4|4 = |a]4 + 4.

Incidentally, this raises the question of how 16 and 32-bit instructions are stored
in memory. We saw in Section 6.4.3 that 32-bit values are stored in little endian
order. In fact everything is stored in this order, including instructions. When a 16-bit
instruction of the form

’ 1 1 lbytell 1 1 ‘ 1 1 be¢eq 1 1 ‘

1

is stored at address a, then byteg is stored at address a, and byte; at address a + 1.
Similarly, when a 32-bit instruction of the form

1 1 lbyltez 1 1 ‘ 1 1 betlve]‘l 1 1 ‘ 1 1 be¢€q 1 1 ‘

is stored at address a, then bytey is stored at address a, byte; at address a + 1, bytes
at address a + 2, and byteg at address a + 34.

bytes

1 1

30ther instructions can store results in this special register. For simplicity, we don’t use this feature.
4These bytes are displayed in a different order in [17], see Figure A3-5, pA3-68.
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7.3.2 Load and store instructions

LDR Rz < mem32[Rzx + 4 * (| 01101 ¢ | ‘ T, ‘ 2,
LDR Rz < mem32[SP + 4 * ] 10011 =2 | ¢
LDR Rz < mem32[|PCly+4%¢c (01001 =z | = ¢
LDRH Rz < meml6[Rz + 2 * | 10001 ¢ | = | z
LDRB Rz < mem8[Rx + (] o1 111} e | z | z

The Load Register (LDR*) instructions load a value from memory and store it
in a register. There are 3 variants, LDR, LDRH(alf), and LDRB(yte), to load 32-bit,
16-bit, and 8-bit values from memory. The address from which the value must be
loaded can be in one of the R0O-R7 registers, in the SP, or in the PC (in this case the
memory address actually used is |PC|; = |a + 4]4, where a is the instruction’s
address). In all cases, a constant offset ¢ can be added to this address.

STR Rz — mem32[Rx + 4 * (| 01100 ¢ | x| 2
STR Rz — mem32[SP + 4 * ] 10010 2 | ¢ |
STRH Rz — meml6[Rz + 2 x (| 10000 ¢ | x | 2z
STRB Rz — mem8[Rz + (] 01110 ¢ | x | =z

The Store Register (STR*) instructions read a value in a register and store it in
memory. There are 3 variants, STR, STRH(alf), and STRB(yte), to store the 32-bits of
the register’s value, only its 16 least significant bits, or only its 8 least significant bits.
The address at which these bits must be stored can be in one of the RO-R7 registers, or
in the SP. In all cases, a constant offset ¢ can be added to this address.

PUSH registers,l — stack 101101 1O‘ l ‘ | registers,

The PUSH instruction pushes one or more of the RO-R7 registers, and optionally
the LR, onto the stack. A register Rn is pushed if and only if bit n of the registers
field is 1. For instance, if registers=110102 then registers R1, R3 and R4 are pushed.
The LR is pushed if the [ field is 1. These registers are pushed in decreasing index
order (i.e., first the LR if it is selected, then R7 if selected, and so on down to RO).
The selected register with the smallest index thus ends up on top of the stack (see
Figure 7.4).

POP registers, p < stack 101111 lO‘p‘ | registers ‘

The POP instruction pops some values from the stack, and stores them in one or
more of the RO-R7 registers, and optionally in the PC. A popped value is stored in
register Rn if and only if bit n of the registers field is 1. A popped value is stored in
the PC if the p field is 1. In this case, it must be an interworking address. The number
of values popped from the stack is equal to the number of bits set to 1 in the previous
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42 a — 12 «<—SP
16]a — 8
19la —4
1234|a <—SP 1234|a 1234 |a <—SP
TP ——— Y a——
PUSH R2 R3 LR POP RO R1 PC
before push after pop
RO[R1[R2[R3| .. [SP|LR|PC RO[R1[R2|R3| ... [SP|LR|PC
53(27|42(16 a|19]... 42116 42|16 a |19[18

FIGURE 7.4 The PUSH and POP instructions. Registers are pushed in decreasing
index order (here LR, then R3, then R2). They are popped in increasing index order
(here RO, then R1, then PC - set to 18 = 19 - 1 because of interworking addresses).

fields. The popped values are stored in registers in increasing index order (i.e., first in
RO if it is selected, then in R1 if selected, and so on up to the PC — see Figure 7.4).

7.3.3 Jump instructions

1 1 1 1 1 1 1 1 1 1 ‘

B PC « PC + signedi2(2 * ¢) ’111111010 c

The Branch (B) instruction jumps to an address which is obtained by adding a
constant 2 x c to the PC. More precisely:

o if2xc< 2271 je if 2% c < 2048, 2 * ¢ is added to the PC,
e otherwise, 2 * ¢ — 2'2 = 2 x ¢ — 4096, which is negative, is added to the PC.

BX PC«Rz—1 010001110 2 [000]

The Branch and Exchange (BX) instruction jumps to an interworking target address
stored in a register. It thus jumps to the instruction at address ¢ if the register contains
an odd value ¢ + 1.

BLX PC«Rz—1LR«<a+3 (010001111 = [000]

The Branch with Link and Exchange (BLX) instruction does a branch with link
operation. It does the same jump as the BX instruction, but it also sets the LR to the
interworking address of the instruction just after itself. This is done so that the LR
can be directly copied into the PC to return from the called subroutine, without having
to think about interworking addresses. Rz must not be the PC.

BL PC « PC + signeda3(2 * c1:¢p), LR <~ a+5
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11,111 [1.1.1.1.0] ¢

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The Branch with Link (BL) instruction® jumps to an address which is obtained by
adding a constant 2 * ¢ to the PC (where ¢ = ¢1:¢g). More precisely:

o if2%xc <2271 je if2%c < 4MB,?2xcis added to the PC,
o otherwise, 2 * ¢ — 223 = 2 x ¢ — 8 MB, which is negative, is added to the PC.

In addition, the BL instruction sets the LR to the interworking address of the instruction
just after itself. This is done so that the LR can be directly copied into the PC to return
from the called subroutine, without having to think about interworking addresses.

TBB  PC + PC + 2 x mem8[Rx + Ry]
11111111010101010101010‘ 1 y 1 ‘11111101110101011111011‘ 1 :lr 1 ‘

The Table Branch Byte (TBB) instruction jumps to an address which is obtained
by adding to the PC (the double of) a byte offset, read in a table. For instance, suppose
there is a list of 5 bytes, [12, 34, 56, 78, 90], starting at address a in memory. If
Rz = a and Ry = 3, then this instruction adds to the PC the double of the 3"¢ value
in this table (counting from 0), i.e., 2 * 78. Note that Rz can be the PC (but not Ry —
none of them can be the SP). In this case the table must start at the PC, i.e., just after
the TBB instruction itself (because the PC is the instruction’s address plus 4).

7.3.4 Conditional instructions

IT if ¢p:c,, then 1, ’ 10111111 ‘ Co, ‘01‘02‘03‘04‘05‘

The If Then (IT) instruction makes the following one to four instructions conditional.
This means that these instructions, noted I1, 12, I3, and 14, can either be executed
normally, or skipped. For instance, I1 and I3 could be executed, while 12 and 14
are skipped (i.e., after I1, execution would continue with I3, ignoring 12). Whether
In is executed or skipped depends on ¢y, 1, etc, and on the result of the last CMP
instruction®, as explained below.

First, I1 is always made conditional by the IT instruction, but 12, I3, and 14 can be
made conditional or not. This depends on cs:c3:c4:c5, which must not be O:

if co:c3:¢4:c5 = 10004, then only I1 is made conditional,

if co:c3:c4:c5 = 21004, then only I1 and 12 are made conditional,

if coicgicqics = coc310o, then only 11, 12 and I3 are made conditional,
if co:c3:c4:05 = caczcyls, then 11, 12, I3 and 14 are made conditional.

SFor simplicity, we use a restricted version of the BL instruction, with 2 bits fixed to 1. The unrestricted
instruction can support 16 MB jumps.
SFor simplicity, we use IT instructions only immediately after a CMP instruction.
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Value 0000, | 00012 | 00102 | 00112 | 10002 | 1001
Meaning | a=b | a#b | a>b | a<b | a>b | a<b

TABLE71 Meaning of the cond,, = co:c,, values used in this book, for an IT instruction
following a CMP compare(a, b) instruction.

Second, if an instruction In is made conditional, it is executed if and only if the
last comparison result is the one corresponding to cy:c,, (noted cond,,), as defined in
Table 7.1. As an example, if the IT instruction follows a CMP R1 R2 instruction, then
to execute I1 if R1 < R2, and I2 and I3 otherwise (with I4 unconditional), we must
use ¢cp = 0012, Cc1 = 12 and C9:C3:C4:C5 — 00102

Finally, it should be noted that I1, 12, 13, 14 cannot be arbitrary instructions.
For instance, they cannot be IT instructions themselves. Jump instructions are also
forbidden, except for the last conditional instruction.

7.4 Vector Table

When it boots, i.e., when it is powered on or after a reset, the Cortex M3 starts by
reading the Vector Table, alist of 32 bit words beginning at address 0;5. More precisely,
the microprocessor initializes the Link Register to FFFFFFFF,¢, the Stack Pointer
to the value at offset 0y in this table, and the Program Counter to the interworking
address at offset 414, also called the Reset handler. 1t then starts executing instructions
from there.

When the boot selection bit (cf. Section 6.5.2) is 0, addresses 014 and 414 are
mapped to the ROM, and the Vector Table is thus read from ROM. The Cortex M3 then
starts executing the boot assistant program stored in ROM. When the boot selection
bit is 1, these addresses are mapped to the flash memory, and the Vector Table is
thus read from flash. In this case, the flash memory must contain valid initial values
for the Stack Pointer and the Program Counter, at addresses 80000, and 8000444,
respectively.

The other values in the Vector Table are either reserved for future use, or contain
interworking addresses used to handle errors and external events. There is one
value for each type of error (also called exceptions) and external events (also called
interrupts). For instance, the value at offset 1414 is used to handle “bus faults”, such
as trying to access a reserved memory address. When such an error occurs, execution
jumps to the interworking address stored at this offset (this process is described in
more details in Section 11.3). Another value, at offset 844, is used to handle events
occuring in the Universal Synchronous Asynchronous Receiver Transmitter (USART)
— such as the reception of new data. When such an interrupt occurs, execution jumps
to the interworking address stored at offset 8414. By default, however, these specific
exception and interrupt handlers are not enabled (they must be enabled explicitly).
Instead, all exceptions and interrupts are handled by a generic “hard fault” handler, at
offset C14. In other words, by default, if any exception or interrupt occurs (other than
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a reset), execution jumps to the interworking address stored at offset Cy.

The Vector Table can be moved to another location in memory, for instance in
RAM. For this a new table must first be written somewhere in memory, starting at an
address which is multiple of 256. This address must then be written in the Vector
Table Offset Register, at address EOOOEDOS8¢ in the “System” memory region (see
Figure 6.3).

7.5 First program

We now know enough about the Arduino to be able to write our first program. We
have already seen how to turn a LED on and off “manually”, with a wire or by writing
values in memory with the boot assistant. Lets now do the same with a program.
More precisely, lets write a program to blink the “L”” LED on the Arduino. At a high
level, this program should execute the following steps:

. initialize the PIO controller to control the LED,
. turn the LED on with the PIO controller,

. wait some time,

. turn the LED off with the PIO controller,

. wait some time,

. go back to step 2.

NN AW~

We see that steps 3 and 5 are the same. To avoid duplicating the instructions doing
this, we can put them in a subroutine, called twice from the main program.

7.51 Subroutine

Lets start by writing the subroutine. The most basic method to wait for some time is to
count to some value, as in a hide and seek game. To do this we can use two registers,
say RO and R1, with RO containing the current count, and R1 the value at which the
count must be stopped. At a high level, we can thus use the following algorithm for
our subroutine:

. setROto O,

. set R1 to the maximum counter value,
. add 1 to RO,

. if RO # R1 go back to step 3,

. return to the caller.

[ O R

Each step can be implemented with Cortex M3 instructions, as follows:

e Step 1 can be done with a MOV RO < 0 instruction.

e Step 2 needs to store a large value in R1, lets say 1 million (the Cortex M3 counts
fast). This can’t be done with a MOV instruction, nor with a MOVW instruction.
We could use MOVW and a MOVT, but using a LDR instruction with the PC as a
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base address is simpler and shorter. The maximum counter value can then be put at
the end of the subroutine, after the instruction for step 5.

e Step 3 is a simple ADD RO < RO + 1 instruction.

o Step 4 must be done with a CMP RO R1 instruction, followed by an IT instruction
to make the “go back to step 3” part conditional. This optional jump is a simple B
instruction.

e Step 5 must move the LR into the PC. This could be done with a MOV instruction,
but lets use a POP instruction instead, for illustrative purpose. For this the LR must
be pushed on the stack first. We can add a step O for this. This step can also push
RO and R1 at the same time. These registers can then be restored at the end, so that
calling the subroutine has no “side effect”.

Going down to the machine code level, steps 0 and 1 give

PUSH RO R1 LR — stack 101 1010‘1 00000011 B503 000
MOV RO+ 0 00100‘00000000000 2000 002

where the first column is the instruction’s name and high level description, the second
one is its binary encoding (obtained from the patterns in Section 7.3), the third is the
corresponding hexadecimal value, and the fourth is the instruction’s offset from the
beginning of the program, in hexadecimal too. For step 2 we need to know where the
maximum counter value will be stored. Since we don’t know this yet, lets skip this
instruction for now. We know it will use 2 bytes, so the instruction for step 3 starts at
offset 6:

ADD RO + RO + 1 00110000000000001] 3001 006

For step 4, the optional jump must go back to step 3, i.e., at offset 6. This can
be done with a B instruction after the CMP and IT instructions, at offset 12. When
this instruction executes, the PC contains 12 4+ 4 = 16. Hence, this instruction must
subtract 16 — 6 = 10 from the PC to jump back to step 3. Due to the encoding format
of the B instruction, we must then use ¢ = 2043 (because 2 x 2043 — 4096 = —10):

CMP  compare(RO,R1) 0100001010‘001000 4288 008
IT  if # then 101111110000/jojolg] BF18 00A
B PC ¢ PC+2 %2043 — 4096 1110011111111011) E7FB  00C

We finish the subroutine with a POP instruction for step 5, as discussed above,
followed by the maximum counter value (F4240,=1000000):

POP RO R1 PC « stack 1011110/j00000011] BDE3 00E
data  (maximum counter value) Q00F4240 010

We now know that this maximum value is at offset 16, and we want to load it with a
LDR instruction at offset 4. When this instruction executes, the PC contains 4 +4 = 8.
Assuming that the subroutine starts at an address which is a multiple of 4, then | PC |4
is also equal to 8. This instruction must thus add 16 — 8 = 8 = 4 x 2 to the PC to
load the above value. This gives our missing LDR instruction:
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LDR R1 « mem32[|[PC|4 + 4 % 2] 0100100100000010] 4902 004

Putting all this together, we get the following machine code for the subroutine:
0Q00F4240 BDO3E7FB BF184288 30014902 2000B503 000

where bytes are shown, in increasing address order, from right to left. Indeed, the left
to right order would show all the bytes in the reverse order, which would make it hard
to recognize the above instruction encodings. It would also make it harder to store
this program in memory with the boot assistant word by word. Indeed, we would have
to reverse each group of 4 bytes to get a value which could be entered in the boot
assistant. With the right to left order, we get these values directly.

7.5.2 Main program

We can now implement the main program. Its first step consists in initializing the PIO
controller so that the pin to which the LED is connected, PB27, is configured as an
output pin, controlled by the microprocessor. In such cases we don’t need the pull-up
resistor, so we want to disable it as well. Going back to Section 6.6, this requires to
write the value 227 in the PIO Enable Register, Output Enable Register, and Pull-up
Disable Register of the PIO B controller (i.e., at addresses 400E10001¢, 400E1010+¢,
and 400E10604¢). For this we must load this value and the 3 addresses in registers
first?”. We can then use 3 STR instructions to store the value at the 3 addresses. In
fact, since STR instructions can store a value at an address plus an offset, we just
need to load one address in a register, namely 400E1000,4. We can then get the other
2 addresses with the offsets 1015 and 60:4. As for the subroutine, lets use 2 LDR
instructions to load the 400E1000:5 and 227 values, stored at the end of the program,
in registers RO and R1 respectively. Since we don’t know the program size yet, lets
skip these two LDR instructions for now. We thus start with the 3 STR instructions
instead, at offset 24=18;4 (i.e., 4 bytes after the end of the subroutine, to leave space
for the 2 LDR instructions):

STR R1 — mem32[R0 + 4 x 0] 0110000000000j001] 6001 018
STR R1 — mem32[R0 + 4 4] 0110000100000j001] 6101 014
STR R1 — mem32[R0 + 4 x 24] 01100110000000001] 6601 01C

The second step of the main program is to turn the LED on. This requires writing
the value 227 in the Set Output Data Register, i.e., at address 400E1030;6. This can
be done with another STR instruction:

STR R1 — mem32[R0 + 4 * 12 0110001100000001 6301 01F

We now want to wait some time, by calling the subroutine. For this we need a
Branch with Link instruction. This instruction is at offset 32, and the subroutine starts
at offset 0, so we need to subtract 32 + 4 = 36 from the PC to jump there. Due to

7In the following, for brevity, we often use “we” instead of “the program” or “‘some instructions”. For
instance, here, this sentence means “For this the program must load . . .”.
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the encoding format of the BL instruction, this means we need to use ¢ = 4194286
(because 2 x 4194286 — 8 x 1024 % 1024 = —36):

BL PC+ PC+2%x4194286 —8MB [1111011111111111] F7FF 020
1111111111101110; FFEE 022

After that we want to turn the LED off and wait some time again. This requires
writing the value 227 in the Clear Output Data Register, i.e., at address 400E10344¢,
and calling the subroutine again. Following the same method as above, we get:

STR R1 — mem32[R0 + 4 % 13] 0110001101j000j001] 6341 024
BL PC+PC+2%x4194283 —8MB [1111011111111111] F7FF 026
1111111111101011| FFEB 028

The last step of the main program is go back to step 2, with a B instruction.
Following the same reasoning as we did for the subroutine, we find that we need to
use ¢ = 2040, to jump from offset 42 to offset 30. With the two values 400E1000¢
and 227 just after this last instruction we obtain:

B PC < PC+2x2040 — 4096 [1110011111111000 E7F8 024
data  (Start address of PIO B registers) 400E1000 02C
data  (Pin 27) 08000000 030

Knowing the location of these two values, i.e., offsets 44 and 48, we can now
implement the two LDR instructions we skipped at the beginning (for the two LDR
instructions, | PC'| 4 contains 24 = 1416 + 4):

LDR RO « mem32[|PC|4 + 4 % 5] 01001000000000101] 4805 014
LDR R1 < mem32[|PC|y + 4 * 6] 0100100100000110| 4906 016

Putting everything together, we obtain the complete machine code for the main
program and its subroutine, with the main program starting at offset 144:

49064805 000F4240 BDO3E7FB BF184288 30014902 2000B503 000
400E1000 E7F8FFEB F7FF6341 FFEEF7FF 63016601 61016001 018
08000000 030

7.5.3 Run from RAM

As mentioned in Section 6.4, the boot assistant has a Gaddress# command to run a
program. We show here how to use it to run our “blink LED” program.

The Gaddress# command seems to take as argument the start address of a “mini
Vector Table” (this is not documented in [8]). Indeed, this command does not jump to
address, but to the interworking address stored at address + 4 (just as the Cortex
M3 starts by jumping to the interworking address stored at address 4). Presumably,
the value at address is meant to contain an initial Stack Pointer value, as in the Vector
Table. However, experiments show that this is not the case, i.e., programs run with
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this command execute on the stack used by the boot assistant itself. They can return to
the boot assistant by moving the LR to the PC, but the SP must be the same on return
as what it was on entry.

To run our program with the boot assistant, the easiest way is to store it in RAM.
Lets put it after the first 4 KB, used by the boot assistant, at address 2007100044
(a multiple of 4, as we assumed when we wrote it). To run it with the G command
we must have the interworking address of its first instruction (2007100016 + 1414
+ 1) somewhere in memory too. We can put it just after our program, at address
2007103416. We should then be able to run the program with the G20071030#
command. To verify this, connect the Arduino to your computer and open a terminal
as you did in Section 6.4.3. Then write the program into RAM with the following
commands:

user@host:~$ python3 boot_helper.py >W2007101C,63016601#

>W20071000,2000B503#
>W20071004,30014902#
>W20071008,BF184288#
>W2007100C,BDO3E7FB#
>W20071010,000F4240#
>W20071014,49064805%#

>W20071020, FFEEF7FF#
>W20071024,F7FF6341#
>W20071028 ,E7F8FFEB#
>W2007102C, 400E10004#
>W20071030, 080000004
>W20071034,20071015%

>W20071018,61016001#

And launch it with

>G20071030#
ERROR: no response from device.

If you didn’t make any typo in the above commands, you should see the LED
blinking! After 5 seconds the boot_helper.py program exits because it hasn’t
received any response from the boot assistant, but our program continues to run on
the Arduino. You can then reset the Arduino to go back to the boot assistant (at this
point our program is lost).

7.5.4 Run from flash

To avoid losing our program after it is run, we can store it in flash memory. We can even
run it directly when the Arduino boots, without going through the boot assistant. This
requires two things: storing a proper Vector Table in flash memory (cf. Section 7.4),
and setting the boot mode selection bit to boot from flash (cf. Section 6.5).

By default, only the first, second and fourth words of the Vector Table are used
(for the initial SP, initial PC, and the “hard fault” handler — the third one is “reserved”),
since the exception and interrupt handlers are disabled by default. We can thus store
our program after these 4 words, i.e., starting at offset 10,4 (a multiple of 4, as needed).
The initial PC must then be set to 800006 (the beginning of the flash memory region),
plus 1014, plus 1414 (the offset of the main program after the subroutine), plus 1
(an interworking address is required here). The initial SP can be set to almost any
address in RAM (our program pushes at most 3 words on the stack, so any value larger
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than 12 bytes after the beginning of the RAM region is fine). Lets use the end of
the contiguous RAM region, 200880006 (see Figure 6.3). Finally, the “hard fault”
handler can be set to the same value as the initial PC, 800256, so that, in case of
errors, our program restarts from the beginning.

The above Vector Table and our program use 17 words in total, much less than
the 64 words of a flash memory page. However, as we have seen in Section 6.5,
writing a page in flash memory requires writing 64 words in all cases. To avoid this
extra work, we provide a program called flash_helper.py. This program extends
boot_helper.py with an additional command named flash#. When it runs on the
host computer, this program does the following:

e When it receives a Waddress,value# command with an address in flash memory,
instead of sending it to the Arduino, flash_helper.py sends 64 w commands to
read the corresponding page. It stores the result in memory (on the host computer),
and writes value in this copy of the page.

e When it receives the flash# command, flash_helper.py writes the (modified)
page copies in the Arduino’s flash memory. For this, for each page, it sends 64 W
commands, followed by a W command in the Flash Controller Command Register to
write the page, followed by w commands to read the Status Register until the write
is done (cf. Section 6.5).

e When it receives any other boot assistant command, flash_helper.py sends it
directly to the Arduino.

Note that with this program, we can modify a single word in flash memory, without
modifying the 63 other words of the page, with only two commands (namely a W and a
flash# — with boot_helper.py more than 128 commands would be needed). Lets
use it to write our program:

user@host:~$ python3 flash_helper.py >W80024,49064805#

>W80000, 20088000#
Reading page 0. ..
>W80004,00080025#
>W8000C,00080025#
>W80010,2000B503#
>W80014,30014902#
>W80018,BF184288#
>W8001C,BDO3E7FB#
>W80020,000F4240#

Done.

>W80028,61016001#
>W8002C, 630166014
>W80030,FFEEF7FF#
>W80034,F7FF6341#
>W80038,E7F8FFEB#
>W8003C, 400E1000#
>W80040,080000004
>flash#

Writing page 0...

Done.

At this point we could run our program with a G80000# command, and we would
no longer loose it after a reset. Instead, lets set the boot mode selection bit to boot
from flash (cf. Section 6.5):

>W400E0AQ4 , 5A00010B#

Then press the RESET button on the Arduino: if you didn’t make any typo in the
above commands, you should see the LED blinking. However, two things can be
noticed. First, the LED blinks slower than before (about 1 blink every 2 seconds).
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This is because, by default, the Arduino’s clock runs at 4MHz. But when the boot
assistant starts, it sets the clock to a larger frequency. Second, if you watch the LED at
least 30 seconds, you can see that some blinks are shorter than others. This is because
our program is reset by the Watchdog Timer (cf. Section 6.2). The boot assistant
disables it when it starts, which is why we didn’t have this issue before. We explain in
Chapter 9 how to configure the clock and how to disable the Watchdog Timer.

Our program is now persistent and runs autonomously, without needing the boot
assistant. But what if we want to modify it, for instance to make it blink faster? For
this we need to go back to the boot assistant. The only way to do this at this point is to
do a full ERASE, in order to reset the boot mode selection bit to boot from ROM.
Unfortunately, this also erases the flash memory, and thus our program too. We would
then need to flash the whole program again, even if we just need to change one word
(the one containing the maximum counter value). To avoid this issue, the solution
is to add a few instructions at the beginning of our program, in order to set the boot
mode selection to boot from ROM as soon as our program starts. In this way, when
we reset it, we will automatically run the boot assistant again, without needing to do
an ERASE.
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As we have seen in the previous chapter, writing programs in machine code is quite
complex and error prone. The machine code instructions are complex mainly because
the machine itself (i.e., the Cortex M3 microprocessor) is complex. The machine
code instructions also have complex encodings. This complexity is manageable for
very small programs, but the basic input output system we want to write in this part is
not so small. In order to simplify its implementation, a solution is to use a simpler
instruction set, which in turn requires a simpler machine. This chapter defines such a
machine, and its set of instructions, called bytecode instructions. 1t is called a virtual
machine because it is not a physical chip. Instead, we provide in this chapter an
interpreter for this virtual machine. This small program simulates programs running
on the virtual machine. It does this by executing, for each bytecode instruction, an
equivalent sequence of Cortex M3 instructions.

8.1 Overview

The main source of complexity in the Cortex M3, and in most microprocessors, are
the registers. They are quite complex to use because there are only a small number of
them (16 on the Cortex M3). When they are all “full”, some of them must be copied
into memory (usually on the stack), so that they can store new values without losing
the old ones. The old values copied in memory must usually be copied back into the
registers at some point. This makes it hard to keep track of which value is stored
where at any point in time.

In order to get a simpler machine, a solution is thus to remove the registers. This
leaves only the stack and the (rest of the) memory. This also means that instructions
for this machine can only use the stack and the memory. For instance, an arithmetic
instruction can no longer read its operands in registers, nor write the result in a register.
A solution is to pop the operands from the stack, and to push the result on the stack.
This example shows another advantage of removing the registers: instructions no
longer need to encode on which registers they operate. In fact, arithmetic instructions
no longer need to have any argument. They can be encoded with a single constant
value. Moreover, since we no longer need some bits to encode the register indices, this
value can be small, only one byte. Hence the name bytecode instructions. A virtual
machine for such stack-based instructions is called a (virtual) stack machine.
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stack
callC return
_ E—
v0
argi argi argi
arg0 |C arg0 argd |(C result
B B B B
A A A A

FIGURE 8.1 Stack frames and function calls. Left: a stack with 3 stack frames,
corresponding to a function A calling a function B itself calling a function C. Each
stack frame contains the arguments passed to the function (e.g., arg0 and arg1 passed
in the call from B to C), and optionally some values pushed during the function’s
execution (e.g., v0). Right: the callee C pops its arguments (arg0, arg1) from the
caller's stack frame (B), and pushes its result on the caller’s stack frame when it
returns.

Removing the registers also impacts subroutines. Subroutines usually take some
arguments as input, and may return a result as output. For instance, a subroutine to
draw a character could take a character and a position on the screen as input, and
could return the position where the next character should be drawn. In general, these
input and output values could be stored in registers, on the stack, or a mix of the two.
But if we remove the registers, the virtual machine subroutines, called functions, are
forced to use the stack. This means that, as arithmetic instructions, a function must
pop its arguments from the stack, and push its result on the stack.

The consequence is that the stack is organized into stack frames as shown in
Figure 8.1. A stack frame is a contiguous part of the stack, corresponding to a function
call. Its contains the function arguments pushed by the caller, optionally followed by
the intermediate values pushed by the function’s instructions executed so far. When
this function calls another one, the arguments it pushed on the stack become the
beginning of a new stack frame, corresponding to the callee (see Figure 8.1). When
the callee returns, its entire stack frame is popped and replaced with the result value.

As arithmetic and logic instructions are simplified by using the stack instead of
registers, the other instructions can be simplified by using stack frames instead of
lower level concepts (e.g., a Link Register). For instance, we can define an instruction
to get the 7*" argument of the top stack frame (i.e., of the currently executing function),
and to push it on the stack. Doing this with Cortex M3 instructions would require
several instructions dealing explicitly with the Stack Pointer. As another example, we
can define an instruction to return a value from a function. As explained above, this
requires popping the top stack frame, and pushing the return value. Doing this with
Cortex M3 instructions would require several instructions.

In summary, for all the reasons explained above, the virtual machine designed and
implemented in this chapter is a virtual stack machine, with instructions using the
stack, stack frames and functions instead of registers. The next section defines its
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stack

Y sub
x xr—vy

FIGURE 8.2 The sub instruction pops two values z and y from the stack and pushes
their difference z — y.

instruction set.

8.2 Bytecode instructions

8.21 Arithmetic and logic instructions

cst_0  push(0) 00
cst_ 1 push(l) 01
cst8  push(c) c |02
cst push(c) ’ c 03

The cst_0 instruction, encoded with the byte 00:6 (also called opcode, for
operation code), pushes the value O on the stack. The cst_1 instruction does the
same with the value 1. The cst8 instruction pushes an 8-bit value on the stack. It is
encoded with the opcode 0214, followed by the byte value to push (bytes are shown,
in increasing address order, from right to left). Finally, the cst instruction pushes
a 32-bit value on the stack. This value is put directly after the opcode, without any
encoding (compare this with the MOVW and MOVT instructions). Note that cst_0,
cst_1 and cst8 are not strictly necessary (a cst instruction can be used instead).
They are provided to reduce the size of programs.

add y < pop(), x < pop(), push(x + y) 04
sub y < pop(), x < pop(), push(x — y) 05
mul y < pop(), xz < pop(), push(x x y) 06
div y < pop(), x « pop(), push(z/y) 07
and y < pop(), x < pop(), push(z A y) 08
or y < pop(), x < pop(), push(z V y) 09
lsl y < pop(), x < pop(), push(z K y) 0A
lsr y < pop(), x < pop(), push(z > y) 0B

The arithmetic and logic instructions are direct analogues of the Cortex M3
instructions with the same name. As discussed above, they use the stack instead of

95



CHAPTER 8 Virtual Machine

registers, and can thus be encoded with only one byte each. For instance, the sub
instruction pops a value from the stack, say y, then pops another value, say z, and
then pushes x — y on stack (and not y — x — see Figure 8.2).

8.2.2 Jump instructions

iflt y < pop(),x < pop(), jump to cif x < y c |0C
ifeq  y < pop(),z + pop(),jumptocifz =y c |0D
ifgt y < pop(),x < pop(), jump to cif x >y c OE
ifle y < pop(),x + pop(), jump to cif x < y c |OF
ifne y < pop(),x < pop(), jump to cif z # y c 10
ifge y < pop(),x < pop(), jump to cif x >y c 11

The “if less than” (if1t) instruction pops a value y from the stack, then pops a
value z, and finally jumps to offset c if z < y. The other instructions are similar, for
equal (eq), greater than (gt), less than or equal (le), not equal (ne), and greater than
or equal (ge) conditions. To simplify the encoding, the c offset is always interpreted
as a nonnegative value (compare this with the B instruction). In return, this offset
is defined relatively to the beginning of the currently executing function, i.e., to the
address of its first instruction.

Note that these conditional jump instructions are sufficient to make any other
instruction or sequence of instructions conditional. Indeed, for this, it suffice to use a
conditional jump instruction before the sequence, jumping after it if some condition
happens. We therefore do not use an IT-like instruction, nor a CMP-like one.

goto jumpiroc
The goto instruction unconditionally jumps to offset c, like the B instruction.

This offset is defined as above, i.e., as a nonnegative offset from the beginning of the
current function.

8.2.3 Memory and stack instructions

load 2+ pop(), push(mem32[z]) 13
store v < pop(),x < pop(), mem32[z] + v 14

The load and store instructions are direct analogues of the Cortex M3 LDR
and STR instructions, using the stack instead of registers. More precisely, the load
instruction pops an address from the stack, reads a 32-bit value at this address in
memory, and pushes it on the stack. The store instruction pops a value, then pops an
address, and finally stores the 32-bit value at this address in memory. To simplify the
interpreter, we do not define similar instructions for 16 and 8-bit values.
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stack
ptr 2 get1 set0
—>| a—8 — > V1 v —
V2 a—38 V2 V2 V2 V2 V2
\'Al a—4 \Al V1 VAl VAl VAl
v0 a v0 v0 v0 v0 v

FIGURE 8.3 The stack frame instructions. The ptr i instruction (left) pushes the
address of the i*" value in the top stack frame (in light gray), counting from 0. The
get 4 instruction (middle) pushes the *" value itself. Finally, the set 7 instruction
(right) replaces the " value with a new value popped from the stack.

ptr push(address of frame[i]) i |15
get push(frameli]) i |16
set framel[i] < pop() i |17

The ptr instruction pushes a pointer on the stack, namely the address of the it"
word in the top stack frame (counting from 0). The get instruction reads the i*"* word
in the top stack frame, and pushes it on the stack. The set instruction pops a value
from the stack, and stores it in the i** word in the top stack frame (see Figure 8.3).
These instructions can be used to access the arguments of the currently executing
function, but also the values it has pushed on the stack during its execution.

pop  pop()

Finally, the pop instruction simply pops a value from the stack, and discards it.

8.2.4 Function instructions

fn push_frame(n)

The fn instruction starts a function with n arguments. It must be the first instruction
of any function. Its role is to define a new stack frame, using the top n values on the
stack (see Figure 8.4). This is needed for the ptr, get and set instructions presented
above to “know” where the top stack frame begins in the stack.

call call function at C0000:¢ + ¢ c 1A
callr  call functionat a — ¢ c 1B
calld = < pop(), call function at = 1C

The call instruction calls a function at an offset ¢ from the start of the Flash1
memory bank, CO000;¢ (the instruction at this address must be a fn). This gives a
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stack
fn3 ret retv
—> — —>
arg2 arg2 V2 V2
argl argl vl Vi
arg0 argo vO0 v0 V2

FIGURE 8.4 The function instructions. The fn n instruction (left) creates a new top
stack frame (light gray) with the top n values of the previous top stack frame (gray).
The ret instruction (middle) pops the top stack frame. The retv instruction (right)
pops a value from the stack, pops the top stack frame (light gray), and then pushes
this value on the new top stack frame (gray).

very simple encoding (compare this with the BL instruction), but restricted to a fixed
64kB address range. To support more addresses, we also define callr and calld
instructions. The former calls a function at an offset —c from its own address, noted a.
The latter pops a value from the stack, interpreted as an address, and calls the function
at this address.

ret pop_frame() ID
retv x + pop(), pop_frame(), push(z) 1E

The return (ret) instruction returns from a function without output value. It pops
the top stack frame, and resumes execution in the caller. The return value (retv)
instruction returns from a function with a result value. It pops this result from the stack,
pops the top stack frame, and finally pushes back the result value (see Figure 8.4). It
then resumes execution in the callee.

blx x <+ pop(), BLX z

Finally, the blx instruction calls a Cortex M3 subroutine at an interworking
address popped from the stack, with a BLX instruction. It can be used to execute
Cortex M3 instructions without an equivalent bytecode instruction.

8.3 Interpreter

We can now implement an interpreter for the virtual machine and the instruction set
defined above. A bytecode interpreter executes bytecode instructions given as input,
like a microprocessor executes machine code instructions. A simple method to do
this is to read a bytecode instruction, execute an equivalent sequence of machine
code instructions, read another bytecode instruction, execute the equivalent machine
instructions, and so on. In our case, this gives the following overall algorithm:
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ALGORITHM 81 The overall virtual machine algorithm.

1. read the first byte of the current bytecode instruction,

2. if it is an undefined opcode (i.e., strictly larger than 32), trigger an exception,

3. if itis 0 (cst_0), execute a sequence of Cortex M3 instructions to push a 0 on the
stack, advance to the next instruction, and go back to step 1,

4. if itis 1 (cst_1), execute a sequence of Cortex M3 instructions to push a 1 on the
stack, advance to the next instruction, and go back to step 1,

5. if itis 2 (cst8), read the next byte of the current instruction, execute a sequence
of Cortex M3 instructions to push this byte on the stack, advance to the next
instruction, and go back to step 1,

6. ... and so on for the remaining 29 instructions ...

8.3.1 Registers

In order to implement this algorithm we need to use some registers. Indeed, although
the bytecode instructions do not use registers directly, their interpreter is made of
machine code instructions, which do use registers. We can deduce the registers we
need from the above algorithm and from the instruction definitions:

e For each step above we need a register holding the address of the current bytecode
instruction. We call it the Instruction Counter (IC), by analogy with the Cortex M3
Program Counter.

e For the arithmetic and logic instructions we need two registers to store the operands
and the operation result. We can use the RO and R1 Cortex M3 registers for this.
We also need a stack pointer, to know where to pop the operands from, and where
to push the result. The simplest is to use the Cortex M3 Stack Pointer (SP) for this,
to take advantage of the PUSH and POP instructions.

e For the jump instructions we need a register containing the address of the first
instruction of the currently executing function. Indeed, the offset used by these
instructions is defined relatively to this address. We call this register the Function
Address (FA).

e For the stack frame instructions we need a register storing the address of the top
stack frame, i.e., the address of its 0" value. Indeed, this is necessary to compute
the address of an i value. This register is usually called the Frame Pointer (FP).

e For the function instructions, in particular the ret and retv instructions, we need a
register pointing to the caller’s instruction to return to, similar to the Link Register.
We call it the Return Address (RA).

Finally, at each function call, we need to save the registers containing information
about the caller, so that we can update them with data about the callee instead. This
is the case of the Function Address, the Return Address, and the Frame Pointer. We
can save them by pushing them on some stack (see below), and pop them when the
callee returns. This requires another stack pointer, and thus one last register. We call
it the Backup Pointer (BP). In summary, besides the Stack Pointer, we need a total of
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Index | Symbol | Name Pointer target

RO RO - -

R1 R1 - -

R2 IC Instruction Counter | Current instruction

R3 RA Return Address Instruction to return to

R4 FA Function Address 0" instruction of current function
R5 FP Frame Pointer 0™ value of top stack frame

R6 BP Backup Pointer Last saved register value

TABLE 8.1 The registers used by our interpreter.

7 registers. We map them to the RO to R6 registers as shown in Table 8.1

8.3.2 Stack frame layout

As discussed above, we need a stack to save and restore the RA, FA, and FP registers.
Using a custom stack requires deciding where to store it in memory, and how much
memory to reserve for it. To avoid these issues, we use the same stack as the one
used for stack frames, i.e., the one managed with the SP. The consequence is that
stack frames contain saved registers between! the callee’s arguments, and values
pushed by the callee (see Figure 8.5). This is not ideal since bytecode programs
become dependent on implementation details of the interpreter. For instance, if the
interpreter is updated to save an additional register, the indices used in ptr, get and
set instructions must be updated as well. But we don’t plan to change the interpreter,
so this is not really an issue.

Another consequence of saving the registers on the same stack as stack frames is
that the Backup Pointer must be saved on the stack as well. This register contains the
address of the last saved register value in memory. If a separate stack was used to save
the registers, we could just increment or decrement it by 12 = 3 * 4 since we would
push and pop registers by groups of 3 (RA, FA, FP). But when registers are saved
on the same stack as stack frames, the offset between each group of saved registers
varies (see Figure 8.5). By saving the BP inside each group we get in each group the
previous BP value, pointing to the previously saved group. The result is a linked list
data structure, called this way because each list element has a link (a pointer) to the
next element (see Figure 8.5).

8.3.3 Initialization

In order to facilitate its use from native programs, i.e., programs written in machine
code, the microprocessor’s native language, we propose to implement the interpreter

We could also put the saved registers between the caller and callee stack frames, but this is more
complex to implement.
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+32
+96

3 12k %
@ | © ©
¢ B (main) A'

FIGURE 8.5 The stack frame layout. Each stack frame (here for a function A calling
B, itself calling C) contains, in this order, the callee’s arguments (argo0, etc), the saved
caller’s registers (blue), and values pushed by the callee (v0, etc). The Frame Pointer
FP points to the bottom of the top stack frame. The Backup Pointer BP points to the
last saved register. Values noted +x are offsets from the Stack Pointer SP.

as a subroutine. This allows a native program P to call the interpreter with some
bytecode program Q to interpret, which returns to P when it is done. More precisely,
we define the following interface:

P saves the registers it uses if necessary (the interpreter might override them).
P optionally pushes some arguments on the stack, for Q.

P stores the address of Q’s first instruction in R2, the Instruction Counter.

P calls the interpreter subroutine with a BL or BLX instruction.

The interpreter executes Q, and finally returns to P.

For this the interpreter must be able to detect when a bytecode program ends. To
this end, we assume that bytecode programs always start with a fn instruction?. The
end of the program is then defined as the point where this function, called the main
function, returns. We can then detect the end of the program as follows:

o Initialize the Backup Pointer to 0, an invalid stack address (the stack is restricted to
the RAM region, which does not contain this address).

e The end of the program is reached if and only if the Backup Pointer is O when a
function returns.

Indeed, if the BP is O this means that the current function was not called by another
function, i.e., is the main function. Otherwise the BP would contain a valid stack
address, pointing to saved registers.

In order to implement the above interface, we need to add an initialization step
before Algorithm 8.1. This step only needs to initialize the Backup Pointer to O (the
initial value of RO, R1, RA, FA, and FP is never used, and IC is set by the caller):

instruction encoding  offset

MOV R6 + 0 00100j110000000000] 2600 000

2We could add machine code to check this during the initialization step but we don’t, to simplify.
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8.3.4 Instruction dispatch

We can now implement step 1 of Algorithm 8.1. This step reads a byte at the address
stored in the Instruction Counter, and stores it in R0. It then increments the IC by 1 to
prepare reading the instruction’s arguments, or the next instruction:

0111100000J0100000
00110/01000000001

LDRB RO + mem8[R 2 + 0]
ADD R2+ R2+ 1

7810 002
3201 004

Step 2 must trigger an exception if the opcode in RO is undefined, i.e., if it is
strictly larger than 31. If this happens, execution will then jump to the Hard Fault
handler (cf. Section 7.4). If it is a blink LED subroutine for instance, as we did in
Section 7.5.4, the LED will blink when an undefined opcode is found. The Cortex
M3 has an instruction which is precisely done for this case. It is called “Permanently
Undefined” (UDF), and triggers an Undefined Instruction exception. It is encoded as
’111101111111110‘ Il Il Il ?l Il Il
instructions for step 2:

L where cis ignored. This gives the following

CMP compare(RO, 31) 0010100000011111] 281F 006
IT  if > then 10111111/100010olg] BF88 008
UDF Undefined Instruction exception 1101111000000000] DE@Q 00A

The rest of the interpreter’s code can be divided into 32 subprograms (i.e., 32
sequences of instructions), one for each bytecode instruction. These subprograms
can be put one after the other, in increasing order of opcodes. First the subprogram
for cst_9, then the one for cst_1, etc up to the subprogram for b1lx (see Figure 8.6).
The " subprogram could test if the opcode in RO is equal to 7. If it is, it would
execute its sequence of instructions. Otherwise, it would jump to the next subprogram,
which would test if the opcode is equal to ¢ + 1, and so on. But doing so would be
quite inefficient. Indeed, for a b1x instruction for instance, we would need to do 32
comparisons to finally find which subprogram to execute. A shorter and more efficient
method is to use a TBB instruction:

TBB PC «+ PC+ 2+ mem8R15+R0] [111010001101{1111

11110000000000000

E8DF 00C
Fooo 00t

Indeed, this instruction jumps by an offset which is twice the i*" byte after the
instruction itself, with ¢ = R0. For instance, if this instruction is followed by the
bytes [42,13,17,21,...], then it jumps by an offset 2 x 42 if RO is 0, by an offset
2x 13 1ifitis 1, 2% 17 if it is 2, and so on. We can thus add a table with 32 bytes
after this instruction, corresponding to the offsets between this instruction and each of
the 32 subprograms. We don’t have the subprograms yet, so we can’t compute these
offsets for now. Instead, we leave space for them (32 bytes) and start implementing
the subprograms.
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mov
LDRB
ADD
CMP
IT
UDF

cst_0| cst_1 retv blx

FIGURE 8.6 The interpreter code structure. After the initialization code (white) and
the code for step 1and 2 of Algorithm 8.1 (light gray), a TBB instruction uses a table of
32 offsets (blue) to jump to the subprogram (dark gray) corresponding to the current
instruction. Each of the 32 subprograms then jumps back to step 1.

8.3.5 Arithmetic and logic instructions

cst_0 The cst_0 subprogram, at offset 3014 (32 bytes after the TBB instruction),
just needs to push O on the stack. This is easy to do with MOV and PUSH instructions.
It must then go back to step 1 of Algorithm 8.1, i.e., at offset 2;4. This can be done
with a B instruction using the negative offset 216 — (3416 + 4) = —54:

MOV RO+ 0 00100‘00000000000 2000 030
PUSH RO — stack 1011010/000000001] B401 032
B PC + PC + 2 %2021 — 4096 11100‘11111100101 E7E5 034
cst_1 The cst_1 subprogram is similar:

MOV RO «+ ! 00100‘00000000001 2001 036
PUSH RO — stack 101 1010‘000000001 B401 038
B PC + PC + 2% 2018 — 4096 11100‘11111100010 E7E2 03A

cst8 This subprogram needs to push the 8-bit value following the instruction’s
opcode. This can be done by replacing the MOV instruction with a LDRB instruction,
to read the byte at the address given by the IC (remember that IC was incremented in
step 1, for this purpose). Finally, before going back to step 1, it must increment the IC
again, to point to the next bytecode instruction:

LDRB RO + mem8[R2 + 0] 01111o0000p10ood 7810 o3c
PUSH RO — stack 1011010/000000001| B401 03F
ADD R2+ R2+ 1 0011001000000001] 3201 040
B PC ¢« PC+2 %2014 — 4096 11100111111011110| E7DE 042

cst This subprogram is similar, but reads a word instead of a byte:

LDR RO ¢ mem32[R2 + 4 x 0] 01101000000 100000 6810 044
PUSH RO — stack 1011010/000000001| B401 046
ADD R2 « R2+ 4 0011001000000100 3204 048
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B PC < PC+2#2010 — 4096 1110011111011010 E7DA 04A

add This subprogram pops two values, adds them, and pushes the result:

POP RO R1 « stack 10111100j00000011] Bco3 04c
ADD R1 + R+ R0 0001100/000001001] 1809 04E
PUSH R1 — stack 1011010/000000010| B402 050
B PC ¢« PC+ 2 %2006 — 4096 11100111111010110| E7D6 052

sub This subprogram is similar, but the order in which the registers are subtracted is
important. If the top two stack values are x and y, as in Figure 8.2, popping them
in RO and R1 stores y in RO and x in R1 (cf. Section 7.3.2). Hence, RO must be
subtracted from R1 to get the desired result x — y:

POP RO RI1 « stack 1011110)00000011] BCo3 054
SUB R1+ RI—RO 0001101/000001001] 1409 056
PUSH R1 — stack 1011010/000000010 B402 058
B PC ¢« PC+ 2 %2002 — 4096 1110011111010010 E7D2 054

mul, div, and, or, Isl, lsr These subprograms are similar, with the SUB instruction
replaced with MUL, UDIV, ORR, LSL, and LSR, respectively. Here we just give the
result of their encoding:

B4024001 BCO3E7C9 B402F1F0 FBB1BCO3 E7CEB402 4341BC03 05C
B40240C1 BCO3E7BD B4024081 BCO3E7C1 B4024301 BCO3E7C5 074
E7B9 08C

8.3.6 Jump instructions

iflt This subprogram must first pop two values = and y and compare them (the order
in which the registers are compared is important):

POP RO R1 « stack 1011110/j00000011] Bco3 osE
CMP  compare(R1,R0) 0100001010(000j001] 4281 090

Then there are two cases. If x < y it needs to jump, i.e., to update the IC to the
Function Address (in R4), plus the 16-bit offset stored just after the instruction opcode.
This offset can be read with a LDRH instruction, and then added to the FA to get the
new IC. If x > y, it just needs to increment the IC by 2 to skip the offset and go to the
next instruction. All this can be done with an IT instruction making the 3 following
instructions conditional on z < y, < y, and x > y, respectively:

IT  if < then then else 10111111o01f1lolzl] BF3A 092
LDRH RO + mem16[R2 + 2 % 0] 10001/00000/010/000| 8810 094
ADD R2+ R4 + R0 0001100000700j010 1822 096
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ADD R2 <+ R2+2
B PC + PC +2 %1970 — 4096

0011001000000010
1110011110110010

3202 098
E7B2 09A

ifeq, ifgt, ifle, ifne, ifge These subprograms are similar, with only the IT instruction
changing (and the offset of the B instruction). We just give the result of their encoding:

18228810 BF864281 BCO3E7AB 32021822 8810BF06 4281BCO3  09C
BF1A4281 BCO3E79D 32021822 8810BF9A 4281BCO3 E7A43202 0B4
E78F 32021822 8810BF26 4281BC03 E7963202 18228810 0CC

goto This subprogram is simpler since it does an unconditional jump:

LDRH RO « mem16[R2 + 2 % 0] 100010000001 0j000| 8810 0F2
ADD R2 <+ R/ + RO 0001100/000]700010 1822 0E4
B PC+ PC+2%1932 — 4096 1110011110001100| E78C 0E6

8.3.7 Memory and stack instructions

load This subprogram pops an address, reads the memory at this address, and pushes

the value read:

POP R1 « stack 1011110J00000010 BCO2 0E8
LDR RO ¢ mem32[R1 + 4 x 0] 0110100000001/000 6808 0FA
PUSH RO — stack 1011010/000000001] B401 0EC
B PC <« PC+2 %1928 — 4096 1110011110001000 E788 0FF

store This subprogram pops an address and a value, and stores the value at this
address (as above, the order in which the registers are popped is important):

POP RO R1 « stack 1011110J00000011] BCo3 oFo
STR RO — mem32[R1 + 4 * 0] 01100j00000j0017j000 6008 0F2
B PC <« PC+2%1925 — 4096 1110011110000101] E785 0F4

ptr This subprogram must read the byte after the instruction’s opcode, containing an
index ¢. It must then subtract 4 x ¢ = ¢ < 2 from the Frame Pointer (in R5), to get the
address of the i*" 32-bit value in the top stack frame:

LDRB RO + mem8[R2 + 0] 0111100000100 7810 or6
LSL RO+ RO < 2 00000000010j000j000] 080 0Fs
SUB RO + R5 — RO 0001101/000]707/000 1428 oFA

Finally, it must push this address a on the stack, and increment the IC to go the next

instruction:
PUSH RO — stack 101 1010\000000001 B401 0FC
ADD R2<+ R2+ 1 00110\01000000001 3201 OFE
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B PC<¢ PC+2#1919 — 4096 1110011101111111 E77F 100

get This subprogram starts with the exact same LDRB, LSL, and SUB instructions
(not shown), but then reads the memory at a and pushes the value read, instead of
pushing a:

LDR R1 ¢ mem32[R0 + 4 0] 0110100000000001 6801 108
PUSH R1 — stack 10110100/00000010 B462 104
ADD R2+« R2+ 1 0011001000000001] 3201 1ecC
B PC ¢« PC+2%1912 — 4096 11100111101111000| E778 10F

set This subprogram also starts with the exact same LDRB, LSL, and SUB instruc-
tions (not shown), but then pops a value and stores it at address a:

POP R1 ¢ stack 1011110/o0000010| BCO2 116
STR R1 — mem32[R0 + 4 * 0] 01100j00000j000j001] 6001 118
ADD R2 ¢+ R2+ 1 00110010000000001] 3201 114
B PC ¢ PC+2 %1905 — 4096 1110011101110001 E771 11C

pop This subprogram just pops a value and discards it:

POP RO ¢ stack 1011110/00000001] BCo1 11E
B PC ¢ PC+2 %1903 — 4096 1110011101101111] E76F 120

8.3.8 Function instructions
fn This subprogram starts by saving the RA, FA, FP and BP registers. It then updates

the Backup Pointer to point to this new group of saved registers:
PUSH R3 R4 R5 R6 — stack 1011010‘001111000 B478 122
MOV R6 + R13 0100011001 701[110 466 124

The FA and FP can then be updated too. The FA must be set to the fn instruction’s
address, IC - 1 (since IC was incremented in step 1):

MOV R4 + R2 0100011000010100 4614 126
SUB R4+ R4 -1 00111‘10000000001 3ce1 128

The FP must be set to the bottom of the stack frame, initially at offset 4 * (n — 1)
from the SP (just copied in the BP), but now at offset 4 x (n — 1) + 16 = n <« 2+ 12
since 4 values were just pushed (where n is the byte just after the fn opcode):

LDRB RO + mem8[R2 + 0] 0111100000 10jood 7810 124
LSL RO+ RO < 2 00000000010j000j000] @080 12c
ADD RO « RO + 12 00110/00000001100 300C 12E
ADD R5 + R6 + RO 0001100j000]7 10101 1835 130
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Finally, the fn subprogram increments the IC to the beginning of the next instruction,
and jumps back to step 1:

ADD R2 <+ R2+1

B PC <+ PC + 2 % 1893 — 4096

0011001000000001
1110011101100101

3201
E765

132
134

call This subprogram must update the IC to the 16-bit offset after this opcode, added
to C0000+¢ (which can be done with a MOVT). Before this, it needs to set the Return
Address (in R3) to the address of the next instruction, IC + 2:

MOV R3 « R2 0100011000010011] 4613 136
ADD R3¢+ R3+ 2 0011001100000010] 3302 138
LDRH R2 + mem16[R2 + 2 % 0] 10001000000 10j010 8812 134
MOVTR2[31..16] « 12 11110p[1011000000| F2ce 13c

0000001000001100 ©20C 13E
B PC ¢ PC + 21887 — 4096 1110011101011111] E75F 140

callr This subprogram is similar, with the MOVT replaced with two SUB instructions,
to update the IC to the instruction’s address (IC - 1), minus its 16-bit offset argument:

MOV R3 « R2 0100011000010011 4613 142
ADD R3 « R3+ 2 0011001100000010] 3302 144
LDRH RO + mem16[R2 + 2 * 0] 10001/00000/010/000| 8810 146
SUB R2+« R2—1 00111010000000001] 3A01 148
SUB R2+ R2 — RO 0001101000[0710010, 1A12 14A
B PC <« PC+2%1881 — 4096 1110011101011001] E759 14C

calld This subprogram is simpler since the Return Address is just the IC, and the
new IC value is just popped from the stack:

MOV R3 « R2 010001100/0010011 4613 14¢
POP R2 « stack 1011110/000000100| BCo4 150
B PC+¢ PC+2 %1878 — 4096 11100111101010110, E756 152

ret This subprogram must pop the top stack frame, i.e., set the SP to FP + 4. It must
also restore the saved registers by popping them, after FP + 4 has been computed
(otherwise the caller’s FP would be used to update the SP, which is incorrect). To this
end, the subprogram first computes FP + 4 in RO, then pops the saved registers (which

requires setting the SP to the BP first), and finally sets the SP to RO:

MOV RO « R5 01000110001017000 4628 154
ADD RO + RO+ 4 0011000000000100] 3004 156
MOV R13 « R6 01000110101 100101] 4685 158
POP R2 R4 R5 R6 « stack 1011110/001110100 BC74 154
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MOV R13 « R0 01000110[1j0000101] 4685 15C

Note that the POP instruction pops the saved Return Address in the Instruction Counter
(in R2). Everything is thus ready at this point to back to step 1. Before this, however,
the subprogram tests if the BP is 0 and, if so, returns from the interpreter (as explained
in Section 8.3.3), by moving the LR into the PC:

CMP compare(R6, 0) 00101‘11000000000 2EQQ 15E
IT  if =then 101111110000/j0jolo| BFes 160
BX PC+«R14-1 0100011101110000 4770 162
B PC ¢« PC+ 2+ 1869 — 4096 11100111101001101] E74D 164

retv This subprogram is similar, but pops the return value (in R1) and pushes it
again before and after doing the same 5 instructions as the retv subprogram. The
next chapters don’t need a main function returning a value from the interpreter. This
subprogram thus goes back to step 1 without checking if BP is 03:

POP R1 ¢ stack 1011110/o0000010 BCo2 166
MOV RO + RS 01000110001017j000 4628 168
ADD RO ¢+ RO + 4 00110/00000000100] 3004 164
MOV R13 « R6 01000110[10110101] 4685 16C
POP R2 R4 R5 R6 « stack 10111100/01110100 BC74 16E
MOV R13 + R0 01000110[1/0000101] 4685 170
PUSH R1 — stack 1011010/000000010 B402 172
B PC ¢ PC+2x 1861 — 4096 11100111101000101| E745 174

blx Finally, the last subprogram does a Branch with Link and Exchange to an address
popped from the stack. Since the BLX instruction updates the LR, which we need
to return from the interpreter, we save it first and restore it upon return (the callee is
responsible for saving and restoring the interpreter registers):

POP RO  stack 1011110/o0000001] BCo1 176
MOV R1 + R4 010001100 710/001] 4671 178
BLX PC+ RO—1,LR« a+3 0100011110000000] 4780 174
MOV R14 + RI 0100011000010 4686 17¢
B PC ¢ PC+2x 1856 — 4096 1110011101000000 E740 17¢

8.3.9 Final code

The last step to finish the interpreter is to compute the 32 values for the TBB table.
Each value is half the difference between the address of the first instruction of a

3This could be done without additional instructions, by jumping to ret’s CMP instruction instead.
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subprogram and the start of the table, 10;4. For instance, for the b1x subprogram
starting at 17616, we get B314. By doing this for the 31 other subprograms we get:

80797370 6C69625B 544D463F 3B37332F 2A26221E 1A161310

B3ABA29F

99938987

By putting everything together, we finally get the full interpreter code:

2A26221E 1A161310
B3ABA29F 99938987
B4016810 E7DE3201
4341BC03 E7D2B402
BCO3E7C5 B4024001
BCO3E7B9 B40240C1
32021822 8810BF06
8810BF9A 4281BC03
4281BC03 E7963202
E788B401 6808BC02
1A280080 7810E77F
BCOT1E771 32016001
4613E765 32011835
4613E759 1A123A01
BCO2E74D 4770BF08
E740468E 47804671

FOOOESDF
80797370
B4017810
1AQ9BCO3
BCO3E7C9
BCO3E7BD
4281BC03
E7A43202
18228810
E78C1822
3201B401
BCO21A28
300C0080
88103302
2E004685
BCO1E745

DEQOBF88
6C69625B
E7E2B401
E7D6B402
B402F1F0@
B4024081
E7B23202
18228810
BF1A4281
8810E78F
1A280080
00807810
78103C01
4613E75F
BC7446B5
B4024685

281F3201
544D463F
2001E7ES
1809BCA3
FBB1BC@3
BCO3E7C1
18228810
BF864281
BCO3E79D
32021822
7810QE785
E7783201
4614466E
020CF2Co
30044628
BC7446B5

78102600
3B37332F
B4012000
E7DA3204
E7CEB402
B4024301
BF3A4281
BCO3E7AB
32021822
8810BF26
6008BC03
B4026801
B478E76F
88123302
E756BC04
30044628

010
028

000
018
030
048
060
078
090
0A8
0Co
oD8
oFo
108
120
138
150
168

Lets store it in the 2% flash memory bank, at address C00001¢. For this we
can use the flash_helper.py program and its flash# command, presented in
Section 7.5.4. To avoid typing the 96 necessary W commands, we provide them
in part2/interpreter.txt (you should have this file in the same directory as the
flash_helper.py program if you downloaded https://ebruneton.github.io/toypc/scri
pts.zip). Connect the Arduino to your computer and open a terminal. Then run the
commands in this file as follows (the < operator makes flash_helper.py read and
execute all the commands in the specified file; in this mode these commands are not

printed):

user@host:~$ python3 flash_helper.py < part2/interpreter.txt

>Reading page 1024... Done.
Reading page 1025... Done.
Writing page 1024... Done.
Writing page 1025... Done.
>Done.

8.4 Example program

We can now program the Arduino with bytecode instructions, which should be easier
than with Cortex M3 machine code. To verify this, we can reimplement the program
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to blink a LED from Section 7.5, but in bytecode. We can use the same structure, with
a function to wait for some time, and a main function calling it. Lets start with the
waiting function, which just counts to some large value. Here it is a bit easier to count
down to 0, as follows:

. push a large value on the stack,

. subtract 1 from the top stack value,
. if itis not 0, go back to step 2,

. return to the caller.

AW =

This translates directly to bytecode instructions. We start the function with a fn 0
instruction (this function does not have any argument), and then push 100000=186A0+¢
with a cst instruction (the right column is the offset from the current function’s start
or, for fn instructions, from the program’s start):

instruction encoding (right to left) offset
fn 0 00 19 00000
cst 186A0 000186A0 @3 +002

Step 2 can done by pushing 1 on the stack and then subtracting the top two stack
values (which at this point are the counter and 1):

cst_1 01  +007
sub 05 +008

For step 3, to compare the counter with 0 and optionally jump back to step 2 (i.e.,
at offset 7), we could push a 0 and use an ifne instruction. But this would pop our
counter from the stack, which would then be lost. To avoid this we need to push a
copy of it before pushing 0. The counter is the 4" value on the function’s stack frame,
counting from 0 (because there are no function arguments but 4 saved registers below
it). We can thus push a copy of it with a get 4 instruction:

get 4 04 16 +009
cst_0 00 +00B
ifne 7 0007 10 +00C

Finally, the last step is trivial:
ret 1D +00F

This function should probably look simpler to you compared with the equivalent
machine code in Section 7.5. In particular for the encoding of instructions. The main
function is even simpler. Recall that it must first write the value 227 in the PIO B
Enable Register (400E1000;¢), Output Enable Register (400E10104¢), and Pull-up
Disable Register (400E10601¢). This is trivial to do with cst and store instructions:

fn 0 00 19 00010
cst 400E1000 400E1000 03 +002
cst 8000000 08000000 03 +007
store 14 +00C
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cst 400E1010 4Q0E1010 03  +00D
cst 8000000 08000000 @3 +012
store 14 +017
cst 400E1060 400E1060 @3 +018
cst 8000000 08000000 @3 +01D
store 14 +022

After that the main function must turn the LED on by writing the same value in the
Set Output Data Register (400E1030+¢), call the waiting function, turn the LED off by
writing 227 in the Clear Output Data Register 400E1034 4, call the waiting function
again, and finally go back to the beginning. Again, this translates directly to bytecode
instructions which are easy to encode (we assume that the waiting function is stored
at address 200710001¢):

cst 400E1030 400E1030 03 +023
cst 8000000 08000000 @3 +028
store 14 +02D
cst 20071000 20071000 03 +02E
calld 1C  +033
cst 400E1034 400E1034 03 +034
cst 8000000 08000000 @3 +039
store 14 +03E
cst 20071000 20071000 @3 +03F
calld 1C  +044
goto 23 0023 12 +045

This gives the final bytecode of our new LED blinking program:

03400E10 00030019 1D000710 00041605 01000186 AQ030019 000
00000340 OE106003 14080000 0003400E 10100314 08000000 018
0E103403 1C200710 00031408 00000003 400E1030 03140800 030

0023121C 20071000 03140800 00000340 048

Lets store it in RAM in order to test it with the boot assistant. The commands to
do this are provided in part2/interpreter_blink_led. txt. Run them as follows:

user@host:~$ python3 flash_helper.py < part2/interpreter_blink_led.txt
>Done.

To run our program we need to write a bit more machine code. Indeed, we need
to load the address of the main function’s first instruction (2007100016+ 1044) in the
Instruction Counter (R2), and then call the interpreter subroutine. The former can
be done with a LDR instruction. The latter can be done with a LDR instruction to
load the interpreter’s interworking address (C0000;6+1) in RO, followed by a BX RO.
Assuming these instructions start at an address which is a multiple of 4, we get:

LDR R2 « mem32[|[PC|4 + 4 % 1] 0100101000000001] 4A01 000
LDR RO « mem32[|PC|4 + 4 % 2] 01001/00000000010] 4802 002
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BX PC+RO-1 0100011100000000] 4700 004
data  (padding, unused) 0000 006
data  (address of main function’s 1%¢ instruction) 20071010 008
data  (interworking address of interpreter) 000C0001 00C

We can store these instructions at 20071100, and finally call them with a Ga#
command (recall that Ga# jumps to the interworking address stored at a + 4):

user@host:~$ python3 boot_helper.py
>W20071100,48024A01#
>W20071104,000047004#
>W20071108,20071010#

>W2007110C, 000C0001#
>W20071204,200711014#

>G20071200#

ERROR: no response from device.

At this point you should normally see the LED blinking! Note that it blinks at
about the same speed as the machine code version running from the boot assistant.
Yet it counts to 100000 instead of counting to 1 million between each step. This shows
that our bytecode program is about 10 times slower than the equivalent machine code
version! This is not an issue here because our interpreter is only a temporary program,
similar to a scaffolding, to help us build our toy computer. Indeed, we discard it at the
end of Chapter 25.
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Thanks to the virtual machine implemented in the previous chapter we can now start
to implement our basic input output system, in a much simpler way than with machine
code. Recall that our goal is to make the Arduino completely autonomous, with its
own keyboard and screen to write programs and run them (instead of needing a host
computer and a USB cable). For this we need small programs to interact with the
keyboard and the screen, called drivers. Before writing them, however, it is useful to
have a clock driver'. That is, some functions to configure the Arduino’s clock and to
wait for some time in a more precise way than with a software counter.

This chapter presents the SAM3X8E components which are needed for this, namely
the Power Management Controller and the System Timer. We give an overview of these
components, and explain how programs can use them. We then use this knowledge to
implement the above clock driver functions. Finally, we test these functions with a
third version of our LED blinking program.

9.1 Power Management Controller

The Power Management Controller (PMC) component generates clock signals for
the other components of the microcontroller, including the microprocessor and the
peripheral controllers (see Figure 6.2). It can turn these clock signals on and off,
and can change their frequency. The higher the clock frequency, the more power is
consumed, but components whose clock signal is off do not consume power. The
Power Management Controller thus indirectly controls how much power is consumed,
hence its name.

The clock signals are generated by an oscillator circuit at a fixed frequency, but
can optionally go through other circuits which can multiply this frequency by a
configurable factor. The PMC has several such circuits. The ones used in this book
are represented in Figure 9.1:

e The Resistor Capacitor (RC) is an oscillator circuit providing a 4MHz clock signal
by default (it can be configured to output 4, 8 or 12MHz). It is integrated in the
SAM3XSE chip.

IThis is not strictly necessary. The clock driver could be written only once the Arduino is autonomous,
with the Arduino’s keyboard and screen, but this would be a bit more complex.

113



CHAPTER 9 Clock Driver
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FIGURE 91 A simplified representation of the Power Management Controller (PMC)
circuit and registers (in gray). The PMC provides clock signals (in green) to the other
components, generated from a selectable oscillator (left) at a frequency optionally
multiplied by a configurable factor (middle). See Figures 28-1and 28-2 in [8].

e The Crystal Oscillator uses an external crystal on the Arduino board to generate a
12MHz clock signal. This signal is much more stable than the one provided by the
Resistor Capacitor oscillator.

e The Phase Lock Loop (PLL) circuit can multiply the frequency output by the RC
or by the Crystal oscillator by a configurable factor, up to 2048. Note however
that the SAM3X8E components only support frequencies up to 84MHz. Higher
frequencies can damage them permanently.

These circuits are controlled by several registers. Some of them are shown in
Figure 9.1. The ones used in this book are presented below and in Table 9.1. The full
list of the PMC registers and its full diagram can be found in Chapter 28 of [8].

911 Main Oscillator Register

This register enables or disables the oscillator circuits, and selects which oscillator to
use. It has the following binary format (we present only the bits that we use):

10.0.0.0][c[0.0]r]

1

0,000000][s| password [ startup,

r enables the RC oscillator if it is 1, and disables it otherwise.

c enables the Crystal Oscillator if it is 1, and disables it otherwise.

startup specifies the Crystal Oscillator start-up time, in quarters of milliseconds.
password must be 3716, otherwise writing into this register has no effect.

s selects the Crystal oscillator if it is 1, or the RC oscillator otherwise.
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91 Power Management Controller

Name Type Address

Peripheral Clock Enable Register | Write-Only | 400E061016
Peripheral Clock Disable Register | Write-Only | 400E06141¢
Peripheral Clock Status Register | Read-Only | 400E061816

Main Oscillator Register Read-Write | 400E062016
Phase Lock Loop Register Read-Write | 400E0628;
Master Clock Register Read-Write | 400E063016
Status Register Read-Only | 400E0668;¢

TABLE 91 The Power Management Controller registers used in this book.

9.1.2 Phase Lock Loop Register

This register defines the frequency multiplication factor to use in the Phase Lock Loop
circuit. It has the following binary format:

00100  multiptier__[00] startup [  divider |

o multiplier and divider configure the frequency multiplication factor. The PLL
circuit multiplies the clock frequency by the fraction (multiplier + 1)/divider.
To use the PLL output as a clock signal, divider must not be 0.

e startup specifies the PLL circuit start-up time, in quarters of milliseconds.

9.1.3 Master Clock Register

This register defines which signal to use for the Master Clock, used by the micro-
processor and optionally by the peripheral controllers (see Figure 9.1). It has the
following binary format (we present only the bits that we use):

000000000000000000000000000000]css]

The clock source selection (css) field can take four possible values, but we use only
two. If it is equal to 1, then the Master Clock is the signal from the oscillator selected
by the Main Oscillator Register. If it is 2 then the Master Clock is the output of the
PLL circuit.

9.1.4 Peripheral Clock Status Register

This register gives the clock signal status of each peripheral component. Peripherals
are numbered, for instance the USART controller has number 17, the SPI controller
has number 24, etc (see Figure 6.2). Bit number ¢ of this register indicates if the clock
signal is enabled for peripheral number ¢. If enabled, the same signal as the Master
Clock is used (see Figure 9.1). As the PIO Status Register, this register can only be
read. Writing to it has no effect. Instead, one must write in the Peripheral Clock
Enable Register (resp. the Peripheral Clock Disable Register) to set (resp. clear) its
bits.
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9.1.5 Status Register

This read-only register indicates if the various clock signals inside the Power Man-
agement Controller are ready to use or not. It has the following binary format (we
present only the bits that we use):

01010101010101010101010101010‘s‘01010101010101010101010‘m‘o‘p‘C‘

e cis 1 if the Crystal Oscillator is ready, or 0 otherwise. After the Crystal Oscillator
is enabled with the Main Crystal Oscillator Register, one must wait until this bit is
1 before using the PMC again.

e pis 1 if the PLL circuit output is ready, or 0 otherwise. After the frequency
multiplier is changed with the Phase Lock Loop Register, one must wait until this
bit is 1 before using the PMC again.

e m is 1 if the Master Clock is ready, or O otherwise. After the clock source selection
is changed with the Master Clock Register, one must wait until this bit is 1 before
using the PMC again.

e sis | if the oscillator selection is ready, or 0 otherwise. After the selected oscillator
is changed (to the crystal or the RC oscillator), one must wait until this bit is 1
before using the PMC again.

9.1.6 Configuration procedure

After a reset the PMC is configured to use the RC oscillator directly, without going
through the PLL circuit, and all the peripheral clocks are disabled. The Master Clock
thus runs at 4MHz by default. To use the maximum 84MHz frequency instead, the
following procedure can be used:

enable the 12MHz Crystal Oscillator and wait for it to be ready,

select the Crystal Oscillator and wait for this selection to be ready,

set the PLL multiplier to 6 and its divider to 1, and wait for it to be ready,
select the PLL output as the Master Clock source, and wait for it to be ready.

bl NS

Before doing this, however, the flash controllers must be configured as well. Indeed
the flash memory is slow. When the microprocessor sends a request to read a value
from it, it has to wait some time before it receives this value. And the higher the
clock frequency, the more it has to wait. This waiting time is configured with the
flash controller Mode Register (see Table 6.1). It has the following binary format (we
present only the bits that we use):

010101010101010101010101010101010101010‘ lwqitl ‘010101010101010‘

The wast field controls the above waiting time. According to Table 45-62 in [8], it
must be at least 4 to use a 84MHz clock. And it must be at least 6 when writing flash
memory pages (see Section 49.1.1.1 in [8]).
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Name Type Address

Control and Status Register | Read-Write | EOOOE010:6
Reload Value Register Read-Write | EOOOEQ1416
Current Value Register Read-Write | EOOOE018;6

TABLE 9.2 The System Timer registers used in this book.

9.2 System Timer

The System Timer (SysTick) is a 24-bit counter inside the Cortex M3 microprocessor
(see Figure 6.2). This counter is decremented by 1 every 8 cycles of the Master
Clock, if it is enabled and not 0. If it is enabled and equal to 0, it is instead reset to a
configurable value called the reload value.

This timer can be used to wait for a calibrated amount of time. For instance, if the
Master Clock is set to 84MHz, one can wait for 1 millisecond by resetting the counter
to 10500 and by waiting until it is 0 (10500 % 8 cycles last 10500 % 8/84.105 = 103 s).
The System Timer is controlled with 3 registers, presented in Table 9.2:

e The Control and Status Register enables or disables the timer, and indicates if it
counted from 1 to O since the last time this register was read. It has the following
binary format (we present only the bits that we use):

0,00000000000000/z[000000000000000|e
The e field enables the timer if it is 1, and disables it otherwise. The read-only 2
field indicates if the timer counted to O since the last read of this register.

e The Reload Value Register specifies the reload value. Only its 24 least significant
bits are used.

e The Current Value Register contains the counter’s current value. Writing any value
into this register resets this current value to 0 and also clears the z field in the
Control and Status Register. The counter is then reset to its reload value, if it is
enabled, during one of the next 8 clock cycles.

9.3 Watchdog Timer

Another microcontroller component which is related to time is the Watchdog Timer.
Its goal is to detect when the user application is stuck, for instance because of a bug,
and to reset the microcontroller if this happens. It does so with a countdown until
reset. In order to avoid being reset when the countdown expires, the application must
reinitialize it periodically, before it reaches 0. If the application crashes or enters an
infinite loop, it cannot do this and will thus eventually be reset. To avoid having to
periodically reinitialize the Watchdog Timer, we can simply disable it (it is enabled
by default). This can be done by setting to 1 bit 15 of the Watchdog Timer Mode
Register, at address 400E1A54 ¢ (see Chapter 15 in [8]).
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9.4 Clock initializer

We can now use the above information to implement our clock driver, in the next flash
memory page after the interpreter, i.e., at address C0200;6. The first goal is to provide
a function to set the clock frequency to 84MHz.

clock_init()

As explained in Section 9.1.6, this func-
tion must configure the flash wait time first.
To be conservative, we set the wast field to
6 in both EEFC Mode Registers (cf. Table
6.1). We can then implement the 4 steps of
the procedure presented in Section 9.1.6.

Step 1 Enable the Crystal Oscillator
(while leaving the RC oscillator enabled).
For this we must set ¢ = 1 and = 1 in the
Main Oscillator Register. We don’t know
the Crystal Oscillator start-up time and thus
set startup to its maximum value, FFqg.
With password set to 37,4, this means
that we must write 37FF09,¢ at address
400E06204¢.

We then need to wait until the Crystal
Oscillator is ready, i.e., until the c bit in
the Status Register is 1. For this we read
this register, extract its ¢ bit with a bitwise
and with 116, and repeat these steps while
the result is 0.

Step 2 Select the Crystal Oscillator.
For this we need to set the same value as
above in the Main Oscillator Register, with
the s field additionally set to 1. That is we
must write 137FF09;5. We then need to
wait until the s field in the Status Register
is 1. This is done as above with a bitwise
and with 10000+¢.

Step 3 Set the PPL multiplier to 6
and its divider to 1. We don’t know the
PLL start-up time and thus set startup to
its maximum value, 3F;5. We then wait
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cst
store
cst
load
cst
and
cst_0
ifeq

cst
cst
store
cst

00
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until the Status Register’s p bit is 1.

Step 4 Select the PPL output as the
Master Clock source. For this we set css
to 2 in the Master Clock Register. We then
wait until the Status Register’s m bit is 1.

At this stage the Master Clock runs
at 84MHz. To finish this function we
can enable the System Timer, disable the
Watchdog Timer, and return.

9.5 Delay function

9.5
load
cst8 02
and
cst_ 0
ifeq 0055

cst 400E0630

cst8 02
store

cst 400E0Q668
load

cst8§ 08
and

cst_0

ifeq 0Q06A

cst EQQQEQ10
cst8 01

store

cst 4Q0E1A54
cst 00008000
store

ret

Delay function

13
02
08
00
oD

03
02
14
03
13
02
08
00
oD

03
02
14
03
03
14
1D

+05A
+05B
+05D
+05E
+05F
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+067
+069
+06A
+06F
+070
+072
+073
+074

+077
+07C
+07E
+07F
+084
+089
+08A

The second goal of our clock driver is to provide a function to wait for a calibrated
amount of time. For this we can pass a number n > 0 of milliseconds to wait for as
an argument to this function. Which can then be implemented by using the System

Timer, as follows.

delay(n)

Set the System Timer reload value to
10500 times n (10500 = 290414 and n is
the stack frame’s 0" value).

Reset the System Timer current value.

Wait until the System Timer counts

fn 01

cst EQQOEQ14
cst 00002904
get 00 n
mul

store

cst EQQOEQ18
cst_0

store

cst E000E010

19
03
03
16
06
14

03
00
14

03

C028B
+002
+007
+00C
+00E
+00F

+010
+015
+016

+017
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from 1 to O, i.e., until the Control and load 13 +01C
Status Register’s z bit is 1. cst 00010000 03 +01D
and 08 +022
cst_0 00 +023
ifeq 0017 oD +024
ret 1D +027

Note that since the System Timer is a 24-bit counter, n is limited to (224 —
1)/10500 = 1597. Therefore, a single call to this function can’t wait for more than
~ 1.5s. By putting together the encoding of the two above functions we get the final
bytecode of our clock driver:

14000006 0003400E 0C000314 00000600 03400EQA 00030019 (0200
0300230D 00080113 400E0668 03140037 FFO90340 0E062003 (0218
0D000800 01000003 13400E06 68031401 37FF0Q903 400EQ620 (0230
0D000802 0213400E 06680314 20063F01 03400E06 2803003A (0248
03006A0D 00080802 13400E06 68031402 02400E06 30030055 (0260
E0140301 191D1400 00800003 400E1A54 03140102 E0Q0QE0Q10 (0278
13E0QQ0EQ 10031400 EQQOOE018 03140600 16000029 0403E000 (0290

1D0017 0DO00O80O 01000003 C0O2A8

Lets store it in flash memory. To avoid you some typing we provide the necessary
boot assistant commands in part2/clock_driver.txt. Run them with:

user@host:~$ python3 flash_helper.py < part2/clock_driver.txt
>Reading page 1026... Done.

Writing page 1026... Done.

>Done.

9.6 Basic input output system foundations

We now have the first elements of our basic input output system stored in flash memory,
namely an interpreter and a clock driver. In order to make the Arduino completely
autonomous, we must be able to run them automatically after a reset, without the boot
assistant. For this we need to setup a Vector Table (cf. Section 7.4).

9.6.1 Vector Table

After a reset we want to initialize the Master Clock with the clock driver and, later on,
initialize the screen and keyboard drivers, and start the memory editor. We can do
this with a main bytecode function, called upon reset via the Reset handler. In order
to leave space for the future drivers, after the clock driver code at C0200+4, we can
put this main function at address C2000+¢ (see Figure 9.2). The Reset handler should
thus call the interpreter with C2000;¢ as initial Instruction Counter. We have already
seen how to do that, with 2 LDR and a BX instruction, at the end of the previous
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FIGURE 9.2 The initial layout of our basic input output system in flash memory.
Execution starts with the Reset handler, which calls the interpreter to execute the
Main function. This function then calls other functions, e.g., in the clock driver.
Red, blue and gray areas represent machine code, bytecode and unused memory,
respectively (not to scale).

chapter. We put the corresponding machine code
000C0001 000C2000 00004700 48024A01
at address C01801¢, just after the bytecode interpreter.

To handle potential errors, we should also define a Hard Fault handler. The easiest
solution is to make the LED blink in case of error, since we already have a program
doing this. The machine code given at the end of Section 7.5.2 can then be directly
reused, and put just after the above code, i.e., at offset C0190,4 (see Figure 9.2).

We also need to define an initial Stack Pointer, in the Vector Table’s first entry.
Since the stack grows in decreasing address order we initialize it to the end of the
contiguous RAM region, 2008800044 (see Figure 6.3).

In summary, the above choices lead to the following Vector Table (only the first
4 entries are used; the Hard Fault handler’s main function starts at offset 14,4 after
C01903¢, i.e., at CO1A444):

Q00COT1AS5 00000000 000CO181 20088000

9.6.2 Boot mode selection

In the following we would like to test the clock driver, then implement the screen
driver and test it, then implement the keyboard driver and test it, etc. For this we
need to alternatively boot from flash (to test our system) and from ROM (to store new
drivers in flash memory with the boot assistant). However, when the Arduino runs
from flash, the only way to boot from ROM again is to do a full erase. This means that,
after each test, we would have to flash everything again. To avoid this, as discussed at
the end of Section 7.5.4, our main function should set the boot mode selection to boot
from ROM. To this end, we provide a function doing this below.

As explained in Section 6.5.2, setting the boot mode to boot from ROM can be
done by writing the value SA00010C;4 in the EEFCO Command Register at address
400E0A04 ;¢ (and then waiting until the Status Register is 1). After that the ROM is
mapped in the “Boot” region, which means that our Vector Table is no longer mapped
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Function Address

boot_mode_select_rom() | C02B4 (C0000:4+692)
clock_init() C0200 (C0000,5+512)
delay(n) C028B (C0000,6+651)

TABLE 9.3 The basic input output system functions defined in this chapter.

there. In case of error, the ROM Vector Table would thus be used instead of ours. To
avoid this, a solution is to first change the location where the Vector Table is read from,
with the Vector Table Offset Register (at address EOOOEDOS8;4 — see Section 7.4).
More precisely, a solution is to store in this register the “real” address of our Vector
Table, 80000;6. This leads to the following bytecode function, stored just after the
clock driver, at address C02B414 (see Table 9.3):

fn 00 19 C02B4 store 14 +017
cst EQQQED0O8 03 +002 cst 4Q0E0QA08 03 +018
cst 00080000 03 +007 load 13  +01D
store 14 +00C cst_1 01 +01E
cst 400EQA0Q4 03 +00D ifne 0018 10 +01F
cst 5A00010C 03 +012 ret 1D +022

To avoid you some typing, we provide the boot assistant commands necessary to
write this function, the above Vector Table, and its Reset and Hard Fault handlers in
flash memory. Run them with:

user@host:~$ python3 flash_helper.py < part2/foundations.txt
>Reading page 0... Done.

Reading page 1025... Done.

Reading page 1026... Done.

Writing page @... Done.

Writing page 1025... Done.

Writing page 1026... Done.

>Done.

9.7 Experiments

In order to test the above functions we can implement a third version of our LED
blinking program where:

e calls to the boot mode selection and clock initializer functions are added at the
beginning,

e calls to the waiting function are replaced with calls to the delay function (and the
waiting function is deleted).
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And to use it as a main function we can put it in flash memory at address C2000+¢.
With 500ms delays, we get the following function, based on the version in Section 8.4
(500 = 1F416)I

fn 00 19 C2000 cst 400E1030 03 +029
call 02B4 .select_rom 1A +002 cst 08000000 03 +02E
call 0200 clock_init 1A +005 store 14 +033
cst 400E1000 03 +008 cst 000001F4 03 +034
cst 08000000 03 +00D call 028B delay 1A +039
store 14 +012 cst 400E1034 03 +03C
cst 400E1010 03 +013 cst 08000000 03 +041
cst 08000000 03 +018 store 14 +046
store 14 +01D cst 000001F4 03 +047
cst 400E1060 03 +01E call 028B delay 1A +04C
cst 08000000 03 +023 goto 0029 12 +04F
store 14 +028

Write it in flash memory with:

user@host:~$ python3 flash_helper.py < part2/clock_driver_test.txt
>Reading page 1056... Done.

Writing page 1056... Done.

>Done.

To run it we need to change the boot mode selection to boot from flash, and to reset
the Arduino. The former can be done by writing SA00010B ¢4 at address 400E0A04 ¢4
(cf. Section 6.5.2). And the latter with the RESET button or, with the Reset Controller
(see Figure 6.2), by writing A500000D¢ at address 400E1A00,¢ (see Section 12.5.1
in [8]). For convenience, flash_helper.py provides a reset# command doing these
two steps. We can thus run our program with:

user@host:~$ python3 flash_helper.py
>reset#

At this point you should see the LED blinking once per second?, without begin
reset by the Watchdog timer. Then press the RESET button on the Arduino: the LED
should no longer blink, because the Arduino booted from ROM. Finally, lets test our
Hard Fault handler by introducing a voluntary error in our LED blinking program.
We can do this by replacing the last goto insn with an invalid FF;4 opcode:

user@host:~$ python3 flash_helper.py
>WC204C,FF028B1A#

Reading page 1056... Done.

>flash#

Writing page 1056... Done.

>reset#

2Almost: each cycle lasts 1s plus a few ps due to the instructions between the delay function calls.
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You should see the LED blinking once as before (as the beginning of the program
executes normally), then blink very fast. Indeed, when the unknown opcode is found,
the interpreter triggers an Undefined Instruction exception, which triggers the Hard
Fault handler. This calls our machine code LED blinking function, which counts to 1
million between each step. At 84MHz, this yields very fast blinks. You can finally
reset and unplug the Arduino.
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So far we have only been able to blink a LED, using various methods. Hopefully,
thanks to the work done in the previous chapters, we now have everything we need
to go beyond that. This is what we do in this chapter, by connecting a screen to the
Arduino, and by writing a program to use it. The screen cannot be connected directly
to the Arduino, in particular because their connectors don’t match. We therefore use an
intermediate component between the two, that we call the graphics card. This chapter
presents these two components, explain briefly how they work, how they communicate,
how to connect them, and how programs can use them. We then write such a program,
called the graphics card driver. Finally, we test it with a small application displaying
the traditional “Hello, World!" message.

10.1 Liquid Crystal Display

The screen used in this book is a 7" Liquid Crystal Display (LCD) with 800x480
pixels (see Table A.1). Each pixel is made of 3 cells with red, green and blue
color filters. Each cell is made of a liquid crystal between two electrodes and two
perpendicularly oriented light polarizers (see Figure 10.1). The whole screen is lit
from behind with LEDs producing a uniform white light with a constant intensity. By
default, however, due to the polarizers, light is blocked and the screen appears black.
To turn a red, green or blue cell on one must charge the capacitor made by the two
electrodes around it. This creates an electric field in the liquid crystal, which has the
property of rotating the light’s polarization direction in such conditions. Increasing
the capacitor charge increases the electric field and the polarization rotation. When
the rotation angle is 90°, no light is blocked and the cell has 100% luminosity. Smaller
angles lead to partially blocked light thus lower luminosity levels.

In order to charge the capacitors independently from each other, one electrode
of each cell is connected to a grid of horizontal and vertical wires via a transistor
(see Figure 10.1) — the other electrode is shared between all cells. These transistors
are organized in a transparent thin film, hence the Thin Film Transistor (TFT) name.
To charge a cell at column x and row y, one must set row y’s wire to VCC and then
apply a voltage V' on column’s x red, green or blue wire for a short duration — with V'
depending on the desired luminosity. This process is done by the row and column
driver circuits (see Figure 10.1). For each frame, the row driver sets each row wire to
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VCC, one after the other, from top to bottom. While a row is active, the column driver
applies the desired voltage on each column wire, one after the other, from left to right.

These circuits use as input 40 pins, providing 40 signals in parallel. The most
important ones are 3 x8 signals providing the red, green and blue intensity of each
pixel, using one byte per color (from 0 = black to 255 = 100% luminosity). There
are also vertical, horizontal, and clock synchronization signals indicating when a
new frame, a new row of pixels, and a new pixel start, respectively. Finally, other
pins provide GND and VCC, a driver circuit on/off signal, a backlight on/off signal,
etc. The pixel and synchronization signals must have the form shown in Figure 10.2,
subject to the constraints in Table 10.1:

e Each frame must start with a pulse of the vertical synchronization (Vsync) signal.

e Each row must start with a pulse of the horizontal synchronization (Hsync) signal.

e Each frame must start and end with blank rows containing no data, called the
vertical back porch and front porch, respectively.

e Each row must start and end with blank pixels containing no data, called the
horizontal back porch and front porch, respectively.

e The Data Enable signal must indicate when the Data pins contain actual data.

e The 24 Data pins must send one pixel at each clock cycle where Data Enable is 1.

10.2 Graphics card

The LCD cannot be connected directly to the Arduino, since its does not have a 40-pin
connector. An adapter could theoretically be used, since the Arduino has enough pins
controllable with the PIO controllers A, B, C and D (see Figure 6.2). Using these
controllers, we could in principle write a program driving these pins as output, and
producing signals of the above form. However, even if this program could run fast
enough, it would require a lot of memory to store the image to display. Even with
only one bit per pixel, 800 x 480 = 384000 bits would be needed, i.e., almost half of
the 96 KB of the Arduino’s RAM.

For all these reasons we use an intermediate component to connect the screen to
the Arduino, namely an AdaFruit RA8875 driver board (see Table A.1). This board
provides a RAiO RA8875 chip [13], with a 40-pin connector on one side and slots for
15 header pins on the other (see Figure 10.3). The chip contains 768 KB of RAM,
which is enough to store a 800x480 image with 16 bits per pixel. It can be roughly
divided in two parts:

e the backend part reads the image stored in RAM and generates corresponding
signals on the 40-pin connector, to display it on the screen.

o the frontend part updates the image stored in RAM based on drawing commands
received on the header pins.

The frontend can draw text, basic shapes such as lines, rectangles or ellipses,
images, and individual pixels. It is based on 8-bit registers. For instance, to draw
a line, one must first write the z, y coordinates of its endpoints in specific registers
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FIGURE 10.1 A schematic view of the Thin Film Transistor (TFT) Liquiq Crystal Display
(LCD) used in this book. Each pixel is made of 3 liquid crystal cells between two
transparent electrodes and two polarizers, with red, green and blue color filters.
Each cell is connected to a grid of wires with its own transistor, and lit from behind.
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FIGURE 10.2 The input signals needed by the LCD [19]. Each frame starts with a
Vsync pulse, and each row with an Hsync pulse. 24 bits of pixel data are required
at each clock cycle where “Data Enable” is 1. The bottom part zooms on one row of
pixels.

Parameter Minimum | Typical | Maximum | Unit

Vertical pulse width 1 - 20 Hsync cycle
Vertical back porch 23 23 23 Hsync cycle
Vertical front porch 7 22 147 Hsync cycle
Horizontal pulse width | 1 - 40 Clock cycle
Horizontal back porch | 46 46 46 Clock cycle
Horizontal front porch | 16 210 354 Clock cycle
Clock frequency - 33.3 50 MHz

TABLE 101 The timing constraints of the LCD input signals [19].
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FIGURE 10.3 The AdaFruit RA8875 Driver Board used to connect the LCD to the
Arduino.

called “Draw Line/Square Horizontal Start Coordinate”, “Draw Line/Square Vertical
Start Coordinate”, “Draw Line/Square Horizontal End Coordinate”, etc. Then, setting
a specific bit to 1 in another register called “Draw Line/Circle/Square Control Register”
starts drawing a line between the two previous points. The RA8875 has about 170
different registers but we use only a small subset of them, mostly those needed to

configure the RA8875, and to draw text. They are presented below.

10.2.1 Configuration registers

The RA8875 chip, hereafter called the graphics card, can be used with a variety of
screens with different resolutions and signals timing constraints. Before using it to
display images on a given screen, it must be configured for this specific screen.

The first step is to configure the frequency fs of the internal clock, called the
system clock, and the frequency f, of the clock signal sent to the screen, called the
pixel clock. As the Arduino, the graphics card uses an external crystal, here at f. = 20
MHz, and a Phase Lock Loop (PLL) circuit. This circuit can be configured with 3
registers, whose ID, name and binary format are the following:

R88,; PLL Control 1 m00]  n
R89,; PLL Control 2 00000 k
RO4;; Pixel Clock Setting i]0.0000] p

These registers set fs to f.* (n+1)/[2%(m +1)] and f, to f5/2P. In order to get
fp € [33.3,50] MHz (see Table 10.1), we canuse n =6, m =0,k =6,and p = 1,
yielding f; = 70 MHz and f,, = 35 MHz. In addition, 7 indicates if pixel data should
be sent when the pixel clock signal is rising (¢ = 0) or falling (4 = 1). According to
[19] the former case applies, but in practice only ¢+ = 1 works. In summary, in our
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10.2 Graphics card

case, we can set R88, R89 and R04 to 6, 1 and 8114, respectively, with a delay of at
least 0.1ms between each step (see Section 5-9 in [19]).

The second step is to configure the LCD signal parameters (see Table 10.1), with
the following registers (we show only the bits that we use):

R14,; LCD Horizontal Display Width O‘ LW
R15,s LCD Horizontal Non-Display Period Fine Tuning 0,00 0| hndft
R16,; LCD Horizontal Non-Display Period 0,00  hnd
R17,¢ HSYNC Start Position 0,00 | hsp
R18,4 HSYNC Pulse Width 0,00  hpw
R19,s LCD Vertical Display Height O L L ho
R1A;s LCD Vertical Display Height 1 0000000h
R1B;s LCD Vertical Non-Display Period 0 o ,ovnd,
R1D;s VSYNC Start Position O L, vsp.
RIF;;  VSYNC Pulse Width o  wpw |

Based on these register values, the graphics card generates LCD signals with the
following parameters (see Section 5-3 and Figure 6-29 in [19]):

Screen width in pixels: 8(w + 1)

Horizontal pulse width: 8(hpw + 1)

Horizontal back porch: 8(hpw + 1) + 8(hnd + 1) + hndft + 2
Horizontal front porch: 8(hst + 1)

Screen height in pixels: 256.h1 + hg + 1

Vertical pulse width: vpw + 1

Vertical back porch: (vpw + 1) + (vnd 4+ 1)

Vertical front porch: vst 4 1

In our case, in order to meet the constraints from Table 10.1, we can use w = 99,
hpw = 0, hndft = 4, hnd = 3, hst = 25, hg = 223, hy = 1, vpw = 0, vnd = 21,
and vst = 21. In other words, we can set R14, R15, R16, R17, R19, R1A, R1B, and
R1D to 6344, 4, 3, 1914, DF14, 1, 1516, and 1546, respectively (and leave R18 and
RI1F to their default value 0).

After this the graphics card memory can be cleared, to start with a black screen,
the LCD signals can be enabled, and the screen itself can be turned on. This can be
done with the following registers (we show only the bits that we use):

R8E,; Memory Clear Control sla ‘ 000000
RO1,s Power and Display Control dj0 000000
RC7,; Extra General Purpose 10 0000000z
R8A,; PWMI Control 0[1/000000
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Indeed, setting s, d, x, and [ to 1 clears the memory, enables the LCD signal outputs,
turns on the LCD’s driver circuit, and turns on the LCD’s backlight, respectively!. In
summary we can set R8E, RO1, RC7 and R8A to 8016, 8016, 1, and 4044, respectively.
Note that clearing the memory takes some time. When it is done, s is reset to 0. One
could thus wait for this after setting R8E, or just wait long enough, e.g., 100ms.

After the above steps the graphics card is ready to draw text or images. Drawing
text (resp. images) requires switching the card to text mode (resp. graphics mode)
first. In both cases the active window, which restricts where text or graphics can be
drawn, must also be configured (it is empty by default). This can be done with the
following registers (we show only the bits that we use):

R34, Horizontal End Point of Active Window 0 ., . Xo, 1
R35,; Horizontal End Point of Active Window 1 000000]X,y
R36,c Vertical End Point of Active Window 0 L K) L
R37,s Vertical End Point of Active Window 1 0000000
R40,; Memory Write Control 0 tlc|b|0 0000
R44,; Blink Time Control _, Dlink

The first 4 registers set the active window’s bottom-right corner to (256.X; +
Xo,256.Y7 + Y)) —its top-left corner is (0, 0) by default (coordinates are measured
as shown in Figure 10.1). ¢ = 1 enables text mode, while ¢ = 0 enables graphics
mode. In text mode, ¢ = 1 displays a cursor where the next character will be drawn,
and b = 1 makes it blink every blink + 1 frame. In this book we use only text mode
in full screen, so we canuse Xg =31, X1 =3,Y;=223,Y; =1, t=c=0b=1,
and, for instance, blink = 30. In summary we can set R34, R35, R36, R37, R40, and
R44 to 1Fy6, 3, DFy6, 1, EO14 and 1E4¢, respectively.

The active window can be cleared by setting s = 1 and a = 1 in the Memory
Clear Control register. Using s = 1 and a = 0 clears the full screen, whatever the
size of the active window.

10.2.2 Text drawing registers

Drawing text on the screen must be done one character at a time, by writing each
character’s ASCII code (see Appendix B) in the RO2 register. Doing this draws the
corresponding character at the current cursor position on the screen, with the current
background and foreground colors. All characters use 8 x 16 pixels. The cursor then
automatically moves to the right to draw the next character (at the 100" character of
a line it goes to the beginning of the next, and at the bottom-right corner it goes back
to the top-left corner). Initially the cursor is at the top-left corner, and the foreground
and background colors are black. This can be changed with the following registers:

IRC7 and R8A control output pins of the RA8875 chip which are connected to the “driver circuit on/off”
and “backlight on/off” pins in the 40-pin connector [1].
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R2A,s Font Write Cursor Horizontal Position O L, T, 1
R2B,s Font Write Cursor Horizontal Position 1 000000z
R2C,s Font Write Cursor Vertical Position 0 Yo
R2D,s Font Write Cursor Vertical Position 1 0000000
R63,; Foreground Color O 00000| fe,
R64,; Foreground Color 1 0,0000] fe,
R65,; Foreground Color 2 0,00.0,00]fe

These registers set the cursor position to (256.x1 + xg, 256.y; + y0) pixels, and
the foreground color’s red, green and blue components to fc,., fc , fc,, respectively.
The maximum value of each component corresponds to full intensity. For instance
(fe,, fey, fep) = (7,7, 3) corresponds to white.

10.2.3 Communication protocol

In order to read and write values in the above registers, the graphics card accepts 3
types of commands as input: Select Register, Read Data and Write Data. The Select
Register command takes as argument a byte containing a register ID (e.g., 2A1¢ to
select R2A). The Read Data command returns the current value of the last selected
register. It does not have any argument. Finally, the Write Data command writes its
8-bit argument in the last selected register. These commands are encoded on 16 bits,
with the two most significant containing the command type, and the 8 least significant
its argument. The command type is 10, for Select Register, 01, for Read Data and
00, for Write Data. For instance, in order to set R14 to 634, one must use a Select
Register 14,4 command, followed by a Write Data 6314 command (whose encodings
are 801416 and 006316, respectively).

These commands can be sent to the graphics card with the Chip Select (CS),
Clock (SCK), and Master Out Slave In (MOSI) pins (see Figure 10.3), as follows (see
Figure 10.4):

e set the CS pin to 0 to start a new command (the 3 pins must be 1 by default).

o send the 16 command bits on the MOSI pin, starting with the most significant and
ending with the least significant. One bit must be sent each time the SCK pin is
rising, i.e., goes from O to 1. The SCK frequency must be lower than the graphics
card system clock frequency.

e set the CS pin back to 1.

Conversely, the graphics card sends the 8-bit result of Read Data commands on the
Master In Slave Out (MISO) pin. It sends these bits during the last 8 clock cycles,
from the most to the least significant (see Figure 10.4).

Before sending any command, however, the board must be powered on and reset.
It is powered with the VIN and GND pins (see Figure 10.3 — VIN can be connected to
3.3V or 5V). And it can be reset with the Reset (RST) pin. This pin should be 1 by
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FIGURE 10.4 The signals used between the RA8875 driver board and the Arduino.
The Arduino must send 16-bit commands on the MOSI pin while setting the CS pin
to 0, one bit at each rising edge of the SCK clock signal. It can optionally receive an
8-bit result on the MISO pin while sending the 8 least significant command bits.

default. Setting it to O during at least 1 ms starts resetting the graphics card, which
takes less than 1ms after RST is set back to 1 (for safety 10ms delays are better).

10.3 Serial Peripheral Interface component

At this stage, “all we have left to do” is to generate appropriate signals on the graphics
card pins, in order to set appropriate values in its registers, in turn to configure the card
and display text on the screen. In theory, the Arduino could generate these signals
with a similar method as our LED blinking programs. Indeed, the signal we generated
to blink a LED is in fact a clock signal. With more effort, we could also generate the
CS and MOSI signals too. But there is a simpler method. Indeed, the signals shown
in Figure 10.4 are a special case of a more general communication protocol called the
Serial Peripheral Interface (SPI). And the Arduino microcontroller has a dedicated
SPI component to interact with devices using this protocol. This section gives an
overview of this component and explains how to use it. A complete description can
be found in Chapter 32 of [8].

The SPI component is a hardware circuit which can output CS, SCK, and MOSI
signals, and read input MISO signals, using the PA28, 27, 26 and 25 pins, respectively
(see Figures 6.2 and 10.5). It does so with 3 main registers (see Table 10.2):

o The Transmit Data Register. Writing a value (up to 16 bits) in this register sends it
on the MOSI pin as described above, while setting the CS pin to 0.

e The Receive Data Register. The value received on the MISO pin while sending a
value on the MOSI pin is stored in this register.

e The Status Register. This read-only register has the following binary format (we
show only the bits that we use):

01010101010101010101010101010101010101010101010101010101010‘t‘r‘
where ¢ is 0 while a value is being sent (and 1 when this is done), and 7 is 1 iff a
new value has been received since the last read of the Receive Data register.
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FIGURE 10.5 A simplified representation of the Serial Peripheral Interface (SPI)
circuit and registers (in gray). A shift register is used to transmit data in most to least
significant bit order on MOSI, while storing bits received in the same order on MISO.
It is left shifted after each transmitted / received bit. See Figure 32-5 in [8].

Name Type Address
Control Register Write-Only | 400080006
Mode Register Read-Write | 4000800416

Receive Data Register | Read-Only | 400080086
Transmit Data Register | Write-Only | 4000800C;¢
Status Register Read-Only | 40008010:6
Chip Select Register Read-Write | 400080306

TABLE 10.2 The Serial Peripheral Interface controller registers used in this book.

The SPI protocol has many variants. For instance, the number of bits transmitted
at a time can vary between 8 and 16. These bits can be transmitted when SCK is rising
from O to 1, or when it is falling from 1 to 0. The clock frequency can vary, etc. The
SPI component supports many such variants in order to support many SPI devices. It
can also be used either in master mode, to control a SPI device with the Arduino, or in
slave mode, to control the Arduino with such as device. The drawback is that it needs
to be configured before being used. This can be done with the following registers (we
show only the bits that we use):

e The Mode Register. Its binary format is
0101010101010101010101010101010101010101010101010101010101010‘m‘
where m = 1 selects the master mode, and m = 0 the slave mode.
e The Chip Select Register. Its binary format is
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0101010101010101010101010101010 1 ldlivlldel,r‘l 1 ‘ lbiltsl ‘OXO‘C‘O‘
where ¢ = 1 means that data is sent when SCK is rising, bits means that bits + 8

bits are sent at a time, and divider sets the SCK frequency to the Peripheral Clock
frequency divided by divider.

In our case we need m = 1, ¢ = 1, and bits = 8. The SCK frequency can be set
to 4MHz, which is not too large (after reset the graphics card runs at 20MHz). We
can thus use divider = 21 = 1516 (84/21 = 4). In summary, we can set these two
registers to 1 and 15824, respectively.

Finally, in order to be used, the SPI component must be enabled, which is done by
writing the value 1 in the Control Register. Its input clock signal, the Peripheral Clock
24, must also be enabled (see Figure 10.5). This can be done by writing the value 224
in the PMC Peripheral Clock Enable Register (see Section 9.1). Last but not least, the
PIO controller must be configured to give control of the PA25, 26, 27, and 28 pins to
the SPI component. This can be done by writing the value 22° + 226 4 227 4 228 ip
the PIO A Disable Register (see Section 6.6).

10.4 Graphics card driver

We now have everything we need to write functions to reset and configure the graphics
card (or GPU, for Graphics Processing Unit), and to draw text on the screen. We can
store them just after the clock driver functions, i.e., at address C02D81¢.

10.41 Low-level functions

Lets start with a gpu_reset() function, by using the RST pin. We assume here that
RST is connected to Arduino’s pin 20, corresponding PB12 (see Figure 6.1). Then, as
explained above, the reset function should set PB12 to 0, wait for 10ms, set it to 1,
and wait 10ms again. This is very similar to the LED blinking function, with PB27
replaced with PB12 and no loop (see Section 9.7):

gpu_reset() cst 400E1034 03 +023
fn 00 19 C02D8 cst 00001000 03 +028
cst 400E1000 03 +002 store 14 +02D
cst 00001000 03 +007 cst8  0A 02 +02E
store 14 +00C call 028B delay 1A +030
cst 400E1010 03 +00D cst 40Q0E1030 03 +033
cst 00001000 03 +012 cst 00001000 03 +038
store 14 +017 store 14 +03D
cst 400E1060 03 +018 cst8  0A 02 +03E
cst 00001000 03 +01D call 028B delay 1A +040
store 14 +022 ret 1D +043
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We then need a function to configure and enable the SPI component:

spi_init()

Give control of the PA25, 26, 27, and
28 pins to the SPI component with the PIO
A Disable Register.

Enable the SPI component clock with
the PMC Peripheral Clock Enable Register.

Set the SPI component in master mode
with the SPI Mode Register.

Enable the SPI component with the SPI
Control Register.

Configure the SPI with a 4MHz clock
and 16 bits per transfer, sent when SCK is
rising (with the SPI Chip Select Register).

fn
cst
cst
store
cst
cst
store
cst
cst_1
store
cst
cst_1
store
cst
cst
store
ret

10.4 Graphics card driver

00
400EQEQ4
1E000000

400E0610
01000000

40008004

40008000

40008030
00001582

19
03
03
14
03
03
14
03
01
14
03
01
14
03
03
14
1D

Ce31C
+002
+007
+00C
+00D
+012
+017
+018
+01D
+01E
+01F
+024
+025
+026
+02B
+030
+031

After that we can provide a spi_transfer function to send an arbitrary 16-bit
value on MOSI, passed as argument, and returning the received value on MISO:

spi_transfer(value) — response

Wait until the current transmission, if
any, is done, i.e., wait until the ¢ bit of
the SPI Status Register value z is 1 (&
x A2 #0).

Send the data in the function’s 0 ar-
gument by writing it in the SPI Transmit
Data Register.

Wait until the response is received on
MISO, i.e., wait until the r bit of the SPI
Status Register value z is 1 (< x A1 # 0).

Read the response in the SPI Receive
Data Register and return it.

fn
cst
load
cst8
and
cst_0
ifeq
cst
get
store
cst
load
est_1
and
cst_0
ifeq
cst
load
retv

01
40008010

02

0002
4000800C

00 wvalue

40008010

0017
40008008

19
03
13
02
08
00
oD
03
16
14
03
13
01
08
00
oD
03
13
1E

Co34E
+002
+007
+008
+00A
+00B
+00C
+00F
+014
+016
+017
+01C
+01D
+01E
+01F
+020
+023
+028
+029

With this we can provide a function to write a value in a graphics card register.
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This function takes as arguments the register ID and the value to write into it:

gpu_set_register(id, value) fn 02 19 C0378
Call the spi_transfer function with  cst 00008000 03 +002

a Select Register command (bitwise OR of get 00 id 16 +007
the command type 8000:¢ and the register or 09 +009
ID). call @34E spi_transfer 1A +00A
Call the spi_transfer function with  get 01 walue 16 +00D

a Write Data command, whose type is c¢st8 FF 02 +00F
00,6 (for safety, we keep only the 8 least and 08 +011
significant bits of the value), and return. call 034E spi_transfer 1A +012
ret 1D +015

We can now use this function to configure the graphics card by writing the values
described in Section 10.2.1 in its registers, in order (R88 <— 6, R89 < 1, R04 < 811,
etc). To reduce code size, we can store these bytes one after the other in memory (88,
06, 89, 01, 04, 81, etc). A function can then read them 2 by 2 and, for each pair, write
the register value with the previous function. Note however that we need to wait at
least 0.1ms after setting R88 and R89, and 100ms after writing in the Memory Clear
Control register. For this we can use pairs 00, x to mean “wait  ms” (there is no R00O
register). Our list thus becomes 88, 06, 00, 01, 89, @1, 00, @1, 04, 81, etc. By doing
this for all the register values computed in Section 10.2.1 we get the following list,
stored just after the previous function, i.e., in [C03901¢, CO3CO04¢[:

151B011A DF191917 03160415 63148104 01000189 01000688 (0390
1E44E040 0137DF36 ©3351F34 408A01C7 80016400 808E151D C0O3A8

In order to read this list we first need a function to read a single byte in memory:

load_byte(address) — value fn 01 19 C03C0
Load the word z at the given address  get 00 address 16 +002
and return its 8 least significant bits z A load 13 +004
FF. cst8  FF 02 +005
and 08 +007

rety 1E  +008

A function to write a value in a graphics card register, or to wait for some time if
the register ID is 0, is also useful:

gpu_set_register_or_wait(id, value) fn 02 19 C03C9
If the register ID is equal to O, jump to ~ get 00 id 16 +002
the last 3 instructions. Otherwise continue  cst_0 00 +004
to the next instructions. ifeq 0010 oD +005
The register ID is not 0: write valuein get 00 id 16 +008
register id with gpu_set_register and get 01  walue 16  +00A
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return. call 0378 ..set_register 1A  +00C
ret 1D +00F

The register ID is 0: wait for value ms  get 01  walue 16 +010
with delay and return. call 028B delay 1A +012
ret 1D +015

We can now implement a gpu_init function to reset and configure the graphics
card, by reading and setting all the register values in the above list. For this we use a
pointer p to the next pair to read in the list, stored in the 4" stack frame slot:

gpu_init() fn 00 19 CO3DF
Reset the graphic card. Configure the call  ©2D8 gpu_reset 1A +002
SPI component to communicate with it. call @31Cspi_init 1A +005
Initialize p to the beginning of the list.  cst 000C0390 — p 03 +008
Call load_byte to push the byte at get 04 p 16 +00D
address p on the stack (a register ID). call 03C0 load_byte 1A +00F
Call it again to push the byte at address  get 04 p 16 +012
p + 1 on the stack (the value to write inthe  e¢st_1 01 +014
register). add 04 +015
call  03C0 load_byte 1A +016
Callgpu_set_register_or_waitwith call 03C9 .or_wait 1A +019

the above values as arguments.
Increment p by 2 to prepare reading cst§ 02 02 +01C
the next pair of values. add 04 +01E
If p is not the end of the list, go back get 04 p 16 +01F
to offset D1g. Otherwise return. cst 000C03C0o 03 +021
iflt 000D oC +026
ret 1D +029

10.4.2 Drawing functions

To finish the graphics card driver we provide a function to clear the screen, and 3
functions for drawing text. The gpu_clear_screen function sets the s and a bits of
the Memory Clear Control register to 1 to start clearing the active window. It then
reads s back repeatedly, with Read Data commands (40001¢), until it is O (which
indicates that the operation is done):

gpu_clear_screen() call  034E spi_transfer 1A +0Q0E
fn 00 19 C0409 cst8 80 02 +011
cst8  8E 02 +002 and 08 +013
cst8  Co 02 +004 cst_0 00 +014
call 0378 .set_register 1A  +006 ifne 0009 10  +015
cst 00004000 03 +009 ret 1D +018
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The gpu_set_cursor function takes a column ¢ and a row r as arguments,
expressed in number of characters, and writes 8c and 167 in the Font Write Cursor
registers (see Section 10.2.2 —recall that each character is 8 x 16 pixels). More precisely,
it writes 8¢ = ¢ < 3 and 167 = r < 4 in R2A and R2B, and 8 > 8 = ¢ > 5 and
167 > 8 = r > 4 in R2C and R2D (recall that gpu_set_register keeps only the §
least significant bits of its argument):

gpu_set_cursor(c, ) cst8  2C 02 +016
fn 02 19 Co422 get o1 r 16 +018
cst8  2A 02 +002 cst8 04 02 +01A
get 00 ¢ 16 +004 Isl OA +01C
cst8 03 02 +006 call 0378 .set_register 1A  +01D
Isl QA +008 cst8 2D 02 +020
call 0378 ..set_register 1A +009 get 01 T 16 +022
cst8 2B 02 +00C cst8 04 02 +024
get 00 ¢ 16 +00E Isr OB +026
cst8 05 02 +010 call 0378 .set_register 1A +027
Isr OB +012 ret 1D +02A
call 0378 ..set_register 1A +013

The gpu_set_color function takes 3 arguments , g and b, and writes them in
the respective Foreground Color registers:

gpu_set_color(r, g, b) get 01 g 16 +00B
fn 03 19 C044D call 0378 .set_register 1A  +00D
cst8 63 02 +002 cst8 65 02 +0710
get 00 r 16 +004 get 02 b 16 +012
call 0378 .set_register 1A  +006 call 0378 .set_register 1A +014
cst8 64 02 +009 ret 1D +017

Finally, the gpu_draw_char function draws the character given as argument by
writing it in the RO2 register with gpu_set_register:

gpu_draw_char(c) get 00 ¢ 16 +004
fn 01 19 Co465 call 0378 ..set_register 1A +006
cst8 02 02 +002 ret 1D +009

10.4.3 Summary

In summary, our graphics card driver provides the functions shown in Table 10.3 and
its full code is:

14000010 0003400E 10100314 00001000 03400E10 00030019 C02D8
0A021400 00100003 400E1034 03140000 10000340 OE106003 CO2F0
04030019 1D028B1A 0A021400 00100003 400E1030 03028B1A (0308
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Function

Address

gpu_clear_screen()
gpu_draw_char(c)
gpu_init()

gpu_set_color(r, g, b)
gpu_set_cursor(c, )
gpu_set_register(id, value)
load_byte(address) — value

spi_transfer(fualu,c) — response | CO34E (C0000,4+846)

€409 (C000016+1033)
€0465 (C000016+1125)
C03DF (C0000,5+991)

C044D (C0000,6+1101)
€422 (C0000,4+1058)
€0378 (C0000,4+888)
€03C0 (C0000,4+960)

TABLE 10.3 The most important graphics card driver functions.

00800403 14010000 0003400E
01191D14 00001582 03400080
80100314 00164000 800C0O300
16000080 00030219 1E134000
01000189 01000688 00001D03
80016400 808E151D 151BO11A
08FF0213 00160119 1E44E040
191D028B 1A01161D 03781A01
03C01A04 01041603 CO1A0416
1AC0028E 0200191D 000DOCOQ
00162A02 02191D00 09100008
1A0A0402 01162C02 03781A0B
64020378 1A001663 0203191D

1D0378 1A001602 0201191D

06100314 1E000000 03400EQE
30031401 40008000 03140140
020D0008 02021340 00801003
80080300 170D0008 01134000
4ETAQ8FF 02011603 4E1A0900
DF191917 03160415 63148104
©137DF36 03351F34 408A01C7
16001600 100D000Q 1602191E
000C0390 03031C1A 02D81A00
0C03C003 04160402 0203C91A
8002034E 1A000040 00030378
05020016 2B020378 1AQA0302
03781A0B 04020116 2D020378
03781A02 16650203 781A0116

C0320
Co338
C0350
Co368
Co380
C0398
Co3B0
Co3C8
Co3E®Q
CO3F8
Co410
Co428
Co440
Co458

Lets store it in flash memory. To avoid you some typing we provide the necessary
boot assistant commands in part2/graphics_card_driver. txt. Run them with:

user@host:~$ python3 flash_helper.py < part2/graphics_card_driver.txt

>Reading page 1026... Done.
Reading page 1027... Done.
Reading page 1028... Done.
Writing page 1026... Done.
Writing page 1027... Done.
Writing page 1028... Done.
>Done.

10.5 Experiments

In order to test our driver we can try to display the traditional “Hello, World!" message
on the screen. First of all, we need to connect together the Arduino, the graphics card

139



CHAPTER 10 Graphics Card Driver

and the LCD. For this the easiest way is to use a breadboard (see Table A.1). Still,
this requires soldering header pins on the Adafruit RA8875 driver board. For this the
easiest is to plug the header pins on the breadboard as shown in Figure 10.6, place
the board on top of them, and solder the pins in place (see more detailed instructions
at https://ebruneton.github.io/toypc/assembly.html). Then connect the LCD 40-pin
flat cable to the board: slide out the black “ears” on each side of the board connector,
insert the flat cable with the pins oriented as shown in Figure 10.6, and slide the ears
back in. Finally, using jumper wires, connect:

o the VIN and GND pins to the Arduino’s 3.3V and GND pins,

o the RST pin to the Arduino pin 20 (as assumed in the gpu_reset function),

o the MISO, MOSI and SCK pins to the Arduino’s PA25, PA26 and PA27 pins,
respectively (near the SAM3XS8E chip, see Figure 6.1),

the CS pin to the Arduino’s PA28 pin, corresponding to pin 10 (see Figure 6.1).

We can then write a main function, at its expected address C2000; ¢ (see Figure 9.2),
to display “Hello, World!” on the screen. For this we need the ASCII code of these
characters: 48,4 for “H”, 6514 for “e”, etc (see Appendix B). We can store them in a
list, starting a bit after the main function, for instance C2080+¢:

21 646C726F 57202C6F 6C6C6548 (2080

We start the main function with calls to boot_mode_select_rom, clock_init,
and gpu_init (see Tables 9.3 and 10.3).

fn 00 19 C2000 call 0200 clock_init 1A +005
call 02B4 ..select_rom 1A +002 call 03DF gpu_init 1A +008

We then set the foreground color to green and the cursor position to (20, 3):

cst_0 00 +00B cst8 14 02 +012
cst8 07 02 +00C cst8 03 02 +014
cst_ 0 00 +00E call 0422 .set_cursor 1A +016

call 044D gpu_set_color 1A  +00F

Finally, we draw the characters by using a loop, with a pointer p to the next
character to draw stored in the 4*" stack frame slot:

Initialize p to point to the 1%¢ character. ~ cst 000C2080 — p 03 +019

Load the byte at address p and draw it ~ get 04 p 16 +01E
with gpu_draw_char. call 93C0 load_byte 1A +020
call 0465 gpu_draw_char 1A +023

Increment p by 1 to prepare drawing est_1 01 +026
the next character. add 04 +027
If p is not the end of the list of char- get 04 p 16 +028
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10.5 Experiments

ARDUINO

Atmel

ATSAM3X8E

NETSL88VY
ovd
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Xew 0g4X008
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141 dow<-1dS

G/88VY @

FIGURE 10.6 How to connect the Arduino Due, the Adafruit RA8875 driver board and
the LCD with a breadboard.
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acters, go back to offset 1E;5. Otherwise  cst 000C208D 03 +02A
loop forever doing nothing. iflt 001E oC +02F
goto 0032 12 +032

To run this main function we need to store it in flash memory and to restart the
Arduino with the boot mode selection set to boot from flash. We provide the necessary
boot assistant commands in part2/graphics_card_driver_test.txt. Run them
with:
user@host:~$ python3 flash_helper.py < part2/graphics_card_driver_test.txt
>Reading page 1056... Done.

Writing page 1056... Done.
>Done.

If all goes well, you should see a green “Hello, World!” message on the screen,
followed by a blinking cursor! Note that if you press the RESET button on the
Arduino, the message does not disappear, although the Arduino is now running the
boot assistant. Indeed, the graphics card is running independently, and is nof reset
when the Arduino is. This is why we reset it explicitly with the gpu_reset function.
You can now turn off the Arduino, which also turns off the graphics card and the LCD.
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Keyboard Driver

In this chapter we continue to assemble our toy computer by connecting a keyboard
to the Arduino, and by writing a program to use it. We first present how keyboards
work, how they communicate with computers, and how programs can use them. We
then write such a program, called the keyboard driver. Finally, we test it with a small
application displaying on the screen all the keys typed on the keyboard.

111 Keyboard

A computer needs to know which keys of a keyboard are pressed at any given time
(several keys can be pressed simultaneously). If the keyboard had only one key, this
would be very easy to do. Indeed, one could then use a push button switch connected
on one end to VCC and on the other to an input pin of the microprocessor. A program
running on the microprocessor could then read the value v of this input pin to know
whether the key is pressed (v = 1) or not (v = 0). However, keyboards usually have
about 100 keys. With this simple method, one would need about 100 input pins on the
microprocessor to know which keys are pressed or not.

A solution to this problem is to still use one push button switch per key, but to
connect them to a grid of wires as shown in Figure 11.1. In this design, each column
wire is connected to an output pin, and each row wire is connected to an input pin. To
know which keys are pressed, one can set each output pin to 1, one by one, and then
read the values of the input pins. Indeed, the key at row y and column z is pressed if
and only if row y is 1 when column z is 1. With this method, only 20 pins are needed
for 100 keys (10 column output pins and 10 row input pins). The drawback is that
columns must be scanned one by one. This scan could be done by the computer, but
this would require a keyboard plug with at least 20 pins. To avoid this, the following
method can be used:

e Continuously scan the grid as described above with a small chip inside the keyboard.
This requires about 20 pins but this is fine, since they are internal.

e When the state of a key has changed since the last scan, send some data to the
computer indicating which key is concerned, and whether it became pressed or
released. This data can be sent one bit at a time over a single pin.

In fact this is what PS/2 (for Personal System/2) keyboards do. Since this method is
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Column,zx x4+ 1 T+ 2

Row y
6-pin cable @

FIGURE 11.1 A schematic view of a possible keyboard circuit. Each key is a push
button switch connected to a grid of wires. Setting exactly one column to VCC (in red)
sets the rows of the pressed keys (in gray) in this column to VCC too. Diodes prevent
ghosting: without them, if “I” was pressed too, “)” would incorrectly be considered
as pressed because row y + 1 would be at VCC too (via the dotted path).

much simpler than the one used by USB keyboards, we use such a keyboard for our
toy computer, namely a MCSaite model (see Table A.1). Any other keyboard might
not work with our driver?!.

1111 Scancodes

When a key is pressed or released, a PS/2 keyboard sends to the computer one or
more bytes, called scancodes. There are several standardized sets of scancodes. The
one used by the MCSaite keyboard is IBM PC “set 2” (see Appendix C). With this
standard, most keys emit a single scancode when pressed. For instance, pressing the
“A” key emits the scancode 1C;4. These keys emit the same scancode when they are
released, preceded by FO;¢. For instance, releasing the “A” key emits FO14, 1C14.

A few other keys emit two scancodes when pressed, with the first one always
equal to EO;¢. For instance, pressing the “PageUp” key emits EO;5, 7D16. When
released, these keys emit the same last scancode, preceded by EQ16, FO14. For instance,
releasing the “PageUp” key emits EO;4, FO14, 7D16.

Finally, two keys are exceptions to these rules. “PrintScreen” emits 4 scancodes
when pressed (EO1¢, 1216, EO16, 7C16), and 6 when released (EO1¢, FO1¢6, 7C16, EO16,
FO16, 1216). “Pause” emits 8 scancodes when pressed (El1g, 1416, 7716, El1g, FO16,
1446, FO14, 7716), and no scancodes when released.

Note that scancodes are different from ASCII codes. One reason is that some keys
do not have any equivalent ASCII code, such as the “PageUp” key. Another reason is
that some keys have two corresponding ASCII codes, such as the “A” key (one for “a”,
and one for “A”). However, most programs need ASCII codes instead of scancodes.
For instance, an ASCII code is needed to draw a character on the screen. A small
program is thus needed to convert scancodes to ASCII codes.

'Especially USB-only keyboards, even with the USB to PS/2 plug adapter provided with the MCSaite.
This adapter works with the MCSaite because this keyboard supports both protocols.
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CLOCK
k=4
SARHE6 6668666

FIGURE 11.2 The signals output by a PS/2 keyboard. Each scancode is sent on the
DATA pin, one bit per CLOCK cycle, starting with the least significant. It is preceded
by a “start” bit (always 0) and followed by a “parity” bit and a “stop” bit (always 1).

stop

111.2 Communication protocol

A PS/2 keyboard uses a 6-pin mini-DIN connector to send the above scancodes to the
computer. Two pins are unused. Two other pins, GND and VCC, are inputs provided
by the computer to power the keyboard. One pin, named CLOCK, is a clock signal
generated by the keyboard. Finally, the last pin, named DATA, is used to actually
send data. Each scancode is sent separately, one bit b; at each clock cycle, as shown
in Figure 11.2. These 8 bits are preceded by a “start” bit and followed by a “parity”
bit and a “stop” bit. The parity bit p is computed so that by + b + ... + b7 + p is odd
(this is called odd parity). It is used to detect transmission errors (if the previous sum,
computed by the receiver, is even, then at least one received bit is incorrect).

This communication protocol is qualified as serial and synchronous. Serial means
that one bit is transmitted at a time. The opposite, i.e., transmitting several bits at a
time, like a 40-pin LCD connector does, is called parallel transmission. Synchronous
means that a separate clock signal is used, indicating when the data signal can be
read (depending on the protocol, this can be when the clock signal is 0, when it is
rising, when it is falling, etc). The opposite, i.e., not using any clock signal, is called
asynchronous transmission. In this case the receiver and the transmitter must agree
on a bit rate beforehand.

11.2 Universal Synchronous Asynchronous
Receiver Transmitter

At this stage, “all we have left to do” is to write a program to read the above signals,
recover the corresponding scancodes, and then the corresponding ASCII codes. This
could be done with the PIO controller, but there is a much simpler method. Indeed,
the Arduino microcontroller has a dedicated component to interact with almost any
device using a serial communication method, be it synchronous or asynchronous. It
is called the Universal Synchronous Asynchronous Receiver Transmitter (USART)
component. This section gives an overview of this component and explains how to
use it. A complete description can be found in Chapter 35 of [8].

The core part of the USART component is similar to the SPI component (see
Section 10.3). Indeed, this component is a hardware circuit which can receive serial
data on an input pin called RXD, and transmit data on an output pin called TXD,
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FIGURE 11.3 Asimplified representation of the Universal Synchronous Asynchronous
Receiver Transmitter (USART) circuit and registers (in gray).

Name Type Address
Control Register Write-Only | 400980006
Mode Register Read-Write | 4009800416

Interrupt Enable Register | Write-Only | 40098008:¢
Channel Status Register Read-Only | 400980146
Receiver Holding Register | Read-Only | 400980186

TABLE 111 The Universal Synchronous Asynchronous Receiver Transmitter registers
used in this book.

synchronously or not with a clock signal on a SCK pin (see Figure 11.3). This is
similar to the MISO, MOSI, and SCK pins of the SPI component, respectively. This
component is also based on 3 main registers, similar to the SPI Transmit Data, SPI
Receive Data, and SPI Channel Registers (see Table 11.1):

e The Transmit Holding Register. Writing a value in this register sends it on the TXD
pin.

e The Receive Holding Register. Values received on the RXD pin are stored in this
register.

e The Channel Status Register. This read-only register has the following binary
format (we show only the bits that we use):

’01010101010101010101010101010101010101010101010101010101010‘St‘Sr‘
where s; is 0 while a value is being sent (and 1 when this is done), and s, is 1 iff a
new value has been received since the last read of the Receive Holding register.

The USART component must also be configured before being used, as the SPI
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component. The main register which can be used to do this is the Mode Register,
similar to the SPI Channel Select Register. Indeed this register has the following
binary format (we show only the bits that we use):

00000000000.0.0.00[0]00]stop|parity|s|bits| k][00 0 0]

e The clk field indicates which clock signal to use for SCK. One option is to use the
Peripheral Clock provided by the PMC. Another option, corresponding to clk = 3,
is to use the signal provided by the external device (in our case the beyboard).

e The bits field indicates that bits + 5 bits are sent or received at a time.

e The s field indicates if the component should operate in synchronous mode (s = 1)
or in asynchronous mode (s = 0).

e The parity field indicates how the parity bit p is computed (see Section 11.1.2).
Odd parity corresponds to parity = 1.

e The stop field indicates how many stop bits are used. stop = 0 corresponds to one
stop bit, while stop = 2 corresponds to two stop bits.

e The o field indicates if least significant bit is sent first (o = 0), or if the most
significant bit is sent first (o = 1).

In our case we need clk = 3, bits = 3, s = 1, parity = 1, stop = 0 and
o = 0 (see Figure 11.3). We thus need to set the Mode Register to 3F016. Another
configuration register is the Interrupt Enable Register. This register has the following
binary format (we show only the bits that we use):

’0101010101010101010101010101010101O101010101010101010101010‘it‘i’r‘

Setting 7, = 1 (resp. 7 = 1) means that an interrupt (see Sections 7.1 and 7.4) should
be triggered when the Channel Status s, bit (resp. s; bit) is 1 (setting i,. or ¢; to 0 has
no effect). This process is explained in more details in the next section.

Finally, in order to be used, the USART component must be enabled. This can be
done with the Control Register, which has the following binary format (we show only
the bits that we use):

’0101010101010101010101010101010101010101010101010‘et‘O‘ET‘OXOXOXO‘

Setting e, = 1 enables the receiver part, while setting e; = 1 enables the transmitter
part (in our case we just need the receiver part). The USART internal clock, the
Peripheral Clock 17 (see Figure 11.3), must also be enabled (even if an external SCK
is used). This can be done by writing the value 2'7 in the PMC Peripheral Clock
Enable Register (see Section Section 9.1). Last but not least, the RXD and SCK pins
must be configured as input pins (we don’t need to configure the TXD pin since we
don’t use it). This can be done by setting the corresponding bits to 1 in the PIO Status
Register and to 0 in the PIO Output Status Register (see Section 6.6). In fact the
default value of the PIO Output Status Register is 0, so we just need to configure the
PIO Status Register. Since the RXD and SCK pins correspond to PA10 and PA17 (see
Figure 11.3), this can be done by writing the value 2'° 4 217 in the PIO A Enable
Register.
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11.3 Nested Vector Interrupt Controller

Thanks to the USART component, a program could periodically read the Channel
Status register to check if a new scancode has been received from the keyboard. If so,
it could then read it in the Receive Holding register. However, this method has an
important drawback: if two or more scancodes are received since the last check, only
the last one is available in the Receive Holding register (new values override previous
ones). Some keys typed during this time could thus be missed. Even worse, some
keys could be interpreted incorrectly. For instance, if the “PageUp” key is pressed,
which emits EO1g, 7D+, and if EO14 is missed, the above program would just get
7D16, which is the scancode emitted by the “9” key on the numeric pad. It would thus
consider that this key was pressed, which is wrong.

In order to solve this problem we must make sure to not miss any scancode. This
can be done with an interrupt, triggered each time a new value is received by the
USART component. Recall that when an interrupt is triggered, execution jumps
to an interrupt handler, at an address given by the Vector Table (see Sections 7.1
and 7.4). In our case, this handler could read the scancode, store it in an unused
memory location, and return to the main program. This takes much less time than the
reception of a scancode (the CLOCK frequency is at most 16.7kHz). Thus, provided
there is enough unused memory to store received scancodes that have not yet been
read by the main program, no scancode would be missed.

11.31 Interrupt status

In order to use interrupts, one must enable them first. The USART component can
trigger an interrupt when a new value is received, when a value has been transmitted,
etc. The first step is to choose which event(s) should trigger an interrupt. This is done
with the USART Interrupt Enable Register presented in the previous section. The
second step is to enable these interrupts in the Nested Vector Interrupt Controller
(NVIC). This component provides two main registers to enable or disable the interrupts
triggered by each peripheral (see Table 11.2):

e The Interrupt Set-Enable Register. Setting the bit 7 of this register to 1 enables the
interrupts from peripheral number ¢ (recall that peripherals are numbered, e.g., 17
for USART, 24 for SPI, etc — see Figure 6.2). Setting a bit to 0 has no effect.

e The Interrupt Clear-Enable Register. Setting the bit ¢ of this register to 1 disables
the interrupts from peripheral number 7. Setting a bit to 0 has no effect.

Note that if a scancode is received while the USART interrupt is disabled in the
NVIC (but not at the USART level), its handler is not executed, but the interrupt
becomes pending. When a pending interrupt is enabled, it becomes active, i.e., its
handler is executed. It is thus possible to temporarily disable the USART interrupt,
without loosing any scancode, provided that the interrupt is not disabled for too long
(i.e., such that at most one scancode can be received during this time).
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Name Type Address
Interrupt Set-Enable Register Read-Write | EOOOE10046
Interrupt Clear-Enable Register | Read-Write | EOOOE18016

TABLE 11.2 The Nested Vector Interrupt Controller registers used in this chapter.

11.3.2 Interrupt handler entry and return

When an interrupt from peripheral number 7 becomes active, execution jumps to the
interworking address stored in the (16 + z’)th entry of the Vector Table, i.e., at offset
4(16 + 4) from the beginning of this table. Thus, for instance, when the USART
interrupt becomes active, execution jumps to the interworking address at offset 841¢.

Before this, however, the microprocessor pushes on the stack the address of the
instruction to return to when the handler terminates. It also pushes on the stack the
current value of some registers, including RO, R1, R2, R3, and the Link Register (LR).
Finally, the microprocessor sets the LR to a special value, called EXC_RETURN,
and starts executing the interrupt handler by moving its interworking address into the
Program Counter (Chapter 23 gives more details about this).

The interrupt handler can return and resume execution in the interrupted program by
copying this EXC_RETURN value into the PC. When this happens, the microprocessor
pops the values pushed above to restore the register values as they were before the
interrupt. An interrupt handler can thus simply push the LR on the stack when it
starts, and finally pop it into the PC to resume execution of the interrupted program.

11.4 Keyboard driver

We now have everything we need to write our keyboard driver. We start with a
presentation of its goal and of the method used to achieve it. We then provide the
corresponding implementation.

11.41 Design

The main goal of the keyboard, for our basic input output system, is to input data
without needing an external computer. Any data can be represented with Os and 1s
and thus, in theory, we just need two keys, or even just one. But this would not be very
practical. On the other hand, we don’t need to handle all keys, nor all combinations
of keys (such as Ctrl+C, Ctrl+V, etc). In order to get a practical but simple driver
we thus make the following choices. First, the driver should not output anything
when a key is released. Second, when a key is pressed, the driver should output the
corresponding ASCII code if there is one. If there are two, it should output one or
the other, depending on whether the Shift key is pressed or not. If there are none, it
should output some code between 128 and 255 (ASCII codes are between 0 and 127
included).
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Finite State Machine

In the following we call character a byte value which is either an ASCII code or,
if larger than 128, some value representing a key without ASCII code. The main
goal of our driver is thus to transform the sequence of scancodes into a sequence of
characters. As explained in Section 11.1.1, besides two exceptions, this sequence is
made of subsequences of the form (x), (FO1¢, ), (EO14, x), or (EO14, FO14, ). The
driver should thus react differently when a scancode x; is received, depending on the
previous scancode z;_1 (we ignore the exceptions and the Shift key for now):

e if ;1 = F'014, do nothing since (. .., FO14, ;) corresponds to a key release,

e if z;_; = FE0y5 and xy # F01¢, output the character corresponding to (EOg4, ),
e ifx, 1 = E0;6 and x; = F'014, do nothing,

e otherwise, if z; ¢ {F01¢, E016}, output the character corresponding to (z;).

Said otherwise, at any time ¢, the driver can be in 3 different states S;, which can
be noted 1 for x;_1 = F01¢, 2 for ;1 = E01¢4, and O for all other cases. Each input
x, triggers an action A (output a character or do nothing) which depends on .S; and
x;. It also makes the driver transition to a new state S, 1, depending on x;. This can
be summarized in a transition table, or represented in a diagram, as follows:

zy = FO16 | 24 = EOqg otherwise
St41 | A | Ser1 | A [ S | A | S
1 0 2 0] 0 clzg) | O
- - - - 0 0
1 0 - - 0 e(xy) | 2

where () means “do nothing”, ¢(z) and e(x) mean “output the character corresponding
to (z) and (EOy¢, x)”, respectively, and “—” are cases which cannot happen. Such a
system is called a finite state automaton or finite state machine.

To handle the Shift key? we can use a bit s set to 1 when this key is pressed (which
emits 1214) and reset to O when it is released (which emits FO¢, 1216). This adds a
new column and two actions in the transition table (an alternative is to duplicate each
state, but this gives a larger transition table):

Ty = 1216 | 1t = F016 | ¢ = EO16 otherwise
0|s«1]1 U 2 0 0| c(x,8) | Se=0
0| s«0|- - - — 0 0 Sy =1
- - 1 0 - - 0| e(zy,s) | Se=2

where c¢(z¢, s) and e(ay, s) are now extended to output one character or another,
depending on the Shift key state s.

2The MCSaite keyboard has only a left Shift key. We thus ignore the right Shift key (which emits 591¢).
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The exception sequence (Elyg, 1416, 7716, El16, FO16, 1416, FO16, 771¢) for the
“Pause” key can be seen as 3 sequences (Elyg, 1416, 7716), (El16, FO16, 1416), and
(FO16, 7716). The last one is already handled. The first two can be managed with a
new state S = 3, a transition from .S = 0 to S = 3 when z; = F1l44, and from S = 3
to S = 1 for any scancode. Indeed, with the next transition from S = 1to S = 0, this
reads 3 scancodes. To simplify we use empty actions for these transitions, i.e., we do
nothing when “Pause” is pressed.

Finally, the exception sequence (EO14, 1214, EO16, 7C16) emitted by “PrintScreen’
can be seen as two normal sequences. We can then do nothing for the first, and
associate the second with “PrintScreen”. One issue is that releasing this key emits
(..., EO06, FO16, 1215). With the above transition table, this is interpreted as releasing
the Shift key, which is wrong. To detect this case we introduce a fifth state, S = 4.
This leads to our final transition table:

>

xy =1216 | ¢ = FO16 | ¢ = FO16 | x: = Flyg otherwise

0|s+1]1 0 2 0 3 0 0| c(zg,s) | Se=0

0|s«0]- - - - - - 0 0 Sy =1

0 0 4 0 - - - - 0| e(zy,s) | Se=2

- - 1 ] - - - - 1 0 Sy =3

0 0 - - - - - - 0 0 Sy =4
Character queue

Some actions of the above finite state machine “output a character”, but what does
this mean exactly? For the reasons explained in Section 11.3, we want to implement
this machine in an interrupt handler. The output characters should thus be stored
somewhere in memory, where the main program can later read them. To simplify, we
use a single byte storage b, at a fixed memory address, and use b = 0 to represent an
empty storage (this value cannot be output by any key). The action “output a character
¢’ can then be specified as follows:

put_char(c): if b = 0 store ¢ in b, otherwise do nothing (i.e., drop ¢).

The main program could then read a character with the following function, which
returns a character c if there is one in storage, or 0 otherwise:

get_char(): copy b in ¢, then store 0 in b, then return c.

In fact this function has a bug. Indeed, it can be interrupted at any time. The
put_char function might therefore be called at any time, for instance between the first
and second steps of get_char. The following scenario could then happen: b is currently
0, the first step stores 0 into ¢, put_char(d) runs and stores d in b, get_char resumes,
stores 0 in b and returns 0. The end result is that d is lost! To avoid this, a solution is
to disable the USART interrupt at the beginning of get_char, and to re-enable it at the
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end (before the return). This ensures a mutual exclusion of the instructions using the
shared storage b, via their atomicity (i.e., the fact that they can’t be interrupted).

Note that characters could still be dropped, in put_char, if they are typed faster
than they are read. To avoid this more memory could be used to store them in a queue,
until they are read. A queue is a “First In, First Out” (FIFO) data structure. It is a bit
more complex to implement than a stack — a “Last In, First Out” (LIFO) data structure,
which is why we use a single byte storage instead.

Character tables

To complete our design we need to specify the above ¢(z, s) and e(z, s) functions.
The latter corresponds to keys which don’t have ASCII codes (except the numeric pad
“/” and “Enter” keys). We can thus choose e(z, s) as we want in [128, 255]. Note also
that z < 128 in (EO6,2) sequences (see Appendix C). Hence, and since Shift has no
effect on these keys, we can simply use e(z, s) = x + 128.

The ¢(z, s) function can be obtained by combining the tables in Appendices B
and C. For instance, ¢(1C1g, s) is obtained by looking up the key corresponding to
(1Cq64), namely “a / A”, and then by looking up the ASCII codes for “a” and “A”,
namely 6116 and 414¢. This gives ¢(1C16,0) = 6116 and ¢(1C16,1) = 4116. Some
(z) sequences do not have any associated ASCII code, such as 01,¢4. In such cases
we can set ¢(z, s) to any value in [128,255] not already used. Finally, we can use
¢(x, 8) = 0 for cases which cannot happen, such as 2 = 0016. By doing this for all
scancodes, and with the choices listed in Table 11.3, we get the following character
tables for s = 0 and s = 1, each with 132 elements (listed from right to left):

00 31 71 8C 00 00 8D 00 00 60 @9 83 85 87 89 00 8B 81 80 82 84 00 88 00
00 35 72 74 66 76 20 00 00 33 34 65 64 78 63 00 00 32 77 61 73 7A 00 00
00 39 30 6F 69 6B 2C 00 00 38 37 75 6A 6D 00 00 00 36 79 67 68 62 6E 00
00 00 5C 00 5D OA 00 8F 00 00 3D 5B 00 27 00 00 00 2D 70 3B 6C 2F 2E 00
8E 1B 38 36 35 32 2E 30 00 00 00 37 34 00 31 00 00 08 00 00 00 00 00 00

86 00 00 00 00 90 39 2A 2D 33 2B 8A
00 21 51 8C 00 00 8D 00 00 7E @9 83 85 87 89 00 8B 81 80 82 84 00 88 00
00 25 52 54 46 56 20 00 00 23 24 45 44 58 43 00 00 40 57 41 53 5A 00 00
00 28 29 4F 49 4B 3C 00 00 2A 26 55 4A 4D 00 00 00 5E 59 47 48 42 4E 00
00 00 7C 00 7D OA 00 8F 00 00 2B 7B 00 22 00 00 00 5F 50 3A 4C 3F 3E 00
8E 1B 38 36 35 32 2E 30 00 00 00 37 34 00 31 00 00 08 00 00 00 00 00 00

86 00 00 00 00 90 39 2A 2D 33 2B 8A

11.4.2 Implementation

We can finally implement our keyboard driver. We start by storing the above tables
just after the graphics card driver, i.e., at address C04704¢. The value ¢(x, s) is then
given by the byte at offset  + 132s from this address. We continue with a function to
initialize the driver state (S, s, and b) and the USART component:
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F3 82 F8 87 Ctrl (left) 8C
F4 83 Fo 88 Alt (left) 8D
F5 84 F10 89 NumLock 8E

Key Char | Key Char | Key Char | Key Char
F1 80 F6 85 F11 8A CapsLock  8F
F2 81 F7 86 F12 8B ScrollLock 90

TABLE 11.3 The characters chosen for keys without ASCII code.

keyboard_init()

Initialize S, s, and bto 0. Each could be
stored in one byte but, in order to simplify
the code, we use one word for each, at
addresses 400E1A90,¢6, 400E1A94¢, and
400E1A981¢, respectively. These are some
“General Purpose Backup Registers” in the
“Controllers” memory region (see Figure
6.3 and Chapter 17 in [8]).

Configure the PA10 and PA17 pins as
inputs with the PIO A Enable Register.

Enable the USART component clock
(Peripheral clock 17) with the Peripheral
Clock Enable Register.

Configure the USART component for
the PS/2 signals with the USART Mode
Register (see Section 11.2).

Configure the USART component to
trigger an interrupt when a scancode is
received, with the USART Interrupt Enable
Register.

Enable the USART interrupt with the
NVIC Interrupt Set-Enable Register.

Enable the USART receiver with the
USART Control Register and return.

fn
cst
cst_0
store
cst
cst_0
store
cst
cst_0
store
cst
cst
store
cst
cst
store
cst
cst
store
cst
cst_1
store

cst
cst
store
cst
cst8
store
ret

00
400ETA90

400E1A94

400E1A98

400EQEQ0Q

00020400

400E0610
00020000

40098004
000003F0

40098008

EQQ0E100
00020000

40098000
10

19
03
00
14
03
00
14
03
00
14
03
03
14
03
03
14
03
03
14
03
01
14

03
03
14
03
02
14
1D

Co578
+002
+007
+008
+009
+00E
+00F
+010
+015
+016
+017
+01C
+021
+022
+027
+02C
+02D
+032
+037
+038
+03D
+03E

+03F
+044
+049
+04A
+04F
+051
+052

We then implement the put_char and get_char functions, as well as a wait_char
function which repeatedly calls get_char until it returns a non-zero value:
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keyboard_put_char(c)
If b # 0 go to the end of the function
(the character queue is full, drop c).

Store c (the function’s 0" argument)
in b.

Return.

keyboard_get_char() — ¢
Disable the USART interrupt with the
NVIC Interrupt Clear-Enable Register.

Push b on the stack. This is the value
returned by the retv instruction below.
Store 0 in b.

Re-enable the USART interrupt with
the NVIC Interrupt Set-Enable Register.

Return the top stack value.

keyboard_wait_char() — ¢

Initialize ¢ to 0.

Call keyboard_get_char and store
the result in c.

If ¢ is 0 go back above to try again.

Otherwise return c, the top stack value.

fn
cst
load
cst_ 0
ifne
cst
get
store
ret

fn
cst
cst
store
cst
load
cst
cst_0
store
cst
cst
store
retv

fn
cst_0
call
set
get
cst_0
ifeq
retv

01
400E1A98

0014
400E1A98
00 ¢

00
EQQOE180
00020000

400E1A98

400E1A98

E000E100
00020000

00

— C
O5EQ ..get_char
04 ¢
04 ¢

0003

19
03
13
00
10
03
16
14
1D

19
03
03
14
03
13
03
00
14
03
03
14
1E

19
00
1A
17
16
00
oD
1E

Co5CB
+002
+007
+008
+009
+00C
+011
+013
+014

CO5E0Q
+002
+007
+00C
+00D
+012
+013
+018
+019
+01A
+01F
+024
+025

Co606
+002
+003
+006
+008
+00A
+00B
+00E

The put_char function allows us to implement the actions of our Finite State
Machine. We use one function per action, for the “do nothing”, “s <— 07, “s <— 17,
“output e(x, s)” and “output c(x, s)” actions, respectively:

keyboard_skip_code(scancode)
Do nothing.
keyboard_release_shift(scancode)
Set s to 0.
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ret
fn
cst
cst_0
store
ret

01

01
400E1A94

19
1D
19
03
00
14
1D

Co615
+002
Co618
+002
+007
+008
+009
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keyboard_press_shift(scancode) fn 01 19 C0622
Set s to 132. We premultiply s by cst 400E1A94 03 +002
132 to simplify the keyboard_put_code c¢st8 84 02 +007
function below. store 14 +009
ret 1D +00A

keyboard_put_extended_code(scancode) fn 01 19 C062D
Output e(scancode, s) = scancode + get 00  scancode 16 +002
128 with the keyboard_put_char func- cst8 80 02 +004
tion. add 04 +006
call 05CB ..put_char 1A +007

ret 1D +00A

keyboard_put_code(scancode) fn 01 19 C0638
Compute the address of the byte con-  cst 000C0470 03 +002
taining c(scancode, s), namely C0470;6 get 00  scancode 16 +007
+ scancode + s (s is premultiplied by 132, add 04 +009
see above). cst 4Q0E1A94 03 +00A
load 13 +00F

add 04 +070

Call load_byte to load the byte at this call ~ ©3C@ load_byte 1A +011
address, output it with keyboard_put_char. call ~ @5CB .put_char 1A +014
ret 1D +017

In turn, these functions allow us to implement the transition table of the Finite
State Machine. We represent it with one byte per cell, from right to left and top to
bottom. We store in each “action” cell the address of the corresponding function
(minus the address of keyboard_skip_code so that the result fits in one byte). We
also premultiply the “next state” cell values by 10, the number of columns, so that a
state value directly gives the offset of the beginning of its row in the transition table.
The end result, with Os for the “cannot happen” cases, is the following data, stored
just after the above functions:

00000018 00030000 00000000 0000000D 0AQ01400 1EQ00023 (0650
00000000 00000000 00000A00 00000000 0AC0VV0Q 28000000 (0668
0000 C0680

In order to read the action and next state corresponding to a scancode in this table,
it is useful to have a function returning its “action column” index (numbered from
right to left):

keyboard_action_column(scancode) — fn 01 19 (0682
c get 00  scancode 16 +002
If scancode # 1216, skip the next two  cst§ 12 02 +004
instructions. ifne 000C 10 +006
Otherwise (scancode = 121¢) return  cst8 08 02 +009
8. retv 1E  +00B
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If scancode > 132, skip the nexttwo get 00 scancode 16
instructions. cst8 84 02
ifge 0015 11

Otherwise (scancode < 132) return 0. cst_0 00
retv 1E

If scancode # E01g, skipthenexttwo get 00  scancode 16
instructions. cst8 EOQ 02
ifne 001F 10

Otherwise (scancode = EQqg) return  cst§ 04 02

4, retv 1E
If scancode # F01¢, skipthenexttwo get 00  scancode 16
instructions. cst8  Fo 02
ifne 0029 10

Otherwise (scancode = F0qg) return  cst§ 06 02

6. retv 1E
In any other case return 2 (scancode cst§ 02 02

is necessarily equal to E14¢). retv 1E

+00C
+00E
+010
+013
+014
+015
+017
+019
+01C
+01E
+01F
+021
+023
+026
+028
+029
+02B

With this we can finally implement the interrupt handler. This function reads a

scancode and executes the corresponding Finite State Machine transition:

keyboard_handler() fn 00 19
Read the newly received scancode x in  cst 40098018 03

the USART Receive Holding Register. load — 13
Compute the address a of the transi- cst 000C0650 03
tion table row corresponding to the current  cst 400E1A90 03
state (C0650+¢ + S, since state values are  load 13
premultiplied by 10). add —a 04
Add the action columnindex of x (avail- get 04 = 16
able in the 4*" stack frame slot) to a, with call ~ 0682 ..action_column 1A
the help of keyboard_action_column. add 04
Push x on the stack. get 04 =z 16
Compute the address of the action func-  cst 000C0615 03
tion C06151¢ + load_byte(a) (a isinthe get 05 « 16
5th stack frame slot). call  ©3C0 load_byte 1A
add 04

Call this function on x (pushed above). calld 1C
Update S to the next state value, given  cst 4Q0E1A90 03

by load_byte(a + 1), and return. get 05 « 16
cst_1 01

add 04

call 03C0 load_byte 1A

store 14

ret 1D
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+002
+007
+008
+00D
+012
+013
+014
+016
+019
+01A
+01C
+021
+023
+026
+027
+028
+02D
+02F
+030
+031
+034
+035
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Function

Address

keyboard_get_char() — ¢
keyboard_handler()
keyboard_init()

keyboard_wait_char() — ¢ | C0606 (C0000;6+1542)

C05E@ (C0000,4+1504)
CO6AE (C0000,4+1710)
€0578 (C0000,4+1400)

TABLE 11.4 The most important keyboard driver functions.

In summary, the most important functions provided by our keyboard driver are
those in Table 11.4 and its full code and data (besides the two 132 characters tables) is:

03140040 OE1A9803 1400400E
80040314 00020000 03400E06
02000003 EQ0OE100 03140140
03001410 0013400E 1A980301
1A980314 00020000 @O3EQQOET
00191E14 00020000 @3E0QQOE1
00400ETA 94030119 1DO1191E
1D05CB1A 04800200 1601191D
1DO5CB1A 03C01A04 13400E1A
00000018 00030000 00000000
00000000 00000000 00000A00
161E0000 15118402 00161E0Q8
00191E02 021E0602 002910F0
0406821A 04160413 400E1A90
1A040105 16400E1A 90031C04

1A940314 00400E1A 90030019
10031400 02040003 400EQEQ0
09800803 14000003 F0034009
191D1410 02400980 00031400
80030019 1D140016 40Q0E1A98
00031400 400E1A98 0313400E
00030D00 04160417 05E01A00
14840240 OE1A9403 01191D14
94030400 16000C04 70030119
0000000D 0A001400 1E000023
00000000 0A000000 28000000
02000C10 12020016 01190000
0200161E 0402001F 10E00200
03000C06 50031340 09801803
03C01A05 16000C06 15030416

1D1403C0

Co578
Co590
CO5A8
Co5Co
Co5D8
Co5F@
Co608
C0620
Co638
Co650
C0668
Co680
Co698
Co6B0o
Co6C8
Co6E®Q

The last piece that we need is to configure the Vector Table entry for the USART
interrupt to call our keyboard_handler. Since this handler is using bytecode instruc-
tions, we actually need to call our bytecode interpreter, with the keyboard_handler
address as initial Instruction Counter. We also need to save and restore the [RO-R6]
registers, used by the interpreter, before and after this call. In fact we can save only
[R4-R6] since the microprocessor already saves and restores [RO-R3] on interrupt
entry and return. This gives the following Cortex M3 instructions, which we put after
the Hard Fault handler (i.e., starting at CO1C444):

LDR R2 + mem32[|PC|4 + 4 x 2]
LDR RO + mem32[|PCJy + 4 * 3]
PUSH R4 R5 R6 LR — stack

BLX PC+ RO—1,LR ¢« a+3

POP R4 R5 R6 PC <« stack
data  (padding, unused)

0100101000000010

01001/0000000001 1

101 1010‘101110000

01000111100000000

1011110701110000

4A02
4803
B570
4780

BD70
0000

000
002
004
006

008
00A
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data  (address of keyboard_handler function) Q0OCO6AE 00C
data  (interworking address of interpreter) 000C0001 010

where POP moves the LR saved by PUSH into the PC, in order to resume the execution
of the interrupted program. Finally, we need to store the interworking address of this
USART handler at offset 84,4 in the Vector Table. The boot assistant commands to
do this, and to flash the keyboard driver and the above instructions are provided in
part2/keyboard_driver.txt. Run them with:

user@host:~$ python3 flash_helper.py < part2/keyboard_driver.txt
>Reading page 1028... Done.
Reading page 1029... Done.
Reading page 1030... Done.
Reading page 1025... Done.
Reading page 0... Done.
Writing page @... Done.
Writing page 1025... Done.
Writing page 1028... Done.
Writing page 1029... Done.
Writing page 1030... Done.
>Done.

11.5 Experiments

In order to test our driver we can try to display on the screen each key typed on
the keyboard. First of all, we need to connect the keyboard to the Arduino. PS/2
keyboards need a 5V power source and generate 5V CLOCK and DATA signals.
The Arduino Due has a 5V output pin, but only supports 3.3V inputs. To connect
the two we thus need an adapter, called a level converter. This component is
essentially a switch on a 3.3V circuit, controlled by a 5V input (see Figure 11.5).
The 4 channel Logic Level Converter listed in Table A.1 provides 4 such switches.
To use this small board you need to solder header pins on it. For this the easiest
is to plug the header pins on the breadboard as shown in Figure 11.4, place the
board on top of them, and solder the pins in place (see more detailed instructions at
https://ebruneton.github.io/toypc/assembly.html). Then, using jumper wires, connect:

e the GND, LV, and HV pins to the Arduino’s GND, 3.3V, and 5V pins,

o the GND and HV pins to the GND and VCC pins of the mini-DIN connector,

o the CLOCK pin of the mini-DIN connector to the Arduino pin SDA1 (corresponding
to PA17, see Figure 6.1), via the LV4 / HV4 pins of the Level Converter,

e the DATA pin of the mini-DIN connector to the Arduino pin 19 (corresponding to
PA10, see Figure 6.1), via the LV3 / HV3 pins of the Level Converter.

We can then write a main function, at its expected address C2000+¢ (see Figure 9.2),
to display on the screen each key typed on the keyboard. We start the main function
with calls to boot_mode_select_rom, clock_init, gpu_init, and keyboard_init
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FIGURE 11.4 How to connect the Arduino Due and the keyboard, via a level converter.
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+5V +3.3V

DATA

Keyboard A\\\\ | M Arduino

pin 19

FIGURE 11.5 A schematic diagram of the level converter between the keyboard and
the Arduino (actually built with transistors instead of relays).

(see Tables 9.3, 10.3 and 11.4). We then set the foreground color to green (0, 7,0):

fn 00 19 C2000 cst_0 00 +00E
call 02B4 .select_rom 1A +002 cst8 07 02 +00F
call 0200 clock_init 1A +005 cst_0 00 +011
call @3DF gpu_init 1A +008 call 044D gpu_set_color 1A +012

call 0578 keyboard_init 1A +00B

Finally, we draw each character read from the keyboard, in an endless loop:

Read a character. call 0606 .wait_char 1A +015
Draw it on the screen. call 0465 gpu_draw_char 1A  +018
Repeat. goto 0015 12 +01B

To run this main function we need to store it in flash memory and to restart the
Arduino with the boot mode selection set to boot from flash. We provide the necessary
boot assistant commands in part2/keyboard_driver_test. txt. Run them with:

user@host:~$ python3 flash_helper.py < part2/keyboard_driver_test.txt
>Reading page 1056... Done.

Writing page 1056... Done.

>Done.

If all goes well, you should see a black screen with a blinking cursor on the top
left corner. More importantly, if you type something on the keyboard, you should see
it on the screen. You can test that the Shift key works as expected, that “Pause” does
nothing, etc. Note that non character keys, such as the arrow keys, F1, F2, etc, still
draw characters on the screen. This is because the graphics card font has characters
for all values in [0-255], including those of the Latin-1 character set (ISO 8859-1).
Thus, for instance, pressing the “Delete” key, which emits the scancodes (E01¢6,711¢),
draws fi because F114 = 7116 + 128 corresponds to f in Latin-1. When you are done
testing the keyboard, turn off the Arduino.

160



Memory Editor

Our toy computer is now fully assembled, and we have drivers to input and output
data with its own keyboard and screen. The last remaining step to make it completely
autonomous is to provide a way to enter programs and to run them, with the keyboard.
The most basic way to do this is to write a program similar to the boot assistant, but
using the keyboard instead of an external computer. This chapter implements such
a program, hereafter called the “memory editor”. We test it at the end to read the
memory, control a LED with the keyboard, and run other programs.

121 User interface

A possible user interface for our memory editor would be to use the same interface as the
boot assistant. We would thus type commands such as “wC0000,#”, “WC0000, 1234#”,
or “GCo0O#”, to read words, write words, or call functions. And the screen would
display the commands and their results. This could lead to a very small program, but
would not be very practical. Instead, we propose to make better use of the screen,
by displaying a “memory page” at a time (256 bytes). In this way, we can read the
memory like a book, instead of one word at a time. We also get more context when
editing it, or before calling a function. More precisely, we propose the following user
interface:

00000003 00000002 00000001 00VVVYVD 20000100
00000007 00000006 12345678 00004 20000110
... 13 other rows . ..

000000FF 00Q0QOFE 0000QQOFD 000QQOFC 200001F0

2345678A 20000114

o A page view shows 16 rows of 4 words each, followed by the row’s start address.
As we did so far in this book, addresses increase from right to left and from top to
bottom (because this is more adapted to little-endian order than left to right).

o Two fields below the page view show a value V' and an address A, that the user can
edit. When editing V/, the current value at address A is highlighted in the page
view. This value is not changed until Enter is pressed. When this happens V' is
written at address A and A is incremented by 4 to edit the next word.
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o When editing A nothing else changes until Enter is pressed. When this happens, V'
is updated to show the value at this address. The page view is updated as well to
show the page containing this address.

To simplify the implementation, editing a field can only be done by typing an
hexadecimal digit ([0-9] or [a-f] in lowercase). Doing so shifts the current value to
the left by one hex digit, and inserts the new hex digit on the right. For instance, if the
current value is 12345678, typing A gives 2345678A.

Only one field can be edited at a time. The currently “selected” field is indicated
with a blinking cursor under its least significant digit. Typing “w” selects the address
field. Typing Enter when editing the address selects the value field.

Pressing “r” calls the function at the highlighted address. This is the address
which is highlighted in the page view. It might differ from the value in the address
field (if this value has been edited and Enter has not been pressed yet).

Finally, for convenience — this is not strictly necessary — the arrow keys can be
used to go to the next or previous word or row. The left (resp. right) arrow increases
(resp. decreases) the highlighted address by 4. The up (resp. down) arrow decreases
(resp. increases) the highlighted address by 16.

12.2 State variables

The state of the above user interface can be described with only 3 variables:

e address: the address of the highlighted word in the page view. This variable is
sufficient to determine which page contains the highlighted word, and thus to draw
the page view (see the next section).

e mode: which field is currently being edited. We use mode = 0 if it is the value
field, and mode = 1 if it is the address field.

e input: the current value input with the keyboard. This value is shown either in
the value field (if mode = 0), or in the address field (if mode = 1). When Enter
is pressed, it is either written in memory at address (if mode = 0), or replaces
address (if mode = 1).

To simplify the implementation we use 3 more of the 8 General Purpose Backup
Registers in the “Controllers” memory region to store these variables (we already
used 3 of them for the keyboard driver, see Section 11.4.2). More precisely we use
the registers at addresses 400E1A9C;5, 400E1AA0Q1¢6, and 400E1AA4+¢, respectively
(see Figure 6.3 and in Chapter 17 in [8]). For convenience, we provide the following
functions to get and set their values, called getters and setters. We store them after the
keyboard driver, at address CO6E44:

med_get_address() — address load 13 +007
fn 00 19 Co06E4 retv 1E  +008
cst 400ETA9C 03 +002 med_set_address(address)
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fn 01 19 CO6ED
cst 4QQE1A9C 03 +002
get 00 address 16 +007
store 14 +009
ret 1D +00A
med_get_mode() — mode

fn 00 19 CO06F8
cst 4Q0E1AAQ 03 +002
load 13 +007
retv 1E  +008
med_set_mode(mode)

fn 01 19 C0701
cst 4Q0E1AAQ 03 +002
get 00 mode 16 +007

12.3 Drawing functions
12.31 Page view

store
ret

med_get_input() — input

fn
cst
load
retv

12.3 Drawing functions

00
400E1AA4

med_set_input(tnput)

fn
cst
get
store
ret

01
400ETAA4
00 inpul

14
1D

19
03
13
1E

19
03
16
14
1D

+009
+00A

Co70C
+002
+007
+008

Co715
+002
+007
+009
+00A

To draw the page view we first need a function to draw its most basic element, an
hexadecimal digit. The following function draws the hexadecimal digit d corresponding
to the 4 least significant bits of its argument x (d = = A Fg). If d < 10 it should draw
a character between “0” and “9”, which have contiguous ASCII codes in [3014,391¢].
It thus draws the character d + 301¢. Otherwise, if d > 10, it should draw a character
between “A” and “F”, which have contiguous ASCII codes in [4116,4616]. It thus
draws the character d — 10 + 4116 = y + 3716:

gpu_draw_hex_digit(x)

Compute d = x A Fyg. The result is in
the 5" stack frame slot, after the function
argument and 4 saved registers.

If d > 10, skip the next two instruc-
tions.

Otherwise, push 30, on the stack and
skip the next instruction.

Push 374 on the stack.

Add d to the last pushed value (either
3016 or 3716) and draw the resulting char-
acter with gpu_draw_char.

fn
get
cst8
and
get
cst8
ifge
cst8
goto
cst8
get
add
call
ret

01
00 1z
oF
—d
05 d
0A
0013
30
0015
37
05 d

0465 gpu_draw_char

19
16
02
08
16
02
11
02
12
02
16
04
1A
1D

Co720
+002
+004
+006
+007
+009
+00B
+00E
+010
+013
+015
+017
+018
+01B

With this we can write a function to draw the two digits of a byte b (b > 4 and b):
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gpu_draw_hex_byte(b)

fn 01 19
get 00 b 16
cst8 04 02
Isr 0B

Co73C
+002
+004
+006

call
get
call
ret

0720 ..hex_digit 1A

00 b 16
0720 ..hex_digit 1A
1D

+007
+00A
+00C
+00F

which can itself be used to write a function drawing the 4 bytes of a word w (w > 24,

w > 16, w > 8, and w):

gpu_draw_hex_word(w)

fn 01 19
get 00 w 16
cst8 18 02
Isr 0B
call 073C .draw_hex_byte 1A
get 00 w 16
cst8 10 02
Isr 0B

Co74C
+002
+004
+006
+007
+00A
+00C
+00E

call
get
cst8
Isr
call
get
call
ret

073C ..draw_hex_byte 1A

00 w 16
08 02

0B
073C ..draw_hex_byte 1A
00 w 16
073C ..draw_hex_byte 1A

1D

+00F
+012
+014
+016
+017
+01A
+01C
+01F

We continue with a function to draw the word at a given address, followed by a
space (whose ASCII code is 20;¢, rendered with gpu_draw_char):

med_draw_page_word_at(address)

fn 01 19
get 00 address 16
load 13

Co76C
+002
+004

call
cst8
call
ret

074C ..draw_hex_word TA

20 02
0465 gpu_draw_char 1A
1D

+005
+008
+00A
+00D

In turn, this can be used to write a function drawing a line of the page view, given
its start address. This function sets the color to green (0, 7, 0), draws the 4 words at
addresses address + 12, address + 8, address + 4, and address, sets the color to
white (7,7, 3), and finally draws the start address of the row:

med_draw_page_row(address)

fn 01 19
cst_0 00
cst8 07 02
cst_ 0 00
call 044D gpu_set_color 1A
get 00 address 16
cst8 oC 02
add 04
call 076C .page_word_at 1A
get 00 address 16
cst8 08 02
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Co77A
+002
+003
+005
+006
+009
+00B
+00D
+00E
+011
+013

add
call
get

cst8
add
call
get

call
cst8
cst8
cst8
call

04
076C ..page_word_at 1A
00 address 16
04 02

04
076C ..page_word_at 1A
00 address 16
076C ..page_word_at 1A
o7 02
o7 02
03 02

044D gpu_set_color 1A

+015
+016
+019
+01B
+01D
+01E
+021
+023
+026
+028
+02A
+02C



12.3 Drawing functions

get 00 address 16 +02F ret 1D +034
call 974C .draw_hex_word 1A +031

We can finally implement a function to draw the page view. This function takes
an address and draws the page containing it, with the word at address highlighted
in yellow. The i*" page corresponds to addresses in [256i, 256(7 + 1)[. The page
containing address is thus such that i = |address/256| = address > 8, and
starts at 256¢ = ¢ < 8 = address A FFFFFF00:6. In fact, to simplify the
highlighting, and to make sure that the word at address is fully contained in the
page, we actually use 256i + (address mod 4) as the page’s base address. This gives
base = 256i + (address A 3) = address A FFFFFF031¢. Note that since each row
contains 16 bytes, the j*" row in a page starts at address base + 16;.

The word to highlight is 2 words after base, with h = (address — base) /4. This
corresponds to the k' word in the [*" row (starting from the right), with & = h mod 4
and [ = | h/4]. This, in turn, corresponds to column ¢;, = 9(3 — k) and row 7, = [,
since each word uses 9 characters (counting the space). Substituting k£ and [ with their
values finally gives (cp, 7)) = (27 — 9(h A 3),h > 2).

The med_draw_page function follows from the above computations. It first
computes base, then uses a loop to draw the 16 rows, and finally draws the highlighted
word on top, at the above coordinates:

med_draw_page(address) fn 01 19 CO7AF
Compute base. The result is in the 5% get 00  address 16 +002
stack frame slot. cst FFFFFFO3 03 +004
and — base 08 +009

Initialize 5 to O (in the 6" slot). cst_0 — 00 +00A
Set the cursor to (0, j), the top-left cst_0 00 +00B
corner of the next row to draw. get 06 16 +00C
call 0422 ..set_cursor 1A +00E

Draw the next row, starting at base +  get 05 base 16 +011
165 = base + (j < 4). get 06 16 +013
cst8 04 02 +015

Isl OA +017

add 04 +018

call @77A .draw_page_row TA  +019

Increment j by 1 to prepare drawing cst_1 01 +01C
the next row. add 04 +01D
If 7 < 16, go back above to draw the  get 06 16 +01E
next row. cst8 10 02 +020
ifit 000B oC +022

Compute h = (address — base)/4. get 00 address 16 +025
The result is in the 7¢" stack frame slot. get 05 base 16 +027
sub 05 +029

cst8 02 02 +02A
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Isr — h OB +02C
Compute ¢, = 27 — 9(h A 3). cst8§ 1B 02 +02D
cst8 09 02 +02F
get 07 h 16 +031
cst8 03 02 +033
and 08 +035
mul 06 +036
sub 05 +037
Compute rp, = |h/4] = h > 2. get 07 | 16 +038
cst8 02 02 +03A
Isr 0B +03C
Set the cursor to these coordinates. call 0422 .set_cursor 1A +03D
Set the color to yellow (7,7, 0). cst8 07 02 +040
cst8 07 02 +042
cst_0 00 +044
call 044D gpu_set_color 1A  +045
Draw the word at address and return. get 00  address 16 +048
call 076C ..page_word_at 1A  +04A
ret 1D +04D

12.3.2 Fields

To draw the fields we first provide two functions to draw arbitrary values in each field.
These functions just draw their argument x at the correct column and row coordinates
—namely (27, 18) and (36, 18) — and with the correct color (green and white):

med_draw_value(z) med_draw_address(x)

fn 01 19 CO7FD fn 01 19 C0813
cst§ 1B 02 +002 cst8 24 02 +002
cst8 12 02 +004 cst8 12 02 +004
call 0422 .set_cursor 1A +006 call 0422 .set_cursor 1A +006
cst_ 0 00 +009 cst§ 07 02 +009
cst8 07 02 +00A cst8 07 02 +00B
cst_0 00 +00C cst§ 03 02 +00D
call 044D gpu_set_color 1A  +00D call 044D gpu_set_color 1A  +00F
get 00 =z 16 +010 get 00 =z 16 +012
call 074C .draw_hex_word 1A +012 call 074C .draw_hex_word 1A +014
ret 1D  +015 ret 1D +017

We use them in the following function to draw the two fields, depending on the
current mode. If mode = 0, the first half of the function draws address in the address
field, and input in the value field. It then sets the cursor under the least significant
digit of the value field. Otherwise, if mode # 0, the second half draws the value
stored in memory at address in the value field, and draws ¢nput in the address field.
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It finally sets the cursor under the least significant digit of the address field:

med_draw_fields() call 0422 .set_cursor 1A +019
fn 00 19 C082B ret 1D +01C
call Q6F8 ..get_mode 1A +002 call Q6E4 .get_address 1A +01D
cst_0 00 +005 load 13 +020
ifne 001D 10 +006 call @7FD ..draw_value 1A +021

call 06E4 .get_address 1A  +009 call 070C .get_input 1A +024
call 0813 ..draw_address 1A +00C call 0813 ..draw_address 1A +027

call 070C .get_input 1A +00F cst§ 2B 02 +02A
call @7FD ..draw_value 1A +012 cst8 12 02 +02C
cst8 22 02 +015 call 0422 .set_cursor 1A +02E
cst8 12 02 +017 ret 1D +031

12.4 Editing functions

We can now implement functions to react to keyboard inputs. These functions update
the state variables and redraw the page view and/or the fields, depending on the key
typed. We start with a function to enter a new hexadecimal digit x. As specified above,
this should shift input to the left by one hex digit, and insert = on the right. This can
be done with input + (input < 4) + x. After that the fields must be redrawn (but
not the page view). Characters have an opaque black background, so we don’t need to
erase the previous values before drawing new ones:

med_new_digit(z) get 00 = 16 +008
fn 01 19 C085D add 04 +00A
call 070C .get_input 1A +002 call 0715 .set_input 1A +00B
cst8 04 02 +005 call 082B .draw_fields 1A +00E
Isl OA +007 ret 1D +011

A function to enter a new highlighted address x is also useful, since several keys
can change this address (the Enter key and the arrow keys). The following function
sets address to x, sets input to the current value at this address, and finally redraws
the page view and the fields:

med_new_address(x) call 0715 .set_input 1A +00A
fn 01 19 Co86F get 00 =« 16 +00D
get 00 1z 16 +002 call 0Q7AF .draw_page 1A +00F
call Q6ED ..set_address 1A +004 call 082B ..draw_fields 1A +012
get 00 =« 16 +007 ret 1D +015
load 13 +009

With this we can write a function to handle the Enter key. Pressing this key has
two different effects, depending on the current mode. If mode = 0 the value field
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is being edited. In this case we want to store input in memory at address, and set
address + 4 as the new highlighted address. This is what the first part of the function
does, after a test of the mode value. The second part, after the first ret, handles the
case mode # 0: it sets mode to 0 and the new address to input:

med_handle_enter() cst8 04 02 +013
fn 00 19 (0885 add 04 +015
call 0O6F8 ..get_mode 1A +002 call 0@86F ..new_address 1A +016
cst_0 00 +005 ret 1D +019
ifne 001A 10 +006 cst_0 00 +01A
call Q6E4 .get_address 1A  +009 call 0701 ..set_mode 1A +01B
call 070C ..get_input 1A +00C call 070C ..get_input 1A +01E
store 14 +00F call @86F ..new_address 1A +021
call Q6E4 .get_address 1A +010 ret 1D +024

We finally provide a function to handle any character c typed on the keyboard.
This function is quite long because there are “many” characters to support. But its
overall structure is regular. It is made of several sequences of instructions S;, one for
each supported character (e.g., “w” or “r”’) or range of characters (e.g., [“0”-“9”] or
[“a”-“f”]). Each sequence .S; starts with one or two conditional jumps to go to the
next sequence .S, 1, if ¢ is not a character handled by ;. The sequence continues

with instructions to handle this character, and ends with a ret:

med_handle_char(c) fn 01 19 CO8AA
Sp: decimal digits [0-9]. If ¢ < “0” get 00 ¢ 16 +002
(ASCII code 3044), go to S7. cst8 30 02 +004
ifit 0019 oC +006

If ¢ > “9” (ASCII code 3914), go to S7.  get 00 ¢ 16 +009
cst8 39 02 +00B

ifgt 0019 OE +00D

Otherwise, enter the new hex digitd =  get 00 ¢ 16 +010

¢ — 3016 and return. cst8 30 02 +012
sub 05 +014

call 085D .new_digit 1A +015

ret 1D +018

S1: hexadecimal digits [a-f]. If ¢ < “a”  get 00 ¢ 16 +019
(ASCII code 6144), go to Ss. cst8 61 02 +01B
ifit 0030 oC +01D

If ¢ > “f” (ASCII code 661¢), go to So.  get 00 ¢ 16 +020
cst8 66 02 +022

ifgt 0030 OE +024

Otherwise, enter the new hex digitd =  get 00 ¢ 16 +027
c— 6116 + 10 = ¢ — 5714 and return. cst8 57 02 +029
sub 05 +02B
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So: Enter key. If ¢ is not Enter (ASCII
code 0A14), go to Ss.

Otherwise, handle this key and return.

S3: “w” character. If c¢ is not “w”
(ASCII code 7716), go to Sy.

Otherwise, handle this key: setaddress
as the new input, set mode to 1, redraw
the fields, and return.

S4: “r” character. If ¢ is not “r”” (ASCII
code 721¢), go to S5.

Otherwise, call the function at address,
clear and redraw the screen (the called func-
tion might have changed it), and return.

Sk: ArrowLeft character. If ¢ is not Ar-
rowLeft (character 6B16+128=EB4), go
to Sg.

Otherwise, set address + 4 as the new
address and return.

Ss5: ArrowRight character. If ¢ is not
ArrowRight (character 7416+128=F45),
go to Sg.

Otherwise, set address — 4 as the new
address and return.

Se: ArrowUp character. If ¢ is not
ArrowUp (character 7514+128=F5¢), go
to Sy.

call
ret
get
cst8
ifne
call
ret
get
cst8
ifne
call
call
cst_1
call
call
ret
get
cst8
ifne
call
calld
call
call
call
ret
get
cst8
ifne
call
cst8
add
call
ret
get
cst8
ifne
call
cst8
sub
call
ret
get
cst8
ifne

12.4 Editing functions

085D ..new_digit

00 ¢

0A

003B

0885 ..handle_enter

00 ¢

77

0050

Q6E4 .get_address
@715 ..set_input

0701 ..set_mode
082B ..draw_fields

00 ¢

72

0065

Q6E4 .get_address

0409 ..clear_screen
Q6E4 ..get_address
@86F ..new_address

00 ¢

EB

0076

Q6E4 ..get_address
04

@86F ..new_address

00 ¢

F4

0087

Q6E4 .get_address
04

@86F ..new_address
00 ¢

F5
0098

1A
1D
16
02
10
1A
1D
16
02
10
1A
1A
01

1A
1A
1D
16
02
10
1A
1C
1A
1A
1A
1D
16
02
10
1A
02
04
1A
1D
16
02
10
1A
02
05
1A
1D
16
02
10

+02C
+02F
+030
+032
+034
+037
+03A
+03B
+03D
+03F
+042
+045
+048
+049
+04C
+04F
+050
+052
+054
+057
+05A
+05B
+05E
+061
+064
+065
+067
+069
+06C
+06F
+071
+072
+075
+076
+078
+07A
+07D
+080
+082
+083
+086
+087
+089
+08B
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Otherwise, set address — 16 as the
new address and return.

S7: ArrowDown character. If ¢ is not
ArrowDown (character 7215+128=F215),
go to Sg.

Otherwise, set address + 16 as the
new address and return.

Sg: any other character. Return.

12.5 Main function

call
cst8
sub
call
ret

get

cst8
ifne
call
cst8
add
call
ret

@6E4 ..get_address
10

@86F ..new_address

00 ¢

F2

Q0A8

Q6E4 .get_address
10

Q86F ..new_address

1A
02
05
1A
1D
16
02
10
1A
02
04
1A
1D

+08E
+091
+093
+094
+097
+098
+09A
+09C
+09F
+0A2
+0A4
+0A5
+0A8

We can finally implement the last function of the memory editor, and of our basic
input output system! This function initializes the drivers, sets the initial mode and
address to 0, and finally calls the previous function for each new character typed on

the keyboard, in an endless loop:

memory_editor()

fn 00 19 C0953
call 0200 clock_init 1A +002
call @3DF gpu_init 1A +005
call 0578 keyboard_init 1A  +008
cst_0 00 +00B

call
cst_0
call
call
call
goto

0701 ..set_mode

@86F ..new_address
0606 ..wait_char
@8AA ..handle_char
0013

1A
00
1A
1A
1A
12

+00C
+00F
+010
+013
+016
+019

Note that this function does not change the boot mode selection to boot from ROM
at the next reset. Indeed, with the memory editor, our toy computer is now completely
autonomous, and we no longer need the boot assistant nor an external computer to use
it. By putting together the code of all the functions defined in this chapter we get the

memory editor’s full code:

A0030019 1D140016 400ETA9C
13400E1A A4030019 1D140016
110A0205 16080F02 00160119
1A0B0402 00160119 1D04651A
1A0B1002 0016073C 1A0B1802
074C1A13 00160119 1DO73C1A
16076C1A 040C0200 16044D1A
07020702 076C1A00 16076C1A
16000008 FFFFFFO3 03001601
000BOC10 02061604 01077A1A

170

0301191E 13400E1A 9C030019
400E1AAQ 0301191E 13400E1A
1D140016 400E1AA4 0301191E
04051637 02001512 30020013
00160119 1D07201A 00160720
0016073C 1A0B0802 0016073C
00070200 01191D04 651A2002
04040200 16076C1A 04080200
191D074C 1A001604 4D1A0302
040A0402 06160516 04221A06

Co6E4
Co6FC
Co714
Co72C
Co744
Co75C
Co774
Co78C
Co7A4
Co7BC
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0B020207 16050608 03020716 09021B02 0B020205 05160016 C07D4
1A12021B 0201191D 076C1A00 16044D1A 00070207 0204221A CO7EC
04221A12 02240201 191D074C 1A001604 4D1AQ007 02000422 (0804
001D1000 06F81A00 191D074C 1A001604 4D1A0302 07020702 C081C
1306E41A 1D04221A 12022202 07FD1AQ7 0C1A0813 1AQ6E41A (0834
0402070C 1A01191D 04221A12 022B0208 131A070C 1AQ7FD1A C084C
07151A13 001606ED 1A001601 191D082B 1A@7151A 0400160A C0864
070C1A06 E41A001TA 100006F8 1A00191D 082B1A07 AF1A0016 C087C
01191D08 6F1A070C 1A07011A 001DO86F 1A040402 06E41A14 (0894
161D085D 1A053002 00160019 OE390200 1600190C 30020016 COSAC
00161D08 5D1A0557 02001600 300E6602 00160030 0C610200 C08C4
1A010715 1AQ6E41A 00501077 0200161D 08851A00 3B100A02 C08DC
1A06E41A 04091A1C 06E41A00 65107202 00161D08 2B1A0701 CO8F4
F4020016 1DO86F1A 04040206 E41A0076 10EB0200 161DO86F C090C
0206E41A 009810F5 0200161D 086F1A05 040206E4 1A008710 (0924
191D0O86F 1A041002 Q6E41A00 A810F202 00161D08 6F1A0510 C093C
08AATA06 061A086F 1A000701 1AQ00578 1AQ3DF1A 02001A00 C0954

001312 C096C

Lets store it in flash memory. The boot assistant commands to do this are provided
in part2/memory_editor. txt. Run them with:

user@host:~$ python3 flash_helper.py < part2/memory_editor.txt
>Reading page 1030... Done.

Reading page 1031... Done.

Reading page 1032... Done.

Reading page 1033... Done.

Writing page 1030... Done.

Writing page 1031... Done.

Writing page 1032... Done.

Writing page 1033... Done.

>Done.

Note that the memory_editor function is not stored at the C2000,¢ address used
so far for main functions (see Figure 9.2). To run it on reset we need to change the
C20004¢ value, at address C0188¢ in the Reset handler (see Section 9.6.1), to the
memory_editor function address, namely C0953;4. Do this as follows:

user@host:~$ python3 flash_helper.py
>WC0188,C0953#

Reading page 1025... Done.

>flash#

Writing page 1025... Done.

The final layout of our basic input output system is shown in Figure 12.1, and its
most important functions are listed in Table 12.1. In total, this system consists of 669
bytecode instructions, plus 364 bytes of data, for a total size of 1900 bytes. To which
we must add 199 Cortex M3 instructions for the virtual machine interpreter and the
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Vector Table

FIGURE 121 The final layout of our basic input output system in flash memory.
Red, blue and gray areas represent machine code, bytecode and unused memory,
respectively (not to scale).

Reset, Hard Fault and USART handlers, plus 64 bytes of data, for a total of 472 bytes.

12.6 Experiments

You can now set the Arduino to boot from flash and restart it:
>reset#

If all goes well, you should see the memory editor’s user interface on the screen,
showing the first memory page, starting at address 0. Since we removed the function
call to change the boot mode selection, this memory page is mapped to flash memory.
More precisely, it is mapped to the page starting 80000;¢, which contains the Vector
Table. You should recognize, on the first line, the Vector Table entries given at the
end of Section 9.6.1:

000CO1A5 00000000 000CO181 20088000 00V0V0VV0VO

They are followed by empty entries (FFFFFF;4), except the one for the USART handler.
Lets try another memory location. On the Arduino’s keyboard, type “w000c0000”
followed by Enter. You should now see a new memory page, starting with

FOOOESDF DEQQOBF88 281F3201 78102600 000C0000

This corresponds to the beginning of our virtual machine interpreter, which is indeed
stored at this address (see Section 8.3.9). Similarly, you can type “w000c0200”
followed by Enter to look at the clock driver code. You should see a new memory
page starting with the code shown at the end of Section 9.5. In the same way, you can
display the graphics card and keyboard driver code, and even the memory editor code.

Lets now try to store some values in memory. Type “w20070000”+Enter to go the
RAM region. Then type “12345678+Enter to store this value at this address. You
should see the new value in the page view. We can use this method to control the
Arduino’s LED, as we did in Section 6.6.2, but with our memory editor instead of the
boot assistant. Type “w400e1000”+Enter to show the PIO B registers. You should
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Function

Address

boot_mode_select_rom()
clock_init()

delay(n)
gpu_clear_screen()
gpu_draw_char(c)
gpu_draw_hex_byte(b)
gpu_draw_hex_digit(z)
gpu_draw_hex_word(w)
gpu_init()
gpu_set_color(r, g, b)
gpu_set_cursor(c, )
gpu_set_register(id, value)
keyboard_get_char() — ¢
keyboard_handler()
keyboard_init()
keyboard_wait_char() — ¢
load_byte(address) — value
memory_editor()

C02B4 (C0000,5+692)
€0200 (C000016+512)
C028B (C00004+651)
C0409 (C0000,6+1033)
C0465 (C0000,6+1125)
€073C (C0000,4+1852)
€0720 (C0000,5+1824)
C074C (C0000,5+1868)
C03DF (C0000,6+991)
C044D (C000016+1101)
C0422 (C0000,6+1058)
€0378 (C0000,5+888)
C05E0 (C000016+1504)
CO6AE (C000014+1710)
C0578 (C0000,6+1400)
C0606 (C0000,6+1542)
€03C0 (C0000:6+960)
€0953 (C0000,4+2387)

spi_transfer('z;alue) — response | C034E (C0000,4+846)

TABLE 121 The most important functions of the basic input output system.

note that all registers are 0, except the PIO Status Register (400E1008¢), as well as
the Status, Output Status, Output Data Status, and Pull-up Status Registers. The bit 12
of these registers is 1, indicating that the PB12 pin is an output pin, controlled by the
microprocessor, currently set to 1, and with its pull-up resistor disabled. Indeed, this
is the pin used to reset the graphics card, configured in gpu_reset (see Section 10.4).
We can now redo the experiments of Section 6.6.2: press the ArrowDown key to
select the 400E1010;4 address and then type “08000000”+Enter: you should see
the LED turning off. Using the arrow keys, select the 400E1030,¢ address and type
“08000000+Enter: you should see the LED turning on again.

We can also try to display a reserved memory region. Reading the memory in
these regions causes an exception which should be handled by our Hard Fault handler,
which blinks the LED very fast. To test this type “w00200000”+Enter (see Figure 6.3).
You should see the LED blinking. Moreover, typing any key should have no effect,
since the memory editor effectively crashed. We could restart it by pressing the
RESET button. Instead, to check that our toy computer is completely autonomous,
unplug it from your computer and plug it to a power outlet with a phone charger. The
memory editor should be running again.

As alastexperiment, lets try to run a function. We canuse boot_mode_select_rom

173



CHAPTER12 Memory Editor

for this. Type “w000c02b4”+Enter to go to this function (see Table 12.1). Then
type “r”’. Nothing changes on the screen, but the Arduino is now configured to boot
from ROM,, i.e., to run the boot assistant, at the next reset. To verify this, unplug the
Arduino from the power outlet and plug it again to your computer. The screen should
stay off. We can verify that the boot assistant is running as follows:

user@host:~$ python3 flash_helper.py

>Vi#

v1.1 Dec 15 2010 19:25:04

We can then change again the boot mode selection to run from flash, and reset the
Arduino, with:

>reset#

At this point the memory editor should be running again. The above method can
be used to temporarily connect our toy computer to an external computer. This can be
useful, for instance, to do a backup of its flash memory. Such a backup can be done
by reading all the flash memory with boot assistant “w” commands, and storing the
result in a file on the host computer. This file can then be used to restore the flash
memory, with boot assistant “W” commands.
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Conclusion

A microcontroller contains in a single chip a microprocessor, various memories, and
specialized circuits to communicate and interact with the external world. In this part
we connected an Arduino Due, based on an Atmel microcontroller, to a Liquid Crystal
Display (LCD), and to a keyboard. We used its boot program in read-only memory,
via an external computer, to store in its flash memory a basic memory editor program.
Like the Atmel’s boot program, this editor allows us to input programs and to run
them. However, it does this by using the keyboard and the LCD connected to the
Arduino, i.e., without needing any external computer. Our toy computer is thus fully
autonomous. The rest of this book illustrates this by progressively improving it, to
make it more and more usable, without using any external computer.

Further readings

This part barely scratched the surface of what microcontrollers can do. And it only
presented a very low level method to program them (because the goal of this book it to
program one from scratch). To know more about what microcontrollers can do, how
they work, and how to use them in more convenient ways, you can read the following
books:

e “Arduino Workshop, 2nd Edition: A Hands-on Introduction with 65 Projects” [4].
This book gives a very practical introduction to the Arduino microcontrollers. It
explains how they can be programmed with the Arduino Integrated Development
Environment, and shows how they can be used with many external components
(including 7-segments displays, micro-SD cards, keypads, touchpads, motors,
infrared sensors, GPS modules, external memories, etc).

e “Embedded System Design with ARM Cortex-M Microcontrollers: Applications
with C, C++ and MicroPython” [22]. This book explains how microcontrollers work
in general, and gives practical examples illustrating each aspect. For instance, it
presents digital and analog signals, conversions between digital and analog signals,
interrupts, clocks and timers, communication protocols, etc.

e “Embedded Systems Fundamentals with Arm Cortex-M Based Microcontrollers:
A Practical Approach” [9]. This book also gives “theoretical” and practical
information about microcontrollers, with an emphasis on how to use them “properly”
(i.e., to get efficient and responsive programs with low power requirements).

These books use programs written in textual form, which is much more practical
than hexadecimal numbers representing machine code or bytecode instructions. Some
of the above books introduce the programming language that they use for this, at the
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same time as they present microcontrollers. But none of them explains in detail how a
program written in textual form can run on a microprocessor, which can only execute
machine code instructions. This process is introduced in the next part, based on a toy
programming language for our toy computer.
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Introduction

Our toy computer is now fully assembled and autonomous. However, it is still very
hard to use. Indeed, even if our virtual machine instructions are much simpler than
ARM instructions, they remain difficult to use. The goal of this part is thus to provide
an easier way to program our toy computer.

To illustrate how this can be done, consider the task of writing a program to
compute the factorial of a number n, defined by factorial(n) = 1% 2% ... xn if
n > 0, and 1 otherwise. One way to write such a program is to use the property
that, for n > 0, factorial(n) = factorial(n — 1) % n. This leads to the following
bytecode instructions:

factorial(n) get 00 n 16  +00A
fn 01 19 C1000 cst_1 01 +00C
get 00 n 16 +002 sub 05 +00D
cst_0 00 +004 call 1000 factorial 1A +00E
ifne 000A 10 +005 get 00 n 16 +011
cst_1 01 +008 mul 06 +013
retv 1E  +009 retv 1E  +014

The first part, in the left column, compares n, the 0%" word in the function’s stack
frame, with 0. If it is not equal to O, it jumps to the second part, in the right column.
Otherwise it returns 1. The second part, in the right column, subtracts 1 from n, calls
the factorial function with this argument (we assume here that it is stored at C10001¢),
and returns the result multiplied by n. In order to write this program we need to type
on the keyboard the following numbers:

1E 06001610 001A0501 00161E01 000A1000 00160119 C1000

Typing numbers is error prone, and understanding their meaning requires a lot of
effort. It would be much easier if we could type the following fext instead:

fn 1
get @ cst_0 ifne 10 cst_1 retv
get @ cst_1 sub call 4096 get @ mul retv

In fact this text still contains some numbers, such as 0, 10=A1 and 4096=100015.
The last two are quite tedious to compute. For instance, one must sum the size of all
the instructions up to the first retv (included) to get the value 10. Function addresses
such as 4096 also require to compute the bytecode size of each function to keep track
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of their addresses. To avoid having to do this, it would be simpler if we could use
labels to designate instructions, and identifiers to designate functions:

fn factorial 1
get @ cst_0 ifne not_zero cst_1 retv
:not_zero get O cst_1 sub call factorial get @ mul retv

Similarly, to get rid of the last numbers, it would be useful to be able to give names
to the function parameters. We could then replace 1, the number of parameters of the
factorial function, with a list of parameter names. And we could replace 0 with n:

fn factorial(n)
get n cst_0 ifne not_zero cst_1 retv
:not_zero get n cst_1 sub call factorial get n mul retv

This text would already be much easier to type and to understand than the above
numbers. However, it still contains long sequences of bytecode instructions which
are more complex than the mathematical expressions they compute. For instance,
get n cst_1 sub call factorial get n mul computes factorial(n — 1) % n.
It would be much easier if we could use these expressions directly (this example also
adds some “punctuation” signs, namely curly braces, commas, and semi-colons):

fn factorial(n) {
n, @ ifne not_zero; 1 retyv;
:not_zero factorial(n - 1) * n retv;

}

It would also be more natural if we could write the last remaining bytecode
instructions in a different order, closer to the order of words in English. And instead of
writing “if n is not 0, jump to :not_zero to not return 1, it would be simpler to write
“if nis 0, return 1”. We could even get rid of the label by putting the instructions to
execute when n is O inside curly braces:

fn factorial(n) {
if n==0 { return 1; }
return factorial(n - 1) * n;

}

Finally, to make it clear that this function returns a value (some do not), and takes
a number as parameter, it would be practical to have some type declarations, such as
the following (where u32 means an “unsigned 32 bit” value):

fn factorial(n: u32) -> u32 {
if n==0 { return 1; }
return factorial(n - 1) * n;

}
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In fact the goal of this part is to be able to type programs in this form (inspired
from Rust [15]), and to automatically get the corresponding bytecode instructions,
in numerical form (also called binary form). For this we write a program, called a
compiler, which transforms the program text, called the source code, into compiled
code, i.e., bytecode instructions in binary form. This compiler is a large program, and
we can’t write it in source code because we don’t have a compiler yet! On the other
hand, writing it in binary form would be very hard. To solve this problem we write
the compiler in several steps:

1. Write a small compiler to compile textual bytecode instructions (e.g., fn 1 get @
...). Write this opcodes compiler in binary form.

2. Write a compiler for programs using textual bytecode instructions with function
names and instruction labels. Write this labels compiler, also called an assembler,
with pure textual bytecode instructions. Compile it with the opcodes compiler.

3. Rewrite the labels compiler with function names and labels, and improve it so
that it can compile programs using expressions such as factorial(n - 1) * n.
Compile this expressions compiler with the labels compiler.

4. Rewrite the expressions compiler with expressions, and improve it in order to
support programs using statements such as if and return. Compile this statements
compiler with the expressions compiler.

5. Rewrite the statements compiler with statements, and improve it to accept programs
with type declarations such as factorial(n: u32) -> u32 { ... }. Compile
this types compiler with the statements compiler.

With this method, only the first compiler needs to be written in binary form. And
this compiler is small because its task is quite simple. Moreover, each step is easier
to do than the previous one because it can use simplifying features introduced in the
previous steps. However, in order to implement this method, we need a way to type
text, i.e., a text editor. Indeed, all we have for now is the memory editor, and entering
text in memory with it would require typing the ASCII code numbers corresponding
to each character of the text! Obviously, this would be even worse than entering
programs directly in binary form, since a program in text form is usually longer than
in binary form. Unfortunately, we can’t write a text editor program in any textual
form, since we don’t have a text editor yet! We thus start by writing a simple text
editor, directly in binary form.

Before all this, however, we also need a way to store programs in source or binary
form in flash memory. Otherwise, we would loose everything we typed if we ever do
a mistake causing a crash. For this we implement one more driver, called the flash
memory driver (we didn’t need this in the previous part because flashing programs
was done from the external computer). This driver also needs to be implemented in
binary form. The rest of this part presents the above steps in detail. It is organized as
follows:

e Chapter 13 presents the flash memory driver, used to read and write data in flash
memory. We use it at the end to save itself in flash memory.
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o Chapter 14 explains how our text editor works, and presents its implementation in
binary form.

e Chapter 15 explains how the opcodes compiler works, and presents its implementa-
tion in binary form.

o Chapter 16 explains how the labels compiler works, and presents its implementation
in textual form.

o Chapter 17 explains what expressions are, how they can be compiled, and presents the
ones supported by our toy compiler. It then gives the corresponding implementation.

e Chapter 18 does the same with statements.

o Chapter 19 does the same with type declarations.

o Chapter 20 finally provides a new version of our toy compiler which produces ARM
instructions instead of bytecode instructions. We use it in the next part to eventually
get rid of our virtual machine.
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Flash Memory Driver

Before writing our toy compiler, as described in introduction, we need a way to save it
in flash memory. In theory, our memory editor provides everything we need to do
this. Indeed, as we have seen in the previous part, we can save a 64 words page in
flash memory by writing these words at their final address, and then by writing an
appropriate value in the Enhanced Embedded Flash Controller (EEFC) Command
Register (which has a well defined address in memory). All these steps can be done
manually with the memory editor, but doing so would not be very practical. To make
this is easier we provide in this chapter a few helper functions, called the flash memory
driver. We use them at the end to store themselves in flash memory.

131 Overview

Due to the flash memory usage constraints, it is not practical to directly edit data here.
Instead, what we can do is edit data in RAM, and then save it in flash memory. The
latter step can be done automatically (see Figure 13.1):

e copy the first 64 words of data from RAM to flash memory (we assume in this
chapter that data is always saved at the beginning of a flash memory page),
e save them by writing the appropriate command in the EEFC Command Register,

e copy the last n words of data from RAM to flash memory, and the 64 — n remaining
words from flash memory to itself (recall that we cannot save a page without writing
all its 64 words first),

e save them by writing the appropriate command in the EEFC Command Register.

Conversely, to edit data which is already in flash memory, we can copy it in RAM,
edit it here, and then save it back. Note that these algorithms use two kinds of steps:
copying memory from one address to another, and saving a page of flash memory.
The rest of this section presents them in more detail.

1311 Memory copy

As explained above, our flash memory driver needs a function to copy some data
from one address to another. Our text editor, presented in the next chapter, also needs
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[ [T TH easn 5[ N | RAM

FIGURE 131 Saving data (in dark blue) from RAM into flash memory must be done
page by page. Each 64 words page must be copied (dashed arrows) and then saved.
The unused words of the last page (light blue) must be copied in place so that all
the page words are written before it is saved (as required by the EEFC component).

ALGORITHM 131 Copying n bytes from src to dst.

1. if dst < sre
2. initialize 7 to 0

3. while i + 4 < n, copy the word at src + ¢ to dst + ¢ and then increment ¢ by 4
4. while ¢ < n, copy the byte at src + 4 to dst + ¢ and then increment ¢ by 1

5. otherwise
6
7
8

initialize ¢ to n
while ¢ > 4, decrement ¢ by 4 and then copy the word at src + ¢ to dst + @
while ¢ > 0, decrement % by 1 and then copy the byte at src + i to dst + ¢

such a function. The former only needs to copy words, between two distinct memory
regions. But the latter needs to copy bytes, between two regions which can overlap.
To support both use cases, we present here a general memory copy algorithm.

The basic algorithm to copy n bytes starting at address src to address dst is very
simple. We just need to store the byte loaded from address src + ¢ to address dst + 1,
for all ¢ € [0, n[. However, the order in which these operations are done is important if
the source and destination regions overlap. Consider for instance the task of copying
n = 10 bytes from src = 4 to dst = 7 (see Figure 13.2). Starting by copying the
byte at src + 0 to dst + 0 would override the byte at src + 3, leading to an incorrect
result. The solution is to copy the bytes in decreasing order, from 7 = n — 1 to
1 = (. Conversely, copying n = 10 bytes from src = 7 to dst = 4 must be done in
increasing order (starting by copying the byte at src + 9 to dst + 9 would override
the byte src + 6). In summary, bytes must be copied in decreasing order if dst > sre,
and in increasing order otherwise. Note also that we can start by copying words, and
use byte copies only for the last 1 to 3 remaining bytes, leading to Algorithm 13.1.

13.1.2 Page flash

Once the 64 words of a page have been copied from RAM to flash memory, they can
be saved by writing the appropriate value in the EEFC Command Register. One must
then wait until the EEFC Status Register value is 1, indicating that the operation is
done. During this time, the flash memory bank must not be used (see Section 6.5).
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Before
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After (if copy in increasing order)
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After (if copy in decreasing order)
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FIGURE 13.2 Copying 10 bytes (dark blue) from address 4 to address 7 in increasing
order (i.e., from byte & to byte 13) leads to incorrect results (in red). Copying them in
decreasing order, from byte 13 to byte 4, solves the problem.

Unfortunately, our virtual machine is in flash memory. Therefore, we can’t use a
bytecode function to read the EEFC Status Register (running it would require the
microprocessor to read the ARM instructions of the virtual machine, i.e., would use
the flash memory). A solution is to use a small subroutine made of ARM instructions,
stored in RAM, to save a page in flash memory without using it. This subroutine can
be implemented as follows:

PUSH RO R1 LR — stack 10110107/00000011] B503 000
LDR RO ¢+ mem32[|PC |y + 4 % /] 01001/00000000100 4804 002
LDR R1 < mem32[|PCy + 4 /] 01001001/00000100 4904 004
STR  R1 — mem32[R0 + 4 0] 01100[00000[000001] 6001 006
LDR R1 < mem32[R0 + 4 * 1] 01101/00001)000001| 6841 008
CMP compare(R1, 1) 00101/001/00000001| 2901 00A
IT  if # then 101111110001/]ojol] BF18 00C
B PC + PC + 2 % 2043 — 4096 11100‘11111111011 E7FB 00E
POP RO R1 PC « stack 101111000000011] BDO3 010
data  (padding, unused) 0000 012
data (EEFC1 Command Register) 400EQC04 014
data (EEFC1 Command) 5A000003 018

It starts with a PUSH to save the RO and R1 registers, as well as the Link Register
(LR). It then loads the address of the EEFC Command Register in R0, and the value
to write into it in R1, with two LDR instructions (this data is stored just after the
function itself). The next instruction actually stores this value in the Command
Register, thereby starting the flashing process. The next LDR instruction loads the
value of the EEFC Status Register (whose address is 4 bytes after the Command
Register address, i.e., RO + 4). The following CMP instruction compares this value
with 1. If it is not equal to 1, the B instruction jumps back to the LDR instruction to
read the Status Register again. Otherwise this instruction is skipped and the final POP
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FIGURE 13.3 A data buffer containing 6 bytes of data (light blue), starting at address
10, begins with a 4 bytes header (dark blue) containing the size of the following data.

restores the RO and R1 registers, and returns to the caller by moving the saved LR into
the Program Counter (PC). The first data word after that contains the address of the
EEFC1 Command Register (we want to store our compiler in the same flash memory
bank as our basic input output system). The final word is the command to write at
this address in order to flash the 0" page. To flash the p*" page instead, p should be
put in bytes 1 and 2 of this word (e.g., to flash the 4*" page, use SA000403 5 — see
Section 6.5). In summary, the complete code of this subroutine is:

400EQC04 0000BDO3 E7FBBF18 29016841 60014904 4804B503 000
5A000003 018

13.1.3 Data buffers

In order to copy or save data we must know their address, but we must also know their
size in bytes. To avoid having to manually keep track of this size, we can store it in
memory too. One way to do this is to store it in a word located just before the data
themselves (see Figure 13.3). This word is called a header or a metadata (because it
is some data about other data). In the following we call this header and its associated
data a data buffer. And we provide functions to copy and save data buffers.

13.2 Implementation

We can now implement the above algorithms. We do this in a data buffer, so that our
flash memory driver can save itself. This buffer must be saved at the start of a page,
as we assumed at the beginning. Lets use the next page after our memory editor, page
10, starting at COA0O;6. The code will thus start at COA04 ¢, after the header.

For Algorithm 13.1 we need functions to load and store a single byte. We already
have a load_byte function (see Table 12.1), but we don’t have a store_byte one.
We thus provide one, as follows:

store_byte(ptr, value) and 08 +00C
fn 02 19 COoAQ4 get 01 value 16 +00D
get 00 pir 16 +002 or 09 +00F
get 00 pir 16 +004 store 14 +010
load 13 +006 ret 1D +011
cst FFFFFFoQ 03 +007
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This function loads the word at ptr, discards its 8 least significant bits (while
keeping the others unchanged) by computing the bitwise AND of this word with
FFFFFF00;¢, replaces them with value (supposed to be strictly less than 256) with a
bitwise OR, and finally stores the result back at ptr. We then implement Algorithm 13.1

in the following mem_copy function:

mem_copy(src, dst, n) — dst +n
Step 1. If dst > src, go the second
half of this function (see below).

Step 2. Initialize ¢ to 0.
Step 3. If i +4 > n, go to step 4 (¢ is
stored in the 7" stack frame slot).

Otherwise, load the word at src + ¢
and store it at dst + 1, . ..

... increment ¢ by 4, and go back above
to check again if i + 4 < n.

Step 4. If i > n, go the end of the
function (see below).

Otherwise, load the byte at src+ ¢ and
store it at dst + 1, . ..

...1increment ¢ by 1, and go back above
to check again if ¢ < n.

fn
get
get
ifge
cst_0
get
cst8
add
get
ifgt
get
get
add
get
get
add
load
store
cst8
add
goto
get
get
ifge
get
get
add
get
get
add
call
call
cst_1
add
goto

03
01  dst
00  src
0042

— 1
07 1
04

02 n
0026

01  dst
07 1

00 src
07 1

04

000A

07 1
02 n
0078

01 dst
07 1

00 src
07 1

03C0 load_byte
QAQ4 store_byte

0026

19
16
16
11
00
16
02
04
16
OE
16
16
04
16
16
04
13
14
02
04
12
16
16
11
16
16
04
16
16
04
1A
1A
01
04
12

CoA16
+002
+004
+006
+009
+00A
+00C
+00E
+00F
+011
+014
+016
+018
+019
+01B
+01D
+01E
+01F
+020
+022
+023
+026
+028
+02A
+02D
+02F
+031
+032
+034
+036
+037
+03A
+03D
+03E
+03F

The second half of the function is similar, and handles the case dst > src by
copying data in decreasing order, as described in Algorithm 13.1:
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get 02 1 16 +042 get 07 i 16 +05D
get 07 i 16 +044 cst_0 00 +05F
cst8 04 02 +046 ifle 0078 OF +060
ifit 005D 0C +048 cst_1 01 +063
cst8 04 02 +04B sub 05 +064
sub 05 +04D get 01 dst 16 +065
get 01 sl 16  +04E get 07 i 16 +067
get 07 1 16 +050 add 04 +069
add 04 +052 get 00 src 16 +06A
get 00 src 16 +053 get 07 1 16 +06C
get 07 i 16 +055 add 04 +06E
add 04 +057 call 03C0 load_byte 1A +06F
load 13  +058 call 0QAQ4 store_byte 1A +072
store 14 +059 goto 005D 12 +075
goto 0044 12 +05A

Both parts jump to the following final instructions when the copy is done. These
instructions simply return dst + n:

get 01  dst 16 +078 add 04 +07C
get 02 n 16 +07A retv 1E  +07D

Using this memory copy function, it is easy to write a function to copy a data
buffer from src to dst. Indeed, we simply need to call mem_copy with src, dst, and
n = mem32[src] + 4, the total size of the data buffer (recall that mem32[z| means
“the 32 bit value at address z”):

buffer_copy(sre, dst) load 13  +008
fn 02 19 CoA94 cst8 04 02 +009
get 00 src 16 +002 add 04 +00B
get 01 dst 16 +004 call @A16 mem_copy 1A +00C
get 00 src 16 +006 ret 1D +00F

We can now implement a function to copy and save a single page in flash memory.
As described above, to save n < 256 bytes, we must first copy them, then copy the
remaining 256 — n bytes of the page in place, and finally save the page by calling
the subroutine defined in Section 13.1.2. For this, the subroutine must be stored
somewhere in RAM first. The easiest solution is to store it on the stack. The following
function uses this method to save n bytes starting from src in a page of the Flashl
memory bank specified by its page index:

page_flash(src, page, n) fn 03 19 COoAA4
If n = O there is nothing to do, re- get 02 n 16 +002
turn right away. Otherwise execute the cst_0 00 +004
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following instructions. ifne 0009 10 +005
ret 1D +008

Copy n bytes from src to C000016 + get 00 src 16 +009
256.page, the address of the page!™ page st 000C0000 03 +00B
of the Flash1 memory bank. The mem_copy  get 01  page 16 +010
call returns dst = C'000016 + 256.page + cst8 08 02 +012
n, in the 7" stack frame slot. Isl A 014
add 04 +015

get 02 n 16 +016

callr Q0A6 mem_copy 1B +018

Copy the remaining 256 — n bytes of get 07  dst 16 +01B
the page in place, from dst to dst, and get 07 dst 16 +01D
discard the result returned by mem_copy. cst 00000100 03 +01F
get 02 n 16 +024

sub 05 +026

callr 00B5 mem_copy 1B  +027

pop 18 +02A

Disable the USART interrupts with the  cst EQ0QE180 03 +02B
Nested Vector Interrupt Controller (see  cst 00020000 03 +030
Section 11.3 and below). store 14 +035
Push the value to store in the EEFC1  cst 5A000003 03 +036
Command Register in order to save the get 01 page 16 +03B
page'™ page: 5400000316 | (page < 8). cst8 08 02 +03D
Isl OA +03F

or 09 +040

Push the remaining words of the sub- cst 400EQC04 03 +041
routine to save this page. These words cst 0000BD@3 03 +046
must be pushed in reverse order, because  cst E7FBBF18 03 +04B
each word is pushed 4 bytes before the cst 29016841 03 +050
previous one. cst 60014904 03 +055
cst 4804B503 03 +05A

Call the subroutine, which starts in the  ptr 0E 15 +05F
14" stack frame slot. Its interworking cst_1 01 +061
address is the address of this slot (given by add 04 +062
the ptr instruction), plus 1. blx 1F  +063
Re-enable the USART interrupts and  cst EQQQE100 03 +064
return. cst 00020000 03 +069
store 14 +06E

ret 1D +06F

A few things should be noted:

o USART interrupts are temporarily disabled while the page is being saved. Without
this, a key press or release during this time would run the keyboard_handler,
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which would make use of the flash memory. In turn, this would cause a Hard Fault
because flash memory must not be used while a page is being saved. Unfortunately,
flashing a page takes a few milliseconds, during which several interrupts could
occur. In this case they are lost, except the last one, which can confuse the keyboard
driver. For instance, releasing the “r” key causes two interrupts, for the FO;5 and
2D;¢ scancodes. If the first is lost, this appears as a key press (see Appendix C).
This problem disappears in the next part.

e we use callr instead of call instructions to call mem_copy. The next section
explains why (these instructions use an offset from their own address, instead of an
offset from C0000,¢ — see Section 8.2.4).

e n must be a multiple of 4, so that mem_copy does not call store_byte. Indeed,
store_byte does not work in flash memory, because loads do not “see” the effect
of stores until the page is saved (see Section 6.5.1). If it was called several times to
store the bytes of a word, only the last call would have any effect.

We can finally implement the last function of our flash memory driver, which
copies a data buffer starting at src and saves it in the Flashl memory bank, starting at
the paget" page. This function simply calls page_flash for each page.

buffer_flash(sre, page) fn 02 19 CoB14
Compute the number of bytes n to  get 00 src 16 +002
copy. This is mem32[src| + 4, rounded load 13 +004
upwards to a multiple of 4 (as required by cst§ 07 02 +005
page_flash), ie.,, (mem32[src] + 7) A add 04 +007
FFFFFFFC . cst FFFFFFFC 03 +008
and —n 08 +00D

If n, in the 6t stack frame slot, is get 06 n 16 +00E
greater than 255, jump to the next instruc- cst§  FF 02 +010
tions. Otherwise, call page_flashtocopy ifgt 001F OE +012
and save n bytes from src into page, and  get 00 src 16 +015
return. get 01  page 16 +017
get 06 n 16 +019

callr 008B page_flash 1B +01B

ret 1D +01E

Call page_flash to copy and save 256  get 00 src 16 +01F
bytes from src into page. get 01  page 16 +021
cst 00000100 03 +023

callr 0098 page_flash 1B +028

Increment src by 256. get 00 src 16 +02B

cst 00000100 03 +02D

add 04 +032

set 00 src 17  +033

Increment page by 1. get 01  page 16 +035
cst_1 01  +037
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Function

Address

buffer_copy(src, dst)
buffer_flash(src, page)

page_flash(src, page, n)
store_byte(ptr, value)

mem_copy(src, dst, n) — dst +n

C0A94 (C0000,4+2708)
CoB14 (C0000,4+2836)
COA16 (C0000,4+2582)
COAA4 (C0000,6+2724)
C0A04 (CO000,6+2564)

TABLE 13.1 The most important functions of the flash memory driver.

Decrement n by 256 and go back above
to copy the rest of the data buffer.

add

set 01  page
cst 00000100

sub

goto Q0QE

04
17
03
05
12

+038
+039
+03B
+040
+041

In summary, the main functions of our flash memory driver are those listed in
Table 13.1, and its full code is the following:

00160116 ©3191D14 09011608
04071600 16040716 01160026
07160016 04071601 16007811
05040200 5D0OC0402 07160216
16050100 780F0007 16004412
1E040216 0116005D 120A041A
00091000 02160319 1DOA161A
03071607 1600A61B 0216040A
03031400 02000003 EQ0OE180
E7FBBF18 030000BD 0303400E
Q0E10003 1F04010E 154804B5
061608FF FFFFFCO3 04070213
00000100 03011600 161D008B
00000100 03011704 01011600

13.3 Storage

FFFFFFQQ@
0E021604
02160716
00261204
14130407
03C01A04
04040213
08020116
031800B5
0C040309
03036001
00160219
1B061601
17040000

03130016
04020716
000A1204
010A041A
16001604
07160016
00160116
000C0000
1B050216
0A080201
49040329
1D140002
16001600
01000300

00160219
00004211
04021413
03C01A04
07160116
04071601
00160219
0300161D
00000100
165A0000
01684103
000003E0
1FOEFF@2
1600981B
000E1205

CoAQ4
CoA1C
CoA34
CoA4C
CoAG4
CoA7C
CoA94
COAAC
CoAC4
CoADC
COAF4
CoBoC
CoB24
CoB3C
CoB54

Lets store our driver in flash memory. For this we must first enter it in RAM, say at
address 200700001, and then save it by calling the buffer_flash function. In the
memory editor, type “w20070000”+Enter, and then store the size of our driver at this
address by typing “00000154”+Enter. Continue by entering each word of the driver
code, listed above, by typing its value followed by Enter.
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Our driver is now in RAM. To save it in flash memory we must call buffer_flash,
ataddress C0B1416 — C0A0016 + 2007000016, with sr¢ = 200700004 and page =
10. This can be done with the following function:

save_driver() cst 20070114 03 +009
fn 00 19 00000 calld 1C  +00E
cst 20070000 03 +002 ret 1D +0Q0F
cst8 oA 02 +007

Note that the call to buffer_flash causes indirect calls to page_flash and
mem_copy which, for now, are in RAM. Hence, the instructions calling these functions
cannot use their final address in flash memory, since they are not stored there yet!
This is why we used callr instructions instead of call instructions in the above code.
Indeed, by specifying the callee with an offset from the caller, the code works wherever
it is stored, in RAM or in flash memory. Such code is called position independent
code. The full code of the above function is the following:

1D1C2007 0114030A 02200700 00030019 00000

With the memory editor, enter these values in an unused RAM region, for instance
starting at address 20080000;4. Then type “w20080000”+Enter, followed by “r”, to
run this function. The driver should now be saved in flash memory. To check this,
type “w000c0a00”+Enter. You should see the following screen, displaying the same
words as those listed above, after the data buffer header:

FFFFFFOO 03130016 00160219 00000154 000C0OALO
00004211 00160116 ©03191D14 09011608 00OCOATO

Alternatively, if something went wrong or if you don’t want to enter all the driver
code with the keyboard, you can “cheat” by saving it via an external computer, as fol-
lows. First run the boot_mode_select_rom function by typing “w000c02b4”+Enter,
followed by “r”. Then reset the Arduino and, on the host computer, run the following
commands to flash the driver code and reset the Arduino again:

user@host:~$ python3 flash_helper.py < part3/flash_memory_driver.txt
>Reading page 1034... Done.

Reading page 1035... Done.

Writing page 1034... Done.

Writing page 1035... Done.

>Done.

Finally, on the Arduino, type “w000c0a00”+Enter to check that the driver is indeed
in flash memory: you should see the same screen as above.
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Text Editor

In order to write source code, including the source code of our toy compiler, we need a
text editor. Since we don’t have a compiler yet, we need to write this editor directly in
binary form. It should thus be as short as possible, and therefore as simple as possible.
An editor for very short texts, a few lines, could be extremely simple. However, it
would be completely impractical to use for longer texts. In theory, we could start
with a tiny editor Ey written in binary form, write with £y a small compiler C'; and a
larger editor F; (in source code compiled with C), write with E; a larger compiler
C5 and a better editor Fs, etc. In this chapter, to save space, we directly implement
an editor capable of editing “large” texts (tens of thousands of characters). As a result,
its size is not minimal, but is still manageable.

141 User interface

For very short texts, an editor could simply put any character typed at the end of
the current text. But for longer texts, one needs to insert or delete characters at any
position. For this we need a cursor, indicating where the next character typed will be
inserted, or which character will be deleted. We also need a way to move this cursor,
one character, one line, or even several lines at a time (it would be impractical to type
10,000 times the same key to move the cursor by 10,000 characters).

A text with more than 30 lines cannot fit on the screen of our toy computer. We
thus need a way to scroll the text, i.e., to select which part should be displayed at a
given time. A simple method is to use an automatic scroll, ensuring that the cursor
stays in the middle of the screen. This avoids the need of some “scroll keys”, and of
the related code. Based on this, we define the following requirements for our text
editor:

e the screen should show 15 lines before the cursor line or, if there are less than 15
lines before, all these lines. It should also show all the lines after the cursor, until
the end of the text or the bottom of the screen.

e pressing the Arrow Left (resp. Right) key should move the cursor to the previous
(resp. next) character.

o pressing the Arrow Up (resp. Down) key should move the cursor to the previous
(resp. next) line.
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Oth

pressing the Page Up (resp. Down) key should move the cursor to the 3
(resp. next) line.

o pressing the BackSpace key should delete the character before the cursor.
e pressing a character key should insert this character at the cursor.

o pressing the Escape key should exit the editor.

previous

14.2 Algorithms

This section explains the methods used in our text editor in order meet these require-
ments, for texts made of tens of thousands of characters. It explains how the text is
stored and edited in memory, and how it is displayed and updated on the screen.

14.21 Gap buffer

The simplest way to store the edited text in memory is to store all its characters one
after the other, using one byte per character. Then we only need 3 addresses to know
where the text begins, where it ends, and where the cursor is. We call them begin,
end, and cursor, respectively (see Figure 14.1). With this method, moving the cursor
is very easy: we just need to change the cursor value. However, inserting a character
is more complex. Indeed, we need to copy each character after the cursor in the next
memory byte, in order to make space for the new character. Similarly, in order to
delete a character, we need to copy each character after the cursor in the previous
memory byte (see Figure 14.1). Unfortunately, doing this with tens of thousands of
characters after the cursor would be too slow (recall that our virtual machine is ten
times slower than the microprocessor).

To solve this problem, a solution is to use a slightly more complex data structure
to store the edited text, called a gap buffer. This structure adds some free memory
after the cursor. It uses an additional gap variable, indicating how many free bytes
are after the cursor (see Figure 14.2). With this structure, inserting a character is easy
and fast: just store it at the cursor, increment cursor by 1 and decrement gap by 1.
Deleting a character is also easy and fast: decrement cursor by 1 and increment gap
by 1. On the other hand, moving the cursor is now more complex. In order to move it
by n characters to the left, one must copy the n characters before the gap, to move
them after the gap (and vice-versa to move the cursor to the right — see Figure 14.3).
Still, if n represents at most 30 lines of text, this operation is fast enough, even if the
text has thousands of lines. We therefore use a gap buffer for our text editor.

Moving the cursor to a new address cursor’ in a gap buffer can be done as
described in Algorithm 14.1 (as can be seen from Figure 14.3). In order to move
the cursor to the I*" previous line, this new address can be computed as described
in Algorithm 14.2. The basic idea is to scan the text from right to left, starting from
the cursor, and to count the number of “new line” characters encountered until [ such
characters are found (or the beginning of the text is reached). Similarly, to move the

1f the gap is empty, the easiest solution is to simply drop any newly typed character.
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Initial text begin = 4 cursor =9 end = 16
v

....Hella,World!
0 1 2 3 4 5 6

7 8 9 A0 A1 A2 A3 A4 A5 16 17 18 19 20 21
Delete character begin =4  cursoy =8 ./ / / ‘end=15
B / B B D D ¢

FIGURE 141 Inserting or deleting a character in a text stored in a single span requires
copying (dashed arrows) all the characters after the cursor to move them one byte
after or before their current position (we show characters for clarity, but cells actually
contain ASCII code numbers). On the other hand, moving the cursor is trivial.

Initial text begin =4 cursor =9 end = 20

Delete character begin =4  cursor =8 end = 20

FIGURE 14.2 Inserting or deleting a character in a text stored in a gap buffer is very
easy and fast, whatever the text length. No memory copy is needed.

Initial text begin = 4 cursor =9 end = 20

0 1 2 3 4 5 6 7 891 1 122 13 14 15 16 17 18 19 20 21
Move cursor begin = 4 cursor :7 end = 20

FIGURE 14.3 Moving the cursor by n characters in a gap buffer requires copying n
bytes (dashed arrows) to move them from one side of the gap to the other. Still, if n
is bounded by a “reasonable” value, this is fast enough even for long texts.
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ALGORITHM 141 Setting the cursor to cursor’, where begin < cursor’ < end — gap.

if cursor’ > cursor

copy n = cursor’ — cursor bytes from src = cursor + gap to dst = cursor
otherwise

copy n = cursor — cursor’ bytes from src = cursor’ to dst = cursor’ + gap

set cursor to cursor’

ALGORITHM 14.2 Computing the beginning address a of the ' previous line, [ > 0.

initialize a to cursor

if a = begin return a

if the character at @ — 1 is a “new line” character
if | = 0 return a, otherwise decrement [ by 1

wok v -

decrement a by 1 and go back to step 2

cursor to the [*" next line, the new address cursor’ can be computed as described in

Algorithm 14.3. Note that two addresses can be defined for a character: its current
address, depending on the position and size of the gap, and a “canonical address”
defined as its current address if there was no gap. The two addresses are equal for
characters before the cursor. For those after the cursor, the current address is equal
to the canonical address plus gap. Algorithms 14.2 and 14.3 compute a canonical
address a, but use current addresses to read characters.

14.2.2 Text drawing

In order to draw the text we must first compute the canonical address of the first
character to draw, on the top left corner, so that we get 15 lines of text before the line
containing the cursor (if possible). This could be done with Algorithm 14.2 but, with
a slightly improved algorithm, we can compute at the same time the column and row
where the cursor should appear on screen. Indeed, the row can be incremented from
0, each time we encounter a ‘“new line” character while scanning the text backwards
from the cursor. And the column can be incremented from O for each character found
on the line containing the cursor (the 0*” row). Finally, by taking tabulation characters
into account (we represent them with 2 spaces), we get Algorithm 14.4.

ALGORITHM 14.3 Computing the beginning address a of the I*" next line, I > 0.

initialize a to cursor

if a = end — gap return a

if the character at a + gap is a “new line” character
if | = 1 return a + 1, otherwise decrement [ by 1

wok v -

increment a by 1 and go back to step 2
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ALGORITHM 14.4 Computing the beginning address a of the [*" previous line, I > 0,
and the cursor’s screen column and row, col and row.

initialize a to cursor, col to 0 and row to 0
if a = begin return {a, col, row}
if the character c at @ — 1 is a “new line” character
if row = l return {a, col, row}, otherwise increment row by 1
otherwise, and if row = 0
increment col by 1, or by 2 if ¢ is a tabulation character

N o v R e

decrement a by 1 and go back to step 2

ALGORITHM 14.5 Drawing the text on screen.

clear the screen and set the graphics cursor to the top-left corner, (0, 0)
initialize r to 0
compute {a, col, row} with Algorithm 14.4
if @ = cursor, increment a by gap
while a < end and r < 30
if the character c at a is a “new line” character
increment r by 1 and set the graphics cursor to (0, )
otherwise
draw c, or two spaces if c is a tabulation character

R A

._
e

increment a by 1
if @ = cursor, increment a by gap

—_ -
N~

set the graphics cursor to (col, row)

We can then draw the text one character at a time, until the end of the text or the
bottom of the screen is reached (see Algorithm 14.5). Recall that the graphics cursor
automatically moves to the right after a character is drawn?. However, it does this
also for “new line” characters (drawn with some icon), instead of moving the graphics
cursor to the beginning of a new line. Thus, “new line” characters must not be drawn.
Instead, a “current row” variable r should be incremented, and the graphics cursor
should be set to the beginning of this row. Likewise, two spaces must be drawn for
each tabulation character (otherwise drawn with some icon). Finally, note that this
algorithm requires the current address a of each character, in order to read them. This
address must be incremented by gap when it reaches cursor.

14.2.3 Double buffering

Most of the time, when a character is typed, only the line containing it needs to be
updated on the screen, which could be fast. However, sometimes the whole screen

2The graphics card also automatically wraps lines longer than 100 characters. To simplify our text
editor we assume that lines are always shorter than this.

197



CHAPTER 14 Text Editor
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FIGURE 14.4 To avoid flickering, textis drawn in one layer while the other is displayed
(left). When this is done the layer roles are exchanged (right).

must be redrawn (e.g., when scrolling up or down). To simplify our editor we always
redraw the whole screen after each key press. This takes some time, during which
partially redrawn images could be seen, causing flickering. To avoid this, a solution is
to draw the text in a video memory region which is not visible on screen and, when
this is done, display this image. The graphics card we are using provides an easy
way to use this method, called double buffering. It can divide its 768 KB of RAM in
two images, called layers O and 1. By default text is drawn in layer O, which is also
displayed on the LCD. But it is possible to draw in layer 0 while layer 1 is displayed,
or vice-versa (see Figure 14.4). This can be done with the following graphics card
registers (we show only the bits that we use):

R20,s Display Configuration 11000000,0
R41,3 Memory Write Control 1 0000000}/
R52;; Layer Transparency 0 0000000}/

The [ bit of the Display Configuration register enables the double buffering mode
when it is 1, and disables it otherwise. When it is enabled, characters are drawn in
the layer given by the [ bit of the Memory Write Control 1 register, while the screen
displays the layer given by the [ bit of the Layer Transparency 0 register. When double
buffering is disabled, characters are drawn in layer 0 and the screen displays layer O
too. The layer used for drawing is called the back buffer, while the layer displayed on
the screen is called the front buffer.

14.3 Implementation

We can now implement our text editor, in a new data buffer starting at the next
page after the flash memory driver, at address COC00,4. We start with a function

/199,

implementing Algorithm 14.1, with the last step replaced with “return cursor’”:

ted_set_cursor(begin, cursor, gap, cursor’) — cursor’

fn 04 19 Coco4 get Q1 cursor 16 +009
get 03  cursor’ 16 +002 get 02 gap 16 +00B
get 01  cursor 16 +004 add 04 +00D
ifle 001B OF +006 get 01 cursor 16 +00E
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get 03 cursor’ 16 +010 get 02 gap 16 +01F
get 01  cursor 16 +012 add 04 +021
sub 05 +014 get Q1  cursor 16 +022
call  QA16 mem_copy 1A +015 get 03  cursor’ 16 +024
get 03 cursor’ 16 +018 sub 05 +026
retv 1E  +01A call QA16 mem_copy 1A +027
get 03 cursor’ 16 +01B get 03 cursor’ 16 +02A
get 03 cursor’ 16 +01D retv 1E +02C

Then, instead of implementing Algorithm 14.2, we implement Algorithm 14.4,
which is more general. This algorithm is supposed to return 3 values a, col and row.
Since a function can’t return several values, the following function only returns a. To
“return” col and row we use two pointers col? and rowP where these values can be
stored in memory. We suppose that these values are initialized to O by the caller:

ted_move_backward(begin, cursor, l, col?, row?) — a

fn 05 19 CoC31

Step 1. Initialize cto 0 and a to cursor. cst_0 —c 00 +002

get 01 cursor —a 16 +003

Step 2. If a (in the 10" stack frame get QA « 16 +005
slot) is equal to begin, go to step 8. get 00 begin 16 +007
ifle  004C OF +009

Step 3. Set c (in the 9" stack frame  get oA «a 16 +00C
slot) to the character at a — 1. cst_1 01 +00E
sub 05 +00F

call  03C0 load_byte 1A +010

set 09 ¢ 17 +013

If c is not equal to Enter (A14), goto  get 09 ¢ 16 +015
step 5. cst8 oA 02 +017
ifne 002F 10 +019

Step 4. If the value at row? isequalto get 04 row” 16 +01C

l, goto step 8. load 13 +01E
get 02 | 16 +01F

ifeq 004C oD +021

Otherwise, increment the value at row?  get 04  row? 16 +024

by 1, and go to step 7. get 04 row? 16 +026
load 13 +028

cst_1 01  +029

add 04 +02A

store 14 +02B

goto 0047 12 +02C

Step 5. If the value at row? is not 0, get 04  row? 16 +02F

go to step 7. load 13 +031
cst_0 00 +032
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Step 6. Add 1 to the value at col?, one
or two times, depending on whether c is
equal to Tab (914) or not.

Step 7. Decrement a by 1 and go back
to step 2.

Step 8. Return a.

ifne
get
get
load
get
cst8
ifne
cst_1
add
cst_1
add
store
cst_1
sub
goto
get
retv

0047

03  col?
03  col?
09 ¢
09

0044
0005

0A

We continue with the implementation of Algorithm 14.3:

ted_move_forward(cursor, gap, end, l) — a

Step 1. Initialize a to cursor.
Step 2. If @ (in the 8t" stack frame slot)
is equal to end — gap return a.

Step 3. If the character at a + gap is
not Enter (A1), go to step 5.

Step 4. If [ is equal to 1

return a + 1,

otherwise decrement [ by 1.

200

fn
get
get
get
get
sub
ifne
get
retv
get
get
add
call
cst8
ifne
get
cst_1
ifne
get
est_1
add
retv
get

04
00 cursor — a
08 «a

02 end
01 gap
0011

08 «a
08 «
01  gap

03C0 load_byte
QA

002F

03 |

0029
08 «a

03 |

10
16
16
13
16
02
10
01
04
01
04
14
01
05
12
16
1E

19
16
16
16
16
05
10
16
1E
16
16
04
1A
02
10
16
01
10
16
01
04
1E
16

+033
+036
+038
+03A
+03B
+03D
+03F
+042
+043
+044
+045
+046
+047
+048
+049
+04C
+04E

CoC8o
+002
+004
+006
+008
+00A
+00B
+00E
+010
+011
+013
+015
+016
+019
+01B
+01E
+020
+021
+024
+026
+027
+028
+029



Step 5. Increment a by 1 and go back
to step 2.

cst_1
sub
set
est_1
add
goto

14.3

03 |/

0004

Implementation

01
05
17
01
04
12

+02B
+02C
+02D
+02F
+030
+031

With this we can compute the new cursor position after an ArrowLeft, Right, Up
or Down key, or a PageUp or Down key c has been pressed, as follows:

ted_handle_key(begin, cursor, gap, end, ¢) — cursor’

Step 1. Initialize col and row to 0.

Step 2. If c is not the ArrowLeft key,
or if cursor = begin (no way to go left),
go to step 3.

Otherwise, return cursor — 1.

Step 3. If ¢ is not the ArrowRight key,
or if cursor = end — gap (no way to go
right), go to step 4.

Otherwise, return cursor + 1.

Step 4. If c is not the ArrowUp key, go
to step 5.

Otherwise, return the beginning ad-
dress of the previous line by calling the
ted_move_backward function with [ = 1,
and with pointers to col and row, in the
9t" and 10t" stack frame slots, for col? and

fn
cst_0
cst_0
get
cst8
ifne
get
get
ifeq
get
cst_1
sub
retv
get
cst8
ifne
get
get
get
sub
ifge
get
cst_1
add
retv
get
cst8
ifne
get
get
cst_1
ptr
ptr

05
— col

— row

04 ¢
EB
0017

01 cursor

00
0017

begin

01 cursor

04 ¢
F4
002D

01 cursor

end
gap

03
02

002D

01 cursor

04 ¢
F5
0041

00  begin

01 cursor

09
0A

col
row

19
00
00
16
02
10
16
16
oD
16
01
05
1E
16
02
10
16
16
16
05
1
16
01
04
1E
16
02
10
16
16
01
15
15

CoCB4
+002
+003
+004
+006
+008
+00B
+00D
+00F
+012
+014
+015
+016
+017
+019
+01B
+01E
+020
+022
+024
+025
+028
+02A
+02B
+02C
+02D
+02F
+031
+034
+036
+038
+039
+03B
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CHAPTER 14 Text Editor

rowP.

Step 5. If c is not the ArrowDown key,
go to step 6.

Otherwise, return the beginning ad-
dress of the next line.

Step 6. If c is not the PageUp key, go
to step 7.

Otherwise, return the beginning ad-
dress of the 30 previous line (30 = 1E ;).

Step 7. If c is not the PageDown key,
go to step 8.

Otherwise, return the beginning ad-
dress of the 30" next line.

Step 8. Return cursor.

call
retv
get
cst8
ifne
get
get
get
est_1
call
retv
get
cst8
ifne
get
get
cst8
ptr
ptr
call
retv
get
cst8
ifne
get
get
get
cst8
call
retv
get
retv

@C31 ..move_backward

04 ¢

F2

0053

Q1  cursor
02 gap

03 end

0C80 ..move_forward

04 ¢

FD

0068

00  begin

01  cursor

1E

09 col

OA  row

@C31 ..move_backward

04 ¢

FA

007B

01 cursor
02  gap

03 end
1E

0C80 ..move_forward

01 cursor

1A
1E
16
02
10
16
16
16
01
1A
1E
16
02
10
16
16
02
15
15
1A
1E
16
02
10
16
16
16
02
1A
1E
16
1E

+03D
+040
+041
+043
+045
+048
+04A
+04C
+04E
+04F
+052
+053
+055
+057
+05A
+05C
+05E
+060
+062
+064
+067
+068
+06A
+06C
+06F
+071
+073
+075
+077
+07A
+07B
+07D

In order to implement a function to draw the edited text, we first provide 3 simple
functions to use double buffering. The first one enables this mode and sets the back

buffer to layer 1:

gpu_set_double_buffer()

fn 00 19 CoD32
cst8 20 02 +002
cst8 80 02 +004
call 0378 .set_register 1A  +006

cst8
cst_1
call
ret

41

0378 ..set_register

02
01
1A
1D

+009
+00B
+00C
+00F

The second one disables double buffering and sets the front and back buffers to
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layer O:

gpu_set_single_buffer()

fn 00 19 CoD42
cst8 41 02 +002
cst_0 00 +004
call 0378 ..set_register 1A +005
cst§ 52 02 +008

cst_0
call
cst8
cst_0
call
ret

143 Implementation

0378 .set_register
20

0378 ..set_register

00
1A
02
00
1A
1D

+00A
+00B
+00E
+010
+011
+014

The third one swaps the layers used for the front and back buffers. For this, it reads
the [ bit of the Memory Write Control (“back buffer”) register (in the 4*" stack frame
slot), sets this register to 1 — [, and sets the Layer Transparency 0 (“front buffer”)
register to [. The first step is done by selecting the register with a Select Register
command, followed by a Read Data command (both sent with spi_transfer —see

Section 10.2.3):

gpu_swap_buffer()

fn 00 19 CoD57
cst 00008041 03 +002
call 034E spi_transfer 1A +007
pop 18 +00A
cst 00004000 03 +00B
call @34E spi_transfer 1A +010
cst_1 01 +013

get
sub
call
pop
cst8
get
call
ret

04 layer
Q34E spi_transfer
52

04 layer
0378 ..set_register

16
05
1A
18
02
16
1A
1D

+014
+016
+017
+01A
+01B
+01D
+01F
+022

We can now implement a function to draw the edited text, with Algorithm 14.5:

ted_draw(begin, cursor, gap, end)

Step 1. Clear the screen (actually the
back buffer) and set the graphics cursor to
(0,0).

Step 2. Initialize r to 0 and c to 0.

Step 3. Initialize col and row to 0, and
compute a, col and row —in the 12t", 10"
and 11*" stack frame slots, respectively —
by calling ted_move_backward with | =
15 and with pointers to col and row for
col? and rowP.

Step 4. If a = cursor, increment a by
gap.

fn
call
cst_0
cst 0
call
cst_0
cst_0
cst_0
cst_ 0
get
get
cst8
ptr
ptr
call
get
get

04
0409 ..clear_screen

0422 ..set_cursor

—r
— C
— col
— Tow
00  begin
01  cursor
oF
QA  col
0B row

0C31 ..move_backward
oC «a
01 cursor

19
1A
00
00
1A
00
00
00
00
16
16
02
15
15
1A
16
16

CoD7A
+002
+005
+006
+007
+00A
+00B
+00C
+00D
+00E
+010
+012
+014
+016
+018
+01B
+01D
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CHAPTER 14 Text Editor

Step 5. If a > end, go to step 12.
If r (in the 8" stack frame slot) is > 30,
go to step 12 (30 = 1E1¢).

Step 6. Set c (in the 9" stack frame
slot) to the character at a.

If c is not equal to Enter (A1), go to
step 9.

Step 7. Increment r by 1,

set the graphics cursor to (0, ), and go to
step 10.

Step 9. If c is equal to Tab (914), draw
two spaces (2014) and go to step 10.

Otherwise draw c.
Step 10. Increment a by 1.

Step 11. If a is not equal cursor, go
back to step 5.

Otherwise increment a by gap and go
back to step 5.

Step 12. Switch the back and front

buffers, set the graphics cursor to (col, row)
and return.

204

ifne
get
add
get
get
ifge
get
cst8
ifge
get
call
set
get
cst8
ifne
get
cst_1
add
set
cst_ 0
get
call
goto
get
cst8
ifne
cst8
call
cst8
call
goto
get
call
cst_1
add
get
get
ifne
get
add
goto
call
get
get

0025

02 gap
oC «
03 end
0078

08 r
1E

0078

oC «

03C0 load_byte
09 ¢

09 ¢

QA

0050

08 r

08 r

08 r

0422 ..set_cursor
0069

09 ¢

09

0064

20

0465 gpu_draw_char
20

0465 gpu_draw_char
0069

09 ¢

0465 gpu_draw_char

oC «a

01 cursor
0025

02 gap

0025

OD57 ..swap_buffer
0A  col

0B row

10
16
04
16
16
11
16
02
11
16
1A
17
16
02
10
16
01
04
17
00
16
1A
12
16
02
10
02
1A
02
1A
12
16
1A
01
04
16
16
10
16
04
12
1A
16
16

+01F
+022
+024
+025
+027
+029
+02C
+02E
+030
+033
+035
+038
+03A
+03C
+03E
+041
+043
+044
+045
+047
+048
+04A
+04D
+050
+052
+054
+057
+059
+05C
+05E
+061
+064
+066
+069
+06A
+06B
+06D
+06F
+072
+074
+075
+078
+07B
+07D



14.3 Implementation

call Q422 ..set_cursor 1A +07F
ret 1D +082

We can finally implement the main function of our text editor. The following
function takes as parameter the address of a fext buffer, i.e., a data buffer containing
the text to edit (see Section 13.1.3). It also takes as parameter an initial cursor offset
from the beginning of the text, and a maximum text length. It starts by storing in the
7th stack frame slot the current text length (contained the text buffer header), and
returns immediately if it is larger than max_length:

text_editor(buffer, offset, mazx_length)

fn 03 19 CODFD get 02 max_length 16  +007
get 00  buffer 16 +002 ifle 000D OF +009
load — length 13 +004 ret 1D +00C
get 07  length 16 +005

It continues by initializing begin to buffer + 4, cursor to begin + length, end
to begin + max_length, gap to end — cursor, and c to 0, in the 8", 9** 10", 11",
and 12" stack frame slots, respectively:

get 00  buffer 16  +00D get 02 max_length 16  +019
cst8 04 02 +00F add — end 04 +01B
add — begin 04 +071 get 0A  end 16 +01C
get 08  begin 16 +012 get 09  cursor 16 +01E
get 07  length 16 +014 sub — gap 05 +020
add — cursor 04 +016 cst_0 —c 00 +021
get 08  begin 16 +017

The cursor is then changed to begin + offset with a call to ted_set_cursor,
after setting offset to length if it is larger than that. The initialization phase ends by
enabling the double buffering mode, setting the color to green (0, 7,0), and drawing
the text:

get 01  offset 16 +022 add 04 +037
get 07  length 16 +024 call 9CQ4 .set_cursor 1A +038
ifle 002D OF +026 set 09  cursor 17 +03B
get 07  length 16 +029 call @D32 .double_buffer 1A +03D
set 01  offset 17 +02B cst_0 00 +040
get 08  begin 16 +02D cst8§ 07 02 +041
get 09  cursor 16 +02F cst_0 00 +043
get OB  gap 16 +031 call 044D gpu_set_color 1A  +044
get 08  begin 16 +033 get 08  begin 16 +047
get 01  offset 16 +035 get 09  cursor 16 +049
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get 0B  gap 16 +04B
get 0A  end 16  +04D

call

OD7A ted_draw

1A

+04F

The rest of the function is a loop which handles keys typed on the keyboard, until

Escape is pressed.

Step 1. Read a character from the
keyboard and store it in c.

Step 2. If ¢ is not the Escape key, go
to step 3.

Otherwise, set the cursor to the end
of the text, i.e., to end — gap, to remove
any gap in the text itself. Then store the
final text length in the buffer header, i.e.,
store this new cursor value minus begin at
address buffer.

Then disable the double buffering mode
and return.

Step 3. If ¢ is not the BackSpace key,
go to Step 4.

Otherwise, if cursor = begin (no pre-
vious character to delete), go back to step
1.

Otherwise, delete the previous charac-
ter by decrementing cursor by 1,

and by incrementing gap by 1. Then go to
step 6 to redraw the text.

Step 4. If c is not an ASCII character
other than Delete (7F;¢4), go to step 5.

Otherwise, if gap = 0 (no way to insert
a new character), go back to step 1.
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call
set
get
cst8
ifne
get
get
get
get
get
get
sub
call
get
sub
store
call
ret
get
cst8
ifne
get
get
ifeq
get
cst_1
sub
set
get
est_1
add
set
goto
get
cst8
ifge
get
cst_0

0606 ..wait_char
oC ¢

oC ¢

1B

0076

00  buffer
08  begin
09  cursor
0B  gap

0A  end
0B  gap

0C04 ..set_cursor
08  begin

@D42 ..single_buffer

oC ¢

08

0093

09  cursor
08  begin
0052

@9  cursor

09  cursor
0B  gap

0B  gap
00CE

oC ¢

7F

00B6

0B  gap

1A
17
16
02
10
16
16
16
16
16
16
05
1A
16
05
14
1A
1D
16
02
10
16
16
oD
16
o1
05
17
16
01
04
17
12
16
02
11
16
00

+052
+055
+057
+059
+05B
+05E
+060
+062
+064
+066
+068
+06A
+06B
+06E
+070
+071
+072
+075
+076
+078
+07A
+07D
+07F
+081
+084
+086
+087
+088
+08A
+08C
+08D
+08E
+090
+093
+095
+097
+09A
+09C
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ifeq 0052 oD +09D

Otherwise, store c at cursor, get Q9 cursor 16 +0A0
get oC ¢ 16  +0A2

call 0AQ4 store_byte 1A +0A4

increment cursor by 1, get Q9  cursor 16  +0A7
cst_1 01  +0A9

add 04  +0AA

set Q9 cursor 17 +0AB

and decrement gap by 1. Then go to step  get 0B  gap 16  +0AD
6 to redraw the text. cst_1 01  +0AF
sub 05 +0BO

set 0B  gap 17 +0B1

goto 00OCE 12 +0B3

Step 5. If cis any character nothandled — get 08  begin 16 +0B6
above, set the cursor to the new cursor value  get 09  cursor 16 +0B8
computed by ted_handle_key. get OB  gap 16 +0BA
get 08  begin 16 +0BC

get 09  cursor 16 +0BE

get OB gap 16 +0C0

get 0A  end 16 +0C2

get oC ¢ 16 +0C4

call 0CB4 .handle_key 1A +0C6
call 0C04 ..set_cursor 1A +0C9

set 09  cursor 17 +0CC

Step 6. Redraw the edited text and go get 08  begin 16 +0CE
back to step 1. get Q9 cursor 16 +0D0
get 0B  gap 16 +0D2

get 0A  end 16 +0D4

call  OD7A ted_draw 1A +0D6

goto 0052 12 +0D9

In summary, the main functions of our text editor are those listed in Table 14.1,
and its full code is the following:

OA161A05 01160316 01160402 16011600 1BOFQ116 03160419 C0C04
0005191E 03160A16 1A050316 01160402 16031603 161E0316 COC1C
2F100A02 09160917 03C01A05 010A1600 4COF0016 0A160116 C0C34
00130416 00471214 04011304 16041600 4COD0216 13041600 C0OCAC
05120501 14040104 01004410 09020916 13031603 16004710 C0C64
1608161E 08160011 10050116 02160816 00160419 1EQA1600 COC7C
0103161E 04010816 00291001 0316002F 100A0203 CO1AQ401 C0C94
0D001601 16001710 EBO20416 00000519 00041204 01031705 COCAC
002D1105 02160316 0116002D 10F40204 161E0501 01160017 C0CC4
0C311AQA 15091501 01160016 004110F5 0204161E 04010116 CoCDC
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Function Address
ted_draw(begin, cursor, gap, end) CoD7A (C000016+3450)
text_editor(buffer, offset, max_length) | CODFD (C000044+3581)

TABLE 141 The most important functions of the text editor.

10FD0204 161E0C80 1A010316 02160116 005310F2 0204161E COCF4
16007B10 FA020416 1EQC311A 0A150915 1E020116 00160068 CODOC
0203781A 80022002 00191E01 161EQC80 1A1EQ203 16021601 C0D24
1A002002 03781A00 52020378 1A004102 00191D03 781A0141 C0D3C
1601034E 1A000040 00031803 4E1A0000 80410300 191D0378 C0D54
04221A00 0004091A 04191D03 781A0416 52021803 4E1A0504 COD6C
00251001 160C160C 311A0B15 0A150F02 01160016 00000000 C0D34
091703C0 1A0C1600 78111E02 08160078 1103160C 16040216 C0oDOC
09160069 1204221A 08160008 17040108 16005010 0A020916 CODB4
0104651A 09160069 1204651A 20020465 1A200200 64100902 CODCC
04221A0B 160A160D 571A0025 12040216 00251001 160C1604 CODE4
04071608 16040402 00161D00 0DOF0216 07161300 1603191D CODFC
08160117 0716002D OF071601 16000509 160A1604 02160816 COET14
044D1A00 07020000 321A0917 0C041A04 01160816 0B160916 COE2C
16007610 1B020C16 0C170606 1AQD7A1A QA160B16 09160816 COE44
161DOD42 1A140508 160C041A 050B160A 160B1609 16081600 COESC
1704010B 16091705 01091600 520D0816 09160093 1008020C COE74
0A041A0C 16091600 520D000B 1600B611 7F020C16 ©OCE120B COESC
1608160B 16091608 1600CE12 0B170501 0B160917 04010916 COEA4
1A0A160B 16091608 1609170C 041A0CB4 1A0C160A 160B1609 COEBC

00 52120D7A COED4

To store it in flash memory we must enter it in RAM first, lets say at address
2007000046, and then save it in flash. In the memory editor, type “w20070000”+Enter,
and then store the text editor size in bytes at this address by typing “w000002d5”+Enter.
Continue by entering each word of the text editor code, listed above, by typing its value
followed by Enter. Finally, save this code in flash memory (starting at page = 12) by
running the following function:

save() cst8§  oC 02 +007
fn 00 19 00000 call 0B14 buffer_flash 1A  +009
cst 20070000 03 +002 ret 1D +00C

For this, type “w20080000”+Enter, followed by the full code of this function:
1D 0B141A0C 02200700 00030019 00000
Then type “w20080000” followed by “r” to run it. Alternatively, if you don’t want

to enter the full text editor code manually with the memory editor, which is a bit
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14.4 Experiments

tedious, you can “cheat” by saving it via an external computer, as follows. First run
the boot_mode_select_rom function by typing “w000c02b4”+Enter, followed by
“r”. Then reset the Arduino and, on the host computer, run the following commands to
flash the text editor code and reset the Arduino again:

user@host:~$ python3 flash_helper.py < part3/text_editor.txt
>Reading page 1036... Done.

Reading page 1037... Done.

Reading page 1038... Done.

Writing page 1036... Done.

Writing page 1037... Done.

Writing page 1038... Done.

>Done.

14.4 Experiments

Lets test our text editor. The following function edits a text buffer stored at address
2007000046, with an initial cursor at the beginning of the text, and a maximum text
length of 100044 bytes:

test() cst 00001000 03 +008
fn 00 19 00000 call ODFD text_editor 1A +00D
cst 20070000 03 +002 ret 1D +010
cst_0 00 +007

Enter it in RAM at address 2008000044 by typing “w20080000”+Enter, followed
by the full code of this function:

1D ODFD1AQ0 00100003 00200700 00030019 00000

Then initialize an empty text buffer by typing “w20070000+Enter, followed
by “00000000”+Enter. Finally, run the text editor on this empty buffer by typing
“20080000”+Enter, followed by “r”. If all goes well you should be able to type some
text. Try typing some characters, test the Tab and Enter keys, type several lines and
then test the arrow keys, and the Page Up and Down keys. You can also exit the text
editor with Escape, and then run it again by typing “r”’ (you should see the text you
typed before, with the cursor reinitialized to the beginning of the text). When you
are back in the memory editor, you should also see the length of your text, at address
200700006, followed by the ASCII codes of each character.

If something goes wrong, this is probably due to a typo when you entered the
text editor code. In this case, with the memory editor, double check the code in flash
memory by comparing it with the code shown at then end of the previous section. If
you find an error, copy this code in RAM (with a small function using buffer_copy),
fix the error with the memory editor, and save the code back in flash memory (with
the save function from the previous section).
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Opcodes Compiler

‘We now have everything we need to implement our compiler. We start in this chapter
with a very simple version, whose main role is to convert opcode names into their
numerical value. Indeed, this initial compiler must be written in binary form, and
should thus be as small as possible, in order to simplify our task. Hopefully, this is the
last program we need to write in such form (besides a few small functions to launch
programs with the memory editor). We use it at the end to write a command editor,
namely a small program to make it easier to run other programs.

151 Requirements

The goal of our initial compiler is to convert opcode instructions from textual to binary
form. For instance, given the text “fn 1 get @ cst_0 ifne 10 ...”, it should produce,
in increasing address order, 1916 0115 1616 0016 0016 1016 000A 16 . . . The programs
that it should accept as input can be described as “zero or more instructions, one after
the other”, where each instruction is one of “cst_0", “cst_1", “cst8” followed by an
8-bit value, “cst” followed by a 32-bit value, and so on for the remaining opcodes.
These rules define the grammar of a programming language, that valid programs must
follow. They can be summarized with:

program: instruction®
instruction: “cst_0" | “cst_1"| “cst8” INTEGER | “cst32” INTEGER | ...

where “*” means “zero or more times” and “[” means “or”. Text between quotes, as
well as names in capital letters, refer to individual “words” or “punctuation signs” of
the program, called fokens. As in English, tokens are generally separated by spaces.
Here INTEGER designates an integer value, i.e., a token made of one or more decimal
digit characters. In this context, we define the precise requirements of our initial
compiler as follows:

“ln

e The compiler should take as input a source code address, noted src_buffer, and a
destination address where to store the compiled code, noted dst_buffer.

e The source code should be in a data buffer (see Section 13.1.3), and should follow
the above grammar.
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calls
Scanner Parser calls Backend
returns
— tokens .
Pl i
S -
src_buffer srct  src_end, dst_buffer dst
[15[ofofoff[n] Jo Jcfs[t]_[1] [rfeft]v] | LT T T Js[o]1] ]

FIGURE 151 The 3 parts of our compiler (top) and its 2 data structures (bottom),
here with 3 tokens of a 15 bytes program already read (left) and compiled (right).

e The compiled code must be produced in a data buffer. It must be the binary form of
the bytecode instructions provided as input.

e The compiler should return O if the compilation was successful, and a non-zero
value otherwise. In the latter case, the location of the error in the source code
should be stored at the dst_buffer address.

Many errors could occur in the source code, such as an undefined opcode name
(“cst_3”), an opcode without argument followed by integer value (“cst_0 10”), an
opcode with argument not followed by an integer value (“cst8 cst8”), an opcode with
an 8-bit argument followed by an integer greater than 255, a jump instruction opcode
followed by an invalid instruction offset, etc. To simplify our task, in this chapter, we
only require the detection of (most of the) undefined opcode names.

15.2 Algorithms

A compiler can generally be divided in at least 3 parts: a scanner, a parser, and
a backend (see Figure 15.1). The scanner reads the source code and extracts its
individual tokens. The parser calls the scanner to read tokens, and checks that they
follow the programming language’s grammar. The backend provides functions to
generate the compiled code. In very simple compilers such as ours, the parser uses
the backend to directly produce the compile code, while analyzing the source code.
Our compiler uses 5 main variables, shown in Figure 15.1. Besides src_buffer
and dst_buffer, already defined, the most important ones are src and dst. src points
to the next character to read. dst points to the next byte where compiled code must
be written. Finally, src_end points to the next byte after the end of the source code.
When src reaches src_end the whole program has been read and the compiler returns.

Scanner The scanner splits the source code in tokens, detects invalid tokens, and
returns some data about each token. For instance, it should detect that “cst_3" is
invalid, and it could return 42 for the token “42” (34163214 in ASCII). To simplify, in
this chapter, we move the error detection in the backend. A token is then any sequence
of characters which does not contain a space, a tabulation, or a “new line”. To compute
the numerical value v of an integer token “c,,_1 ... c1¢o”, we can initialize v to 0 and
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15.2 Algorithms

ALGORITHM 15.1 Reading a token and returning its value v.

1. while src < src_end and the character at src is a space, tab or “new line”

2. increment src by 1 to skip this character

3. if sre = src_end return nothing

4. initialize v to 0

5. while src < src_end and the character c at src is not a space, tab or “new line”
6. update v to 10v + (¢ — 3015)

7. increment src by 1

8

. return v

®

FIGURE 15.2 The scanner and parser can be modeled with Finite State Machines
(see Section 11.4.1) reading characters c (left) and token values v (right), respectively.
— represents a space, tab or “new line”. Many parser transitions are not shown.

update v to 10v+ (¢; —3016), for each character ¢; from left to right. In fact, to simplify
the initial compiler, the scanner returns such a value for all tokens. For instance, for the
“fn” token (66166E16 in ASCII), it returns 10(6616 — 301¢) + (6F16 — 3016) = 602.
In summary, a token is read as described in Algorithm 15.1, which also corresponds
to the finite state machine in Figure 15.2.

Backend The backend provides functions to write opcodes and their arguments in
the output buffer. Here we mostly need functions to write 8-bit and 16-bit values in
memory, plus some code to detect invalid opcodes. Valid opcodes are between 0 and
31 included, but we also add here a pseudo opcode d (for “data”, with value 32), with
an 8-bit argument . Once compiled, a d = instruction simply produces the byte z. It
can be used to mix code and data (such as the transition table of our keyboard driver).
In summary, a function to write an opcode (without its argument) should return an
error if opcode > 32, do nothing if opcode = 32, or write the opcode byte otherwise.

Parser The parser calls the scanner to read the source code one token at a time, and
generates the corresponding compiled code with the backend. For our very simple
initial compiler, the parser can be modeled with a Finite State Machine, represented in
Figure 15.2. There are 4 states, corresponding to the expected “type” of the next token
returned by the scanner. State 0 corresponds to opcode tokens, such as add. States 1,
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token v | opcode | S token v | opcode | S
cst_0 | 8EALE 00 |0 ifge F61B 1] 2
cst_1 | 8EA4F 01| 0 goto F25B 12 | 2
cst8 E44 02 | 1 load | 1051A 13| 0
cst 16CE 03 | 4 store | B5E35 14 | 0
add 1560 04| 0 ptr 1BEA 15 | 1
sub 1D10 05| 0 get 17D2 16 | 1
mul 1AC2 06 | O set 1C82 17 | 1
div 16D0 07 | 0 pop | 1BB6 18 | 0
and 15C4 08 | 0 fn 25A 19 |1
or 2B8 09 | 0 call | DCFo 1A | 2
lsl 1A4A OA | O callr | 8A1A2 1B | 2
lsr 1A50 0B | 0 calld | 8A194 iC| 0
iflt F65C oc | 2 ret 1C1E | 0
ifeq F613 oD | 2 retv | 11972 E| O
ifgt F62A OE | 2 blx 1628 1 | O
ifle F64D OF | 2 d 34 20 | 1
ifne F661 10 | 2

TABLE 15.1 The token value v and the corresponding compiled opcode and next state
S for each valid opcode token.

2, and 4 correspond to 1, 2, and 4-byte opcode arguments, respectively (such as the
argument of cst8, iflt, and cst, respectively). In these 3 states, any token value v
should simply be written at dst in 1, 2, or 4 bytes, and the next state is state 0. In state
0, the opcode corresponding to the token value v, noted opcode(v), should be written
at dst. And the next state, noted S(v), should be either 0, 1, 2, or 4, depending on
this opcode. By listing the opcode names and computing their token values v with
Algorithm 15.1, we get opcode(v) and S(v), shown in Table 15.1.

In order to implement this Finite State Machine we need functions to compute
opcode(v) and S(v). For this, the easiest is to store Table 15.1 in memory. opcode(v)
can then be computed by finding the row corresponding to v, and then returning the
value in its opcode column — and similarly for S(v). In fact, since the opcode of the
it" row is 4, we don’t need to store this column. Notice also that the least significant
byte {sb(v) of the token values v are all unique. We can thus store only one byte per
value in this column. In summary, opcode(v) and S(v) can be computed as described
in Algorithm 15.2, where LSB and S are the Isb(v) and S(v) value lists.

Note that for the invalid token cst_3, Isb(v) is equal to 51, which is not in LSB. In
such cases, Algorithm 15.2 returns the invalid opcode 33. Hence, most invalid tokens
can be detected by checking for invalid opcodes. However, some invalid tokens, such
as cst_2, cannot be detected like this because the least significant byte of their token
value is in LSB. We fix this in Chapter 16, at the price of a greater complexity.
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ALGORITHM 15.2 Computing {opcode(v), S(v)} for a token value v.

LSB =[4E, 4F, 14,CE, ...],S=1(0,0, 1,4, ...]

initialize ¢ to 0

while 4 < 32 and the i*" value in LSB is not equal to (v A 255)
increment ¢ by 1

el D S

return {4, i*" value in S}

15.3 Implementation

We can now implement this initial compiler. We do this in a new data buffer, in the
next flash memory page after the text editor (i.e., at address COF00,¢5). We start with
the scanner, with a function returning 1 if a given character c is a space, a tabulation,
or a “new line” (2016, 0916, and 0A 16 in ASCII, respectively), and O otherwise:

tc_is_space(c) — bool get 00 ¢ 16 +010
fn 01 19 COF04 cst8 QA 02 +012
get 00 ¢ 16 +002 ifeq 0019 oD +0714
cst8 20 02 +004 cst_0 00 +017
ifeq 0019 oD +006 retv 1E  +018
get 00 ¢ 16 +009 cst_1 01  +019
cst8 09 02 +00B retv 1E  +01A
ifeq 0019 oD +00D

We then implement Algorithm 15.1 in two parts. Steps 1 and 2 are implemented
in the following function, which returns the new src value:

tc_skip_spaces(src, src_end) — src’ fn 02 19 COF1F
Initialize src’ to sre. get 00 src— s 16 +002
Step 1. If svc’ (in the 6" stack frame get 06 s/ 16 +004
slot) is greater than or equal to src_end, get 01  src_end 16 +006
go to the last instruction. ifge  001C 11 +008
If the character at src’ is not a spacing get 06  src/ 16 +00B
character, go to the last instruction. call 03C0 load_byte 1A +00D
call OFQ4 tc_is_space 1A +010

est_1 01  +013

ifne 001C 10 +014

Step 2. Increment src’ (the top stack  est_1 01 +017
value) by 1 and go back to step 1. add 04 +018
goto 0004 12 +019

Return the top stack value src’. retv 1E  +01C

Steps 5 to 7 are implemented in the next function, which also returns the new src
value (we assume that steps 3 and 4 are done by the caller). Since a function can’t

215



CHAPTER15 Opcodes Compiler

return several values, it can’t return v as described in Algorithm 15.1. Instead, it takes
as parameter a pointer vP to a memory word where v can be read and modified:

tc_read_token(src, src_end, vP) — src’

Initialize src’ to sre.

Step 5. If src’ (in the 7t" stack frame
slot) is greater than or equal to src_end,

go to the last instruction.

If the character at src’ is a spacing

character, go to the last instruction.

Step 6. Update v, at address v?, to
10v + (¢ — 304¢), where ¢ is the character
at src’. To simplify, we do not check if

this new value actually fits in a word.

Step 7. Increment src’ (the top stack

value) by 1 and go back to step 5.

Return the top stack value src’.

fn
get
get
get
ifge
get
call
call
cst_1
ifeq
get
get
load
cst8
mul
get
call
cst8
sub
add
store
est_1
add
goto
retv

03

00 src — src!
07  sic!

Q1  src_end
002E

07  src!

03C0O load_byte

QFQ4 tc_is_space

002E

02 v”
02 v?
0A

07  src!

03C0O load_byte
30

0004

19
16
16
16
1
16
1A
1A
01
oD
16
16
13
02
06
16
1A
02
05
04
14
01
04
12
1E

CoF3C
+002
+004
+006
+008
+00B
+00D
+010
+013
+014
+017
+019
+01B
+01C
+01E
+01F
+021
+024
+026
+027
+028
+029
+02A
+02B
+02E

This concludes the scanner part. We continue with the backend part. As said
above, we mostly need here functions to store 8-bit and 16-bit values in memory.
We already have a store_byte function (see Table 13.1), hence we only need a new

store_half function (very similar to store_byte, already explained):

store_half(ptr, value)
fn 02

get 00 pir

get 00 pir

load

cst FFFFo000

19
16
16
13
03

CoreB
+002
+004
+006
+007

and
get
or
store
ret

01 walue

08
16
09
14
1D

+00C
+00D
+00F
+010
+011

We finish the backend part with a function to write an opcode byte at dst, which
returns the new dst value, dst’. As described above, this function returns an error

(represented with dst = 0) if opcode > 32, and does nothing if opcode = 32:
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tc_write_opcode(dst, opcode) — dst’

fn 02 19 COF7D get 00  dst 16 +012
get 01  opcode 16 +002 retv 1E  +014
cst8 21 02 +004 get 00  dst 16 +015
ifne 000B 10 +006 get 01  opcode 16 +017
cst_0 00 +009 call 0AQ4 store_byte 1A +019
retv 1E  +00A get 00  dst 16 +01C
get 01  opcode 16 +00B cst_1 01 +01E
cst8 20 02 +00D add 04 +01F
ifne 0015 10 +00F retv 1E  +020

We continue the implementation with the parser part, starting with Algorithm 15.2.
We first store the LSB and S tables, at addresses COF9E;4 and COFCO4¢, respectively
(note that we end each table with a 337¢ 0 value, since i can be equal to 33 at step 4 of
Algorithm 15.2):

EA351A5B 1B614D2A 135C504A B8C4D0C2 1060CE14 4F4E.... COF9C
00000000 00000000 04010000 00342872 1E94A2F0@ 5AB682D2 COFB4
0001 00000000 02020100 01010100 00020202 02020202 COFCC

We then implement Algorithm 15.2 in the following function. Since a function
can’t return several values, it returns the opcode only, and stores S at an address S?
passed as parameter. Note also that this function takes the least significant byte [sb of
v as parameter (instead of v in Algorithm 15.2):

tc_get_opcode(lsb, SP) — opcode fn 02 19 COFE2
Step 1. Initialize ¢ to 0. cst_0 — 1 00 +00?2
Step 2. If 4 (in the 6" stack frame slot) ~ get 06 16 +003

is greater than 32, go to step 4. cst8 20 02 +005
ifgt 001F OE +007

If the ¢t value in LSB is equal to Isb, cst Q00COF9E 03 +00A

go to step 4. get 06 i 16 +00F
add 04 +011

call 03C0 load_byte 1A +012

get 00 Ish 16 +015

ifeq 001F oD +017

Step 3. Increment the top stack value v est_1 01 +01A

by 1 and go back to step 2. add 04 +01B
goto 0003 12 +01C

Step 4. Store the i" value of Sat S get 01 57 16 +01F
and return the top stack value <. cst 000COFCo 03 +021
get 06 1 16 +026

add 04 +028

call 03C0 load_byte 1A +029
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store 14 +02C
retv 1E  +02D

With this we can now implement a function to perform a transition of the parser’s
Finite State Machine. The following function takes a pointer S? to the current state .S
as parameter, as well as a token value v and the current value of dst. It performs the
corresponding action, updates the value at S? to the next state, and returns the new
dst value. It has 4 main parts, corresponding to the 4 possible values of the current

state, plus a shared 5" part:
tc_parse_token(dst, v, S?) — dst’ fn 03 19 C1010
Get the value S at address SP. get 02 57 16 +002
load — 5 13 +004
Part 1. If S (in the 7*" stack frame slot) get @7 S 16 +005
is not 0, go to part 2. cst_0 00 +007
ifne 001B 10 +008
Otherwise, compute opcode(v) and get 00  dst 16 +00B
store S(v) at SP by calling tc_get_opcode get 01 v 16  +00D
on the least significant byte of v, v A cst8 FF 02 +00F
255. Write this opcode at dst by calling and 08 +011
tc_write_opcode, and return the result. get 02 SP 16 +012
call OFE2 tc_get_opcode 1A +014
call OF7D .write_opcode 1A  +017
retv 1E  +01A
Part 2. If S is not 1, go to part 3. get 07 S 16 +01B
cst_1 o1  +01D
ifne 002B 10 +01E
Otherwise, store the byte v at dst and  get 00  dst 16 +021
go to part 5 (to simplify we do not check  get 01 v 16 +023
if v actually fits in a byte). call 0QAQ4 store_byte 1A +025
goto 0041 12 +028
Part 3. If S is not 2, go to part 4. get 07 S 16 +02B
cst8 02 02 +02D
ifne 003C 10 +02F
Otherwise, store the half word v at dst ~ get 00 dst 16 +032
and go to part 5 (to simplify we do not get 01 v 16 +034
check if v actually fits in a half word). call QF6B store_half 1A +036
goto 0041 12 +039
Part 4. S is necessarily equal to 4. get 00  dst 16 +03C
Store the word v at dst and continue to  get 01w 16 +03E
part 5. store 14 +040
Part 5. Update the value at SP to 0, the ~ get 02 5P 16  +041
next state after a transition from state 1,2, cst_0 00 +043
or 4. store 14 +044
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Return the new dst value, dst + S get 00 dst 16 +045
(since S is the number of bytes just writ- get 07 S 16 +047
ten). add 04 +049

retv 1E  +04A

We can finally implement the compiler’s main function. It starts by initializing
srcto sre_buffer + 4, src_end to src+ mem32[src_buffer], dst to dst_buffer + 4,
the token value v to 0, and the Finite State Machine state S to 0, in stack frame slots 6,
7, 8,9, and 10, respectively:

tc_main(src_buffer, dst_buffer) — error

fn 02 19 C105B add — src_end 04  +00C
get 00  src_buffer 16 +002 get 01  dst_buffer 16 +00D
cst8 04 02 +004 cst8 04 02 +00F
add — sTC 04 +006 add — dst 04 +011
get 06 src 16 +007 cst_0 — 00 +012
get 00  src_buffer 16 +009 cst_0 — 5 00 +013
load 13 +00B

It continues with a loop which 1) skips spaces and returns O if src_end is reached,
2) reads a token and performs the corresponding Finite State Machine transition, 3)
returns 1 if an invalid token was found:

Step 1. Update src to the result of get 06  src 16 +014
tc_skip_spaces(src, src_end). get 07  src_end 16 +016
call OF1F .skip_spaces 1A +018

set 06 src 17 +01B

Step 2. If src < src_end, gotostep get 06  sic 16 +01D

3. get 07  src_end 16 +01F
ifit 0031 oC +021

Otherwise, i.e., if the end of the pro- get 01  dst_buffer 16 +024
gram is reached, set the value at dst_buffer  get 08  dst 16 +026
to the number of bytes written, dst — get @1 dst_buffer 16 +028
dst_buffer — 4, and return 0 (meaning sub 05 +02A
“no error”). To simplify, we do not check cst8 04 02 +02B
if S is O (if not the program ends in the sub 05 +02D
middle of an instruction, which is an error).  store 14 +02E
cst_0 00 +02F

retv 1E  +030

Step 3. Call the scanner to read atoken — get 06  src 16 +031
and store its value in v. Update srcto the  get 07  src_end 16 +033
result of tc_read_token. ptr 09 v 15 +035

call OF3C tc_read_token 1A +037
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Step 4. Perform the Finite State Ma-
chine transition corresponding to v. Up-
date dst to the result of tc_parse_token.

Step 5. If dst # 0, go to step 6.

Otherwise, i.e., if an invalid token has
been read, set the value at dst_buffer to the
location of the error, src— src_buffer — 4,
and return 1 (meaning “error”).

Step 6. Reinitialize v to O for the next
loop iteration, and go back to step 1.

set
get
get
ptr
call
set
get
cst_0
ifne
get
get
get
sub
cst8
sub
store
cst_1
retv
cst_0
set
goto

06  src
08  dst
09 v
A S

1010 ..parse_token
08 st

08  dst

005A

01  dst_buffer
06  src

00  src_buffer

04

09 v
0014

In summary the full code of our initial compiler is the following:

0000190D 0AQ20016 00190D09
10010F24 1A03C01A 0616001C
03C01AQ7 16002E11 01160716
04053002 03CO1AQ07 16060A02
14090116 Q8FFFF00 00031300
00161E00 16001510 20020116
135C504A B8C4D0C2 1060CE14
04010000 00342872 1E94A2F0
02020100 01010100 00020202
04061600 0COFOE@3 001FOE20
1A040616 000COFCO 03011600
021608FF 02011600 16001B10
16004112 0A041A01 16001600
00021614 01160016 0041120F
04020116 04130016 06160404
16081601 1600310C 07160616
15091608 1606170F 3C1A@915
01140504 02050016 06160116

17
16
16
15
1A
17
16
00
10
16
16
16
05
02
05
14
01
1E
00
17
12

02001600 190D2002 00160119
11011606 16001602 191EQ11E
00160319 1E000412 0401001C
13021602 16002EQD 010F041A
16001602 191E0004 12040114
1E00000B 10210201 1602191D
4F4E1E04 0100160A 041A0116
5AB682D2 EA351A5B 1B614D2A
02020202 00000000 00000000
02061600 02190001 00000000
001FOD0Q 1603CO1A
00071613 02160319 1E1403C0
2B100107 161EQF7D 1AQFE21A
6B1A0116 0016003C 10020207
02001602 191E0407 16001614
06170F1F 1A071606 16000004
07160616 1E001405 04020501
005A1000 08160817 10101AQA
001412 0917001E

03120401

+03A
+03C
+03E
+040
+042
+045
+047
+049
+04A
+04D
+04F
+051
+053
+054
+056
+057
+058
+059
+05A
+05B
+05D

CoFo4
CoF1C
CoF34
CoF4C
CoF64
CoF7C
CoF94
COFAC
CoFC4
CoFDC
CoFF4
C100C
C1024
C103C
C1054
C106C
C1084
C109C
C1oB4

To store it in flash memory we must enter it in RAM first, lets say at address
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2007000016, and then save it in flash. In the memory editor, type “w20070000”+Enter,
and then store the compiler size in bytes at this address by typing “w000001b7”+Enter.
Continue by entering each word of the compiler code, listed above, by typing its value
followed by Enter. Finally, save this code in flash memory (starting at page = 15) by
running the following function:

save() cst8  OF 02 +007
fn 00 19 00000 call 0B14 buffer_flash 1A  +009
cst 20070000 03 +002 ret 1D +00C

For this enter the full code of the above function in an unused RAM region, for
instance starting at address 200800001¢:

1D 0B141AQF 02200700 00030019 00000

Then type “w20080000” followed by “r” to run it. Alternatively, if you don’t
want to enter the full compiler code manually with the memory editor, which is a
bit tedious, you can “cheat” by saving it via an external computer, as follows. First
run the boot_mode_select_rom function by typing “w000c02b4”+Enter, followed
by “r”. Then reset the Arduino and, on the host computer, run the following command
to flash the compiler code and reset the Arduino again:

user@host:~$ python3 flash_helper.py < part3/opcodes_compiler.txt
>Reading page 1039... Done.

Reading page 1040... Done.

Writing page 1039... Done.

Writing page 1040... Done.

>Done.

15.4 Command editor

We can now write and compile our very first program in textual form. For this we
first need to enter it in memory with the text editor. This requires calling the text
editor, and then the compiler, with specific arguments. In turn, this currently requires
typing a few bytecode instructions in binary form with the memory editor, as we did
above to call buffer_flash. To avoid having to do this in the next chapters, our first
program is a command editor. Its goal is to edit, compile and run small functions,
called commands, such as the save function above.

15.41 User interface

A task such as writing and compiling a program requires less than a dozen distinct
commands to edit the program, save it, compile it, save the compiled code, etc.
However, each command must usually be run several times (if the compiler returns
an error, the program must be edited, saved, and compiled again). In order to avoid
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having to repeatedly type the same commands, the command editor should be able to
save up to 12 distinct commands in flash memory. We number them from 1 to 12. It
should then be able to load an existing command, and to edit it if necessary. Finally, it
should be able to compile and run a command. To fulfill these requirements we define
the command editor user interface as follows:

e typing a “Fi” key between “F1” and “F12” included should load command number
1 and display it. This command becomes the current command.

e typing “e” should run the text editor to edit the current command. Each command
must be a function without argument, returning an integer value.

(73R 1}

e typing “s” should save the current command in flash memory.

[T}

e typing “r” should compile the current command, run it, display its result, and wait
until Enter is pressed (and not until any key press because releasing “r’” can appear
as a key press for commands using the flash memory driver — see Section 13.2). If
the compilation fails, the compiler result should be displayed instead.

e typing Escape should exit the command editor.

Finally, when launched, the command editor should load and display command
number 1. All commands are initially empty in flash memory.

15.4.2 Implementation

We can now write the command editor source code. For this we assume that its
compiled code will eventually be stored in the next page after the opcodes compiler,
i.e., at address C1100,4=C0000,4+4352.

To implement the above requirements we reserve 12 pages of flash memory, one
for each command, starting at address D0000¢. This gives 256 — 4 = 252 bytes for
the source code of each command, stored as a data buffer (see Section 13.1.3). We
can then write a function to load command number command (here numbered from
0to 11) at address dst (the right column shows source code; in particular, all numbers
are in decimal form):

ced_load(command, dst) fn 2 04356
Initialize dst to an empty buffer. get 1 dst +002
cst_ 0 +004

store +005

Compute the src address of command. cst 851968 +006
This is D00001¢ + 256 * command. get 0 command +011
cst§ 8 +013

Isl +015

add — srC +016

If the src buffer size is greater than get 6 sic +017
252 this means that no command has ever load +019
been stored here (each flash memory bitis cst8§ 252 +020
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initialized to 1). Then return directly. ifgt 32 +022
Otherwise copy the src buffer to dst  get 6 src +025
and return. get 1 dst +027
call 2708 buffer_copy +029

ret +032

We continue with a function to display the command at src. For this we simply
reuse the ted_draw function of the text editor:

ced_draw(src) fn 1 04389
Set the color to yellow, to make it easier  ¢st§ 7 +002

to distinguish the command editor and the cst8 7 +004
text editor (which draws text in green). cst_0 +006
call 1101 gpu_set_color +007

Compute the begin address of the text, get 0 src +010
which is 4 bytes after src. cst8 4 +012
add — begin +014

Compute the end address of the text, get 5  begin +015
which is n bytes after begin (where n, the get 0 src +017
src buffer size, is the value at address src). load +019
add — end +020

Draw the text with a zero gap and a  get 5  begin +021
cursor at the end (see Chapter 14). get 6 end +023
cst_0 +025

get 6 end +026

call 3450 ted_draw +028

ret +031

The next function compiles the source code at src, writes the compiled code at
dst, and runs it. It then displays the result and waits until Enter is pressed.

ced_run(sre, dst) fn 2 04421
Compile the code. The result, noted get 0 src +002
error, is pushed in the 64" stack frame slot. get 1 dst +004
call 4187 tc_main +006

If the compilation is successful (i.e., if  get 6 error +009
error = (), run the compiled code (which  est_0 +011
starts after the 4 bytes dst header) and ifne 23 +012
store its result in error. Otherwise skip get 1  dst +015
this step. cst8 4 +017
add +019

calld +020

set 6 error +021

Clear the screen, set the cursor tothe call 1033 ..clear_screen +023
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top-left corner, draw error in hexadecimal, cst_0 +026
and wait until Enter is pressed. cst_0 +027
call 1058 ..set_cursor +028
get 6 crror +031
call 1868 ..draw_hex_word +033
call 1504 .get_char +036
cst8 10 +039
ifne 36 +041
ret +044

We can finally write the main command editor function. This function loops until
Escape is pressed, and performs the appropriate action for any other typed key. It
loads the current command in the 256 bytes region starting at address 20070000+,
and compiles and runs it the next 256 bytes.

command_editor() fn 0 04466
Initialize src to 20070000+¢. cst 537329664 — src +002
Initialize command to 0. cst_0 — command +007
Initialize c to “F1” (see Table 11.3). cst8 128 — ¢ +008
Step 1. If cis not the Escape key goto get 6 ¢ +010

step 2. Otherwise return. cst8 27 +012

ifne 18 +014

ret +017

Step 2. If c is not between “F1” and  get 6 ¢ +018
“F12” included go to step 3. cst8 128 +020
ifit 49 +022

get 6 ¢ +025

cst8 139 +027

ifgt 49 +029

Otherwise set command to c—“F1”. get 6 ¢ +032
cst8 128 +034

sub +036

set 5 command +037

Then load this new command and go get 5 command +039

to step 6 to display it. get 4 src +041
call 4356 ced_load +043

goto 110 +046

Step 3. If c is not equal to “e” goto  get 6 ¢ +049
step 4. cst8 101 +051
ifne 67 +053

Otherwise call the text editor to edit  get 4  src +056
the current command (with a maximum cst_0 +058
text length of 252 bytes). Then go to step  cst8 252 +059

6 to display it. call 3587 text_editor +061
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Step 4. If c is not equal to “e” go to
step 5.

Otherwise save the current command at
address D000016+256% command, which
corresponds to page 256 + command.

[T

Step 5. If c is not equal to “r” go to

step 6.

Otherwise compile and run the current
command. The compiled code is written
at dst = src + 256. Then continue to step
6.

Step 6. Draw the current command,
wait for a key to be pressed, store it in c,
and go back to step 1 to handle it.

goto
get
cst8
ifne
get
cst
get
add
call
goto
get
cst8
ifne
get
get
cst
add
call
get
call
call
set
goto

15.4 Command editor

110

115

90

4  sre

256

5 command

2836 buffer_flash
110

6 ¢

114

110

4  sre

4  sre

256

4421 ced_run

4  sre

4389 ced_draw
1542 .wait_char
6 ¢

10

+064
+067
+069
+071
+074
+076
+081
+083
+084
+087
+090
+092
+094
+097
+099
+101
+106
+107
+110
+112
+115
+118
+120

The command editor implementation is now complete, and is summarized below:

fn 2
get 1 cst_0 store
cst 851968 get @ cst8 8 1sl add

get 6 load cst8 252 ifgt 32 get 6 get 1 call 2708

ret
fn 1
cst8 7 cst8 7 cst_0 call 1101
get @ cst8 4 add
get 5 get @ load add
get 5 get 6 cst_0 get 6 call 3450
ret
fn 2
get @ get 1 call 4187

get 6 cst_0 ifne 23 get 1 cst8 4 add calld set 6

call 1033
cst_0 cst_0 call 1058
get 6 call 1868
call 1504 cst8 10 ifne 36
ret

fn @
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cst 537329664

cst_0

cst8 128

get 6 cst8 27 ifne 18 ret

get 6 cst8 128 iflt 49 get 6 cst8 139 ifgt 49

get 6 cst8 128 sub set 5

get 5 get 4 call 4356 goto 110

get 6 cst8 101 ifne 67 get 4 cst_0 cst8 252 call 3581 goto 110
get 6 cst8 115 ifne 90 get 4 cst 256 get 5 add call 2836 goto 110
get 6 cst8 114 ifne 110 get 4 get 4 cst 256 add call 4421

get 4 call 4389

call 1542 set 6 goto 10

15.4.3 Compilation

We now need to type this source code with the text editor, save it, compile it, and store
the compiled code. These 4 steps are explained below.

Edit
Typing the source code requires launching the text editor first. For this, in the memory
editor, type “w20080000”+Enter, followed by the code below (see Section 14.4):

1D 0DFD1A00 00100003 00200700 00030019 00000

Then initialize an empty text buffer by typing “w20070000”+Enter, followed by
“00000000+Enter. Run the text editor on this empty buffer by typing “20080000”+En-
ter, followed by “r”. Finally, type the command editor source code listed above,
followed by Escape to return in the memory editor.

Alternatively, if you don’t want to type this source code, you can “cheat” by saving
it via an external computer, as follows. First run the boot_mode_select_rom function
by typing “w000c02b4”+Enter, followed by “r”. Then reset the Arduino and, on the
host computer, run the following command to flash the source code and reset the

Arduino again (you can then skip the “Save” step below):

user@host:~$ python3 flash_helper.py < part3/command_editor.txt

Save

Before compiling this code we want to save it, in case something goes wrong. We
can save it after the 12 pages reserved for the commands, at address DOC00;6, which
corresponds to page 268 = 10C;¢. This can be done with the following function:

save_source() cst 0000010C 03 +007
fn 00 19 00000 call 0B14 buffer_flash 1A +00C
cst 20070000 03 +002 ret 1D  +00F
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15.4 Command editor

Enter it in RAM after the “edit” function, at address 20080020;¢, by typing
“w20080020+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080020”+Enter, followed by “r”.

1DOB141A 0000010C 03200700 00030019 00000

Compile

Compiling the code can be done with the following function, which writes the compiled
code at address 20071000,¢ and the compiler’s result value at address 200800601¢:

compile_source() cst 20071000 03 +0oC
fn 00 19 00000 call 105B tc_main 1A +011
cst 20080060 03 +002 store 14 +014
cst 000D0C00 03 +007 ret 1D +015

Enter it in RAM after the “save” function, at address 20080040+¢, by typing
“w20080040+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080040”+Enter, followed by “r”.

1D14 105B1A20 07100003 000DOCOO 03200800 60030019 00000

If all goes well the value at address 20080060, should be 0, because the compiler
returns 0 if and only if the compilation is successful. If this is not the case, run the
“edit” function again, double check the source code and fix any error found (you can
also get the location of the error at address 200710004¢). Then save and compile the
code again. And repeat this until success.

Store

Once the compilation is successful, the compiled code can be stored in flash memory.
The following function stores it in the next page after the compiler itself, i.e., at
address C1100,¢, which corresponds to page 17 = 1144:

save_code() cst8 11 02 +007
fn 00 19 00000 call 0B14 buffer_flash 1A +009
cst 20071000 03 +002 ret 1D +00C

Enter it in RAM after the “compile” function, at address 20080080;¢, by typing
“w20080080”+Enter, followed by the full code of this function, listed below. Then run
it by typing “w20080080”+Enter, followed by “1”.

1D 0B141A11 02200710 00030019 00000

227



CHAPTER15 Opcodes Compiler

15.4.4 First commands

We can now try our command editor. Start it by typing “w000c1172”+Enter, followed
by “r” (its main function is at address C0000,5+4466=C11721¢4 — see Section 15.4.2).
The screen should now be empty, because it displays command number 1, initially
empty. Lets use this command to show a welcome message when the command editor
starts. Type “e” to edit it, then type “Welcome to the command editor." followed by
Escape. At this point the message you typed should be displayed in yellow. For now it
is only in RAM. Type “s” to save it in flash memory. We now want to define some

commands to create, load, edit, save, and compile a program.

New (F2) initializes an empty text buffer at address 537330176 = 20070200, just
after the memory region used by the command editor (see Figure 15.3). Type “F2”
followed by “e” to edit it, then type its source code followed by Escape and “s” (the
dummy data at the end describes the command):
fn 0

cst 537330176 cst_0 store

cst_0 retv
d NEW_SOURCE_CODE

Load (F3) calls buffer_copy to load a program stored in flash memory at address
856064 = D1000+¢, just after the command editor source code (see Figure 15.3). Store
its source code in command number 3:
fn @

cst 856064 cst 537330176 call 2708

cst_0 retv
d LOAD_SOURCE_CODE

Edit (F4) calls text_editor to edit the text buffer at address 200702004, with the
word at address 537379328 = 2007C200+¢ as initial offset, and a maximum length of
48 KB (including the 4 bytes header). The initial offset corresponds to the header of a
compiled code buffer (see Figure 15.3) which, in case of a compilation error, contains
the error location. Hence, editing the source code after a compilation error opens the
text editor at the location of this error. Store the following source code in command
number 4:
fn @

cst 537330176 cst 537379328 load cst 49148 call 3581

cst_0 retv
d EDIT_SOURCE_CODE

Save (F5) calls buffer_flash to save the edited program in flash memory at address
D100044, which corresponds to page 272. Store it in command number 5:
fn 0
cst 537330176 cst 272 call 2836
cst_0 retv
d SAVE_SOURCE_CODE
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FIGURE 15.3 The flash memory and RAM regions used by the command editor, and
by the commands defined in Section 15.4.4. White, blue and gray areas represent
source code, bytecode and unused memory, respectively (not to scale).

Compile (F6) calls tc_main to compile the source code at address D1000+¢, and to
write the compiled code at address 537379328 = 2007C200,¢ (just after the source
code in RAM, see Figure 15.3). It returns the compiler’s result, which is non-zero if a
compilation error occurs. Store it in command number 6:

fn @
cst 856064 cst 537379328 call 4187 retv
d COMPILE_SOURCE_CODE

Store (F7) calls buffer_flash to store the compiled code in flash memory at address
791040 = C12001¢, which corresponds to page 18 (after the command editor — see
Figure 15.3). Before that, this command backs up the current compiled code by saving
a copy of it at address 917504 = E0000,4, which corresponds to page 512. Store it in
command number 7:

fn @
cst 791040 cst 512 call 2836
cst 537379328 cst 18 call 2836
cst_0 retv

d STORE_COMPILED_CODE

Restore (F8) calls buffer_flash to restore the backup created by the previous command,
in case something goes wrong. Store it in command number 8:

fn @
cst 917504 cst 18 call 2836
cst_0 retv

d RESTORE_BACKUP_CODE
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15.4.5 Tests

In order to test the above commands, type “F2”+“r” to create a new program, and
press Enter to return in the command editor. Then type “F4”+“r” to edit this program,
and type the following code, which contains an error on purpose:

fn @ cst_3 retv

Then type Escape to exit the text editor. The command’s result, 0, should be displayed.
Press Enter to return in the command editor’s main loop (in the following we omit
these “press Enter” instructions, for brevity).

Type “F5”+“r” to save this program, “F2”+*“r” to create a new one, and “F4”+“r”
to edit it. The screen should be empty. Type Escape to return in the memory editor,
then type “F3”+“r” to load the previously saved program. Type “F4”+%“r” to check
that it is now loaded in RAM, and Escape to return in the command editor.

Type “F6”+“r” to compile this program. The result should be 1, because cst_3 is
an invalid opcode. Then type “F4”+“r” to edit the program. The cursor should be just
after this invalid opcode. Enter the correct code below:

fn @ cst8 3 retv

Finally, type Escape to exit the text editor, “F5”+“t” to save the corrected code,
and “F6”+“r” to compile it. The result should be O this time.
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The opcodes compiler written in the previous chapter removes the need to manually
convert each opcode into its numerical value, and to convert each opcode argument into
the correct number of bytes. However, with this compiler, we still need to manually
keep track of the address of each function, and of the offset of each instruction inside
functions. Indeed, these values are needed for function call and jump instructions.
To solve these issues, we implement in this chapter a new compiler, for a better
programming language.

16.1 Requirements

So far we manually kept track of the address of each function by using a symbolic
name for each function, and by keeping the address corresponding to each name in
tables such as Table 12.1. To avoid this manual work, a solution is to use function
names in the program source code, instead of outside of it (as we did so far). For
instance, instead of writing “fn 17, we can write “fn factorial 1”. We can then
write “call factorial” to call this function, instead of something like “call 4096”.
From this, the compiler can do what we have been doing manually, i.e., compute the
address corresponding to each name, keep these addresses in a table, and replace each
name with its corresponding address to produce the compiled code.

Similarly, so far, we used symbolic names such as “Step 1” to refer to some
instructions in a function. And we added comments next to jump instructions, such as
“go back to step 17, to make it easier to understand them. To avoid having to manually
convert these symbolic names, called labels, into instruction offsets, we can use the
same solution as above. Namely use labels in the program source code, instead of
outside of it. For instance, we can write “:step1 add” to label an instruction, and
then “goto step1” to jump to it (instead of something like “goto 13”). The compiler
can then compute the offset corresponding to each label, keep them in a table, and
replace each label with its corresponding offset to produce the compiled code.

Programs with bytecode instructions in textual form, augmented with function
names and labels, can be defined with the following grammar:

program: (fn | static)* END
fn: “fn” fn_name fn_body
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fn_name: IDENTIFIER

fn_body: INTEGER instruction™® | *“;”

instruction: label | “cst_0" | “cst_1"| “cst8” argument | “cst32” argument | . ..
label: “:” IDENTIFIER

argument: INTEGER | IDENTIFIER

static: “static” IDENTIFIER INTEGER*

where IDENTIFIER refers to a token made of letters in “a” to “z”, “A” to “Z”, “0” to
“9”, or “_”, not starting with a digit, and not equal to “static”, “fn”, “cst_0”, etc.

The “fn” rule gives a symbolic name (defined by the “fn_name” rule) to a function.
The body of this function is either an integer (its number of parameters) followed by
a list of instructions, or a semi-colon. The latter case allows the introduction of a
function name before its implementation is defined. It is explained in the next section.

The “instruction” rule is similar to the one in the previous chapter. The main
differences are the introduction of labels (with the “label” rule), the generalization of
arguments to either an INTEGER (as before) or an IDENTIFIER (which should be a
function name, a label, or a static block name — see below), and the removal of the
“fn” instruction (which now has its own rule, as explained above).

The “static” rule gives a symbolic name to the address of the first byte in a series of
bytes. For instance, “static FIBONACCI @ 1 1 2 3 5 8” gives the name “FIBONACCI”
to the address of the @ byte, and compiles into the series of bytes @ 11235 8. It
replaces the pseudo d instruction used in the previous chapter to insert data between
code. And it avoids the need to manually compute the address of this data, just like
function names.

Finally, the main “program” rule defines a program as any number of function
and static blocks, in any order (the parentheses are not tokens; they mean that the “*”
applies to their content). END is a special token representing the end of the source
code. It does not correspond to any character. Its role is to ensure that the program is
not followed by “garbage” content. Without it, for instance, “lorem ipsum” would be
a valid (empty) program for the above grammar.

In this context, the precise requirements for our new compiler, also called an
assembler, are mostly the same as in Section 15.1, but for the above grammar. The
main difference is that the compiler now needs an additional input parameter, namely
the address where the compiled code will be stored and executed. Indeed, this is
needed to compute correct addresses in call instructions!. We call this new parameter
flash_buffer. We also want our compiler to detect more errors. In particular, it should
detect all invalid opcode names, and all references to undefined names or labels.

16.2 Algorithms

Our new compiler is divided in a scanner, a parser and a backend, like the previous
one. This section explains the algorithms used in each part.

To simplify, the compiler does not produce position independent code (see Section 13.3).
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16.21 Scanner

Based on the above grammar, the tokens that the scanner must recognize are integers,
identifiers, keywords such as “static”, “fn”, “cst_0", etc, the colon and semi-colon
characters, and the special END token. A token can thus no longer be represented
with a single value v, as in the previous chapter. Instead, the scanner produces the
following values for each token:

e token identifies the token type. We use O for END, 1 for invalid tokens (such as
“=), 2 for integers, 3 for identifiers, 115 (“s” in ASCII) for “static”, 102 (“f”
in ASCII) for “fn”, 58 (“:” in ASCII) for “:”, 59 (*;” in ASCII) for “;”, and
opcode + 128 for the token corresponding to opcode.

o token_data is the token’s value for integer tokens (e.g., 42 for the “42” token), or
the address of the token’s first character in the source code for identifier tokens.

e token_length is the number of characters of identifier tokens (e.g., 3 for “src”).

As before, the scanner could be represented with a Finite State Machine. But it
would then have a lot of states. Another method is to use the following properties:

e keywords excepted, all tokens start with a different type of character: a digit for
integers, a lowercase or uppercase letter (or an underscore) for identifiers, and a
colon or a semi-colon for the single-character tokens.

e keywords are special cases of identifiers.

This suggests the following method to read a token: 1) look at its first character, 2)
call a dedicated function to read the type of token corresponding to this first character,
3) if the token looks like an identifier, check if it is equal to a keyword and, if so,
treat it as such. To implement this method, it is useful to have a CHAR_TYPES table
indicating the type of each character: 1 for unsupported characters such as “=", 2 for
digits, 3 for letters and the underscore, 58 for “:” and 59 for *“;”. It is also useful to
have a KEYWORDS table of all the keywords, associated with their token value. Each
entry in this table can be stored as the keyword’s number of characters n, followed by
these n characters, and ending with the corresponding token value:

KEYWORDS=5cst_0128 S5cst_1129 4cst8130 ... O
where, to indicate the end of the table, a last “entry” with n = 0 is used. With this
table, finding the token value of an identifier or keyword starting at address start
and with length characters can be done with Algorithm 16.2, which makes use of
Algorithm 16.1 to compare two names (this algorithm simply compares the token
characters with those of each keyword in the table, one by one).

The above method can then be split into 3 functions to read a character, an integer,
or an identifier or keyword, called by a main function to read an arbitrary token:

e The function to read a character increments src by 1 and stores the next character to
read and its CHAR_TYPES type in the new next_char and next_char_type variables.
Reading a character can then be done as described in Algorithm 16.3 (recall that
src is defined as the address of the next character to read). In order to support the
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ALGORITHM 16.1 Comparing the size bytes starting at address ptr1 with those start-
ing at address ptr2, and returning 0 if and only if they are equal.

1. initialize ¢ to 0

2. while ¢ < size and the byte at ptrl + i is equal to the byte at ptr2 + ¢
3. increment ¢ by 1

4. return size - %

ALGORITHM 16.2 Computing the token value of the identifier or keyword starting at
address start and made of length characters.

1. initialize ptr to the address of the KEYWORDS table
2. load the byte at ptr (a keyword length) into len
3. if len = 0 return 3 (no keyword was found, hence this is an identifier)
4. if len = length and if the [en bytes starting at start are equal to those starting
at ptr + 1 (the keyword’s characters)
return the keyword’s token value, i.e., the byte at ptr + len + 1
6. otherwise
7. increment ptr by len + 2 and go back to step 2 to try the next keyword

W

END token, this algorithm “reads the character” at src_end by setting next_char
and next_char_type to 0. Trying to read any character after that returns an error.

o The function to read an integer reads characters one by one, while the next character
is a digit. It computes its numerical value in token_data as in Algorithm 15.2, and
returns the token value of integer tokens (see Algorithm 16.4).

e The function to read an identifier or keyword reads characters one by one, while the
next character is a letter, an underscore or a digit. It then returns the token value
computed with Algorithm 16.2 (see Algorithm 16.5).

o Finally, the function to read an arbitrary token reads characters one by one while
the next character is a spacing character (for this it assumes that the CHAR_TYPES of
the space, tab and “new line” characters is 32 — *“”” in ASCII). It then calls one of
the above 3 functions, depending on the next character type (see Algorithm 16.6).
It uses the property that the token value of single character tokens and of the END
token is equal to the character type (the CHAR_TYPES are chosen to ensure this).

Note that Algorithms 16.4 to 16.6 assume that the first character of the to-
ken to read, called a lookahead character, is already available in nezt_char and
next_char_type. This property is ensured by the fact that, each time a character is read
with Algorithm 16.3, the next character is stored in next_char and nezt_char_type.

16.2.2 Parser

The parser uses the scanner to read the source code, checks that the tokens follow the
grammar, and generates the corresponding compiled code with the backend. Here the
latter task requires building a table mapping identifiers to values (function names to
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ALGORITHM 16.3 Reading a character.

if sre > src_end return an error
increment src by 1, set next_char and next_char_type to 0
if sre < sre_end
set next_char to the character at src
set next_char_type to the byte at CHAR_TYPES + next_char

S N S

Ao

ALGORITHM 16.4 Reading an integer token.

1. initialize v to 0

2. while next_char_type = 2

3. update v to 10v + (next_char — 30;¢)
4. read a character with Algorithm 16.3

5

. set token_data to v and return the token value 2

function addresses, label names to instruction offsets), and using this table to find the
value corresponding to an identifier. The following presents the algorithms used to do
this, before presenting the overall parsing algorithm.

Symbol table

The above table can be stored in memory in several ways. We use here a linked list
because it is simple to implement, although not very efficient. As its name implies,
this is a list of elements, where each element has a pointer to (i.e., the address of) the
next one (or O for the last element). In our case we call each element a symbol. Besides
a link to the next symbol, a symbol contains an identifier and a value. The identifier is
represented with the address of its first character, and its length (see Figure 16.1).

Symbols must be stored in RAM in a different region than the dst_buffer used
for the compiled code. We call this new region the heap, and we use a new heap
variable to indicate where a new symbol can be stored. We also use a new symbols
variable storing the address of the first symbol in the list (or O if the list is empty —
see Figure 16.1). With this data structure, adding a new symbol in the table is very
easy: we just need to store it in memory, starting at the heap address, with symbols
as pointer to the next symbol. Finally, we need to set symbols to heap, the address of
the new first symbol, and to increase heap by the number of bytes needed to store
a symbol (see Figure 16.1). Finding the symbol corresponding to a given identifier
I (specified by its address and length) is also very easy. We just need to iterate
over all the symbols in the list, by using the pointers from each symbol to the next,
until we find one whose identifier is equal to I (or we reach the end of the list — see
Algorithm 16.7).

Forward references Sometimes a jump instruction needs to jump to a later instruc-

tion, whose offset is not yet known when the jump instruction is parsed and compiled.
In such cases, called forward references, what we did manually so far was to leave a
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ALGORITHM 16.5 Reading an identifier or keyword token.

. set start to src
. while next_char_type = & or next_char_type = 2
read a character with Algorithm 16.3

. set token_data to start and token_length to length

1

2

3

4. set length to src — start

5

6. return the token value computed with Algorithm 16.2 for start and length

ALGORITHM 16.6 Reading an arbitrary token.

. while next_char_type = 32
read a character with Algorithm 16.3

1
2
3. set token to next_char_type

4. if next_char_type = 2 set token to the result of Algorithm 16.4
5. if next_char_type = 3 set token to the result of Algorithm 16.5
6. if next_char_type # 0 read a character with Algorithm 16.3

placeholder for the jump offset in the compiled code, and to fill it once the jump target
was known. The compiler can do exactly the same, with the following algorithm:

o If a jump instruction uses a label which is not in the symbols list, add a new symbol
for this label, with the placeholder address as the symbol’s value. To distinguish
this symbol from normal ones, each symbol also stores its kind, which can be
resolved (0) or, for forward references, unresolved (1) — see Figure 16.1.

e When a label is defined with the ““: label” syntax, check if it is in the symbols list.
If so the symbol should be unresolved. Then fill the placeholder at the address
stored in the symbol’s value with the label offset (now known), store this offset in
the symbol’s value, and set the symbol kind to “resolved”.

In fact several instructions can jump to a label which is not yet defined. In such
cases we need to store several placeholder addresses. One way to do this would be to
store in each placeholder the address of the previous one, yielding a linking list of
placeholders. Unfortunately a placeholder has only 16 bits. To solve this issue, we
can store instead in each placeholder the offset to the previous one (see Figure 16.2).
In summary, adding a placeholder and filling a list of placeholders can be done as
described in Algorithms 16.8 and 16.9. Finally, note that a call instruction can also
refer to a function whose address is not yet known. These forward function references
can be handled in exactly the same way as forward label references.

Local identifiers Incompiled code a jump instruction can only jump to an instruction
in the same function. Hence, in source code, a jump instruction should only use local
labels, i.e., labels defined in the same function. To ensure this, and to save memory at
the same time, we can delete the symbols added for the labels of a function after it has
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FIGURE 16.1 A linked list of symbols (top). Each symbol is made of 5 words. name
and length refer to an identifier in the source code (bottom). next is the address of
the next symbol, or 0 for the last one (left). New symbols are stored at heap, which
is then incremented by 5 4 bytes (right). symbols is the start of the linked list.

ALGORITHM 16.7 Finding the symbol corresponding to the identifier starting at
address name and with length characters.

initialize symbol to symbols
while symbol # 0
if the symbol’s length is not equal to length go to step 6

1.
2.
3
4. if the symbol’s name is not equal to name (cf. Algorithm 16.1), go to step 6
5. return symbol

6

7.

update symbol to the symbol’s next value
no symbol has been found, return 0

been compiled. Doing this is very simple: we just need to save the value of the heap
and symbols variables before compiling the function’s body, and to restore heap and
symbols to these saved values after the body has been compiled. Note however that
this method removes all the symbols added during the function compilation. Hence,
we cannot add a symbol for a forward function reference while compiling another
(otherwise this forward reference would be lost and thus never resolved). This explains
why, to simplify the compiler, we require an explicit forward declaration of functions

with the “fn name;” syntax (compiled by adding an unresolved symbol for name,
outside any function body).

Parsing algorithm

As in the previous chapter, the parser could be represented with a Finite State Machine.
Doing so, however, would lead to a complex implementation. Moreover, in the next
chapters, using a Finite State Machine is no longer possible. We thus use here another
method, called a recursive descent parser. This method uses one parse_r function
per rule r of the grammar. Each function checks that the next tokens follow the
corresponding grammar rule. A parse_r function for a rule 7 using another rule r’
can thus call parse_r’ to check this subpart of 7.

For instance, in our case, 3 of the parser functions are parse_fn, parse_fn_name,
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FIGURE 16.2 The value of an unresolved symbol is the address z of its last place-
holder in the compiled code (in blue). Each placeholder contains the offset to the
previous one, or 0 for the first one. Adding a placeholder at address y simply requires
storing y — x in it, and updating value to y (right).

ALGORITHM 16.8 Adding a new placeholder at y for an unresolved symbol.

1. initialize x to the symbol’s value (the address of the previous placeholder)
2. set the symbol’s value to y (the address of the new placeholder)

3. ifzr=0,setzxtoy

4. set the half-word at y to the offset y — x to the previous placeholder

and parse_fn_body, for the 3 rules fn, fn_name and fn_body. The parse_fn function is
implemented by reading a token, checking that it is equal to “fn”, and then calling
parse_fn_name and parse_fn_body (because the fn rule is defined by “fn” fn_name
fn_body — see Section 16.1). The parse_fn_body function is more complex because
the fn_body rule has two alternatives. The body can either be an integer followed
by instructions, or a semi-colon. To decide which alternative to use, the next token
must be inspected. If it is an identifier the first alternative must be used. If it is a
semi-colon the second one must be used. Any other case is an error. In the first case,
zero or more instructions must be parsed after the integer. This can be done by calling
the parse_instruction function, but how many times should it be called? The answer
is as long as the next token is the start of an instruction. By looking at the grammar
rules, we see that an instruction either starts with a label, or with an opcode keyword
(“cst_0”, etc). And a label starts with a colon. Thus, parse_instruction should
be called as long as the next token is a colon or an opcode keyword. In summary,
parse_fn_body can be implemented as follows:

1. if the next token is a semi-colon, read it

2. otherwise, if the next token is an integer

3. readit

4. while the next token is a colon or an opcode keyword, call parse_instruction

5. otherwise return an error
and the same principles can be used for all the other parsing functions. Note that
such algorithms need the value of the “next token” (after the last one that has been
read), called a lookahead token. For this we consider that what Algorithm 16.6 stores
in token, token_data, and token_length is actually about this lookahead token (by
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ALGORITHM 16.9 Filling the placeholders of an unresolved symbol to value.

1. initialize placeholder to the symbol’s value

2. while placeholder # 0

3 set offset to the half-word value at placeholder
store the half-world value value at placeholder
if offset = 0 there is no previous placeholder, return
decrement placeholder by offset

[SANAE

analogy with Algorithm 16.3). And, for this reason, we rename these variables to
next_token, next_token_data, and next_token_length from now on. The above
algorithm thus becomes:

1. if next_token is a semi-colon, read it with Algorithm 16.6

2. otherwise, if next_token is an integer

3. read it with Algorithm 16.6

4. while next_token is a colon or an opcode keyword, call parse_instruction

5

. otherwise return an error

Finally, to produce the compiled code, calls to the backend are inserted in the
parse_r functions where needed. For instance, for parse_fn_body, calls are inserted
between steps 2 and 3 above to add the fn opcode to the compiled code, followed by
next_token_data (which contains the function’s number of parameters). Other calls
are also inserted to update the list of symbols when a new function or label is defined,
and to use this list to compile function calls and jump instructions.

16.2.3 Error handling

Note that the above parse_fn_body algorithm can “return an error”. In fact any parse_r
function of the recursive descent parser might do so, and Algorithm 16.3 can as well.
Thus, for instance, parse_program could call parse_fn, itself calling parse_fn_body, in
turn calling parse_instruction, itself calling parse_label, where an error could be found
(e.g., if a colon is followed by integer). At this stage we would like to stop everything
and simply return the error from parse_program. One way to do this is to check, after
each function call, if an error occurred and, if so, immediately return from the current
function. This is what we did in the previous chapter, but this was easy because
only tc_parse_token could return an error, and it was called directly from the main
tc_compile function. Doing the same here would be much more cumbersome.
Another solution is to return from parse_label, or in fact any function, directly
into parse_program, without going through all the intermediate functions. But how
can we do this? Here we need to remember how the bytecode interpreter returns from
a function. The answer is by restoring 4 registers to the values which were saved
on the callee’s stack frame by the caller (see Chapter 8 and Figure 8.5). parse_label
returns into parse_instruction because the saved register values in its stack frame
were set by this caller. If we can somehow replace these saved register values with
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FIGURE 16.3 When panic_result(ptr) is called from a, the saved registers necessary
to return in a (light blue) are copied at ptr (top, in red). Later on, in e called from d,
called from c, ... called from a, a call to panic(err) copies the values at ptr in panic’s
stack frame (middle). When panic returns err, it thus returns in a (bottom).

those set by parse_program when it calls another function, parse_label would actually
return directly in parse_program! And this is in fact possible, since a function can
access these saved register values in its stack frame (for instance with get and set
instructions). The rest of this section presents a method to do this.

In a first step, the function we want to return to directly, say a, calls the predefined
panic_result(ptr) function. This function copies at ptr the saved register values
necessary to return into a (see Figure 16.3). This can be done by copying the 16
bytes starting 16 bytes before the address of the 0!/ stack frame slot (given by ptr 0).
panic_result then saves ptr at a fixed address A, and returns O (“no error”).

Later on, for instance, a calls b, which calls c, ... which calls e, where an error
err is found. To return this error directly into a, e calls the predefined panic(err)
function. This function reads ptr at address A, and then copies the 16 bytes at ptr
into its own stack frame (16 bytes before the address of the 0*" stack frame slot, as
before — see Figure 16.3). It then returns err. By doing this, the Frame Pointer (FP)
is restored to a’s stack frame, the Function Address (FA) is restored to a’s address,
and the Instruction Counter (IC) is restored to a’s Return Address (RA), i.e., to the
instruction following the initial call to panic_result. In other words, from a’s point
of view, panic_result is returning twice, the second time with the error value err
(and from e’s point of view, panic(err) never returns). Note however that the Stack
Pointer (SP) is updated by popping the panic stack frame, and then pushing the result
value err. As a consequence, after a panic, a’s stack frame contains all the stack
frames of the intermediate functions, with err on top (see Figure 16.3). When a itself
returns, this large stack frame is popped and everything goes back to normal.
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16.3 Implementation

We can now implement our new compiler. We first need to write it without using
function names and labels, so that it can be compiled with the opcodes compiler (the
only compiler we have for now). We then compile this source code, which gives us
the labels compiler bytecode. Finally, we rewrite the labels compiler source code with
function names and labels, and we compile it with the labels compiler bytecode.

In the following, to save space, we give the two compiler versions (with or without
function names and labels) at the same time. Most of the code is the same in both
versions, and is shown in black. Parts which are only in the 1¢ version are highlighted
in red. And parts which are only in the 2"? version are highlighted in green. Some
comments, in gray, make it easier to understand the code but are not part of it. These
include function addresses and instruction offsets, shown at the beginning of each
line (we still need to compute them manually in the 1%? version). Because of these
comments, some lines are too long to fit on a page. In these cases they are wrapped
on the next line, as indicated by | marks (which are not part of the code).

We start with the compiler’s main function, so that its address is easy to obtain
(C120016 + 4 = C0000;¢ + 4612, see Figure 15.3). Indeed, in the 2"¢ version and
in the next chapters, we have no easy way to get the address of the other functions.
This function just calls a tc_main function, implemented at the very end. At this
stage, in the 15 version, we don’t know tc_main’s address yet, and so we need to
use a placeholder, filled at the end. Here we show the end result directly. In the 27¢
version we can just call tc_main, but we need to declare it first with “fn tc_main;”:

fn tc_main;
4612 fn main 3 (src_buffer, dst_buffer, flash_buffer)
+2  get src_buffer:0 get dst_buffer:1 get flash_buffer:2 call 6673tc_ma!
lin retv

We continue with functions to load and store bytes and half-words. We already have
such functions, but we re-implement them here to avoid the need of function addresses
in the 2" version (4294967040 = FFFFFF00,¢, 4294901760 = FFFF0000¢):

4624 fn load8 1 (ptr)
+2  get ptr:0 load cst8 255 and retv
4633 fn load16 1 (ptr)
+2  get ptr:0 load cst 65535 and retv
4645 fn store8 2 (ptr, value)
+2  get ptr:0 get ptr:0 load cst 4294967040 and get value:1 or store ret
4663 fn storel6 2 (ptr, value)
+2  get ptr:0 get ptr:0 load cst 4294901760 and get value:1 or store ret

We then implement the panic functions, using an auxiliary function to copy 16
bytes between two addresses (for the same reason as above, we don’t reuse the already
existing mem_copy function — see Table 13.1):

4681 fn panic_copy 2 (src, dst)
+2  get dst:1 get src:0 load store

241



CHAPTER 16 Labels Compiler

+8
+20
+32
+44
4726
+2
+12
+20
4748
+2
+16

get dst:1 cst8 4 add get src:0 cst8 4 add load store
get dst:1 cst8 8 add get src:@ cst8 8 add load store
get dst:1 cst8 12 add get src:0 cst8 12 add load store
ret

fn panic_result 1 (ptr)
ptr ptr:@ cst8 16 sub get ptr:0@ call 4681panic_copy
cst A=1074666152 get ptr:0Q store
cst_0 retv

fn panic 1 (error)
cst A=1074666152 load ptr error:@ cst8 16 sub call 4681panic_copy
get error:Q retv

where A=1074666152 = 400E1AAS8 ¢ is the 7" General Purpose Backup Register
(we already used 3 in Section 11.4.2, and 3 more in Section 12.2).

16.31 Scanner

We start the scanner implementation with the CHAR_TYPES and KEYWORDS tables (the
former has 256 values, one for each possible character; the latter omits the keywords
that we don’t need for now, such as 1s1 and 1sr):

4767

5023

242

static TC_CHAR_TYPES
d1d1d1d1d1d1d1d1d1d32d32d1d1d1d1d1
d1d1d1d1d1d1d1d1d1di1dilididididi1di
d32d1d1d1d1d1d1d1d1d1d1d1i1dld1lid1di
d2d2d2d2d2d2d2d2d2d2d58d59d1d1d1di1
d1d3d3d3d3d3d3d3d3d3d3d3d3d3d3d3
d3d3d3d3d3d3d3d3d3d3d3didididid3
d1d3d3d3d3d3d3d3d3d3d3d3d3d3d3da3
d3d3d3d3d3d3d3d3d3d3d3dididididi
d1d1d1d1d1d1d1d1d1d1d1d1i1d1l1d1idi1di
d1d1d1d1d1d1d1d1d1d1d1didilididi1di
d1d1d1d1d1d1d1d1d1d1d1i1didid1idi1di
d1d1d1d1d1d1d1d1d1d1d1di1d1lid1idi1di
d1d1d1d1d1d1d1d1d1di1d1lididididi1di
d1d1d1d1d1d1d1d1d1d1d1i1didididi1di
d1d1d1d1d1d1d1d1d1d1d1d1i1d1d1di1di
d1d1d1d1d1d1d1d1d1did1lididididi1di
static TC_KEYWORDS
d5d 'c'99d 's'115d 't'116 d '_'95d '0'48 d 128
d5d 'c'99d 's'115d 't'116 d '_'95d '1'49 d 129
d4d 'c'99d 's'115d 't'116 d '8'56 d 130
d3d 'c'99d 's'115d 't'116 d 131
d3d'a'97 d 'd'1e0 d 'd'100 d 132
d3d's'115d 'u'117 d 'b'98 d 133
d3d 'm109d 'u'117 d '1'108 d 134
d3d'd1eed 'i'165d 'v'118 d 135
d3d'a'97d 'n"110 d 'd'100 d 136
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d2d 'o'111d 'r'114 d 137

d4d 'i'105d 'f'102 d '1'108 d 't'116 d 140

d4d 'i'105d 'f'102 d 'e'101 d 'q'113 d 141
d4d'i'105d 'f'102 d 'g'103 d '"t'116 d 142

d4d 'i'105d 'f'102 d '1'108 d 'e'101 d 143

d4d 'i'105d 'f'102 d 'n'110 d 'e'101 d 144

d4d 'i'105d 'f'102 d 'g'103 d 'e'101 d 145

d4d 'g'103 d '0'111 d "t'116 d '0'111 d 146

d4d '1'108 d '0'111 d 'a'97 d 'd'100 d 147

d5d 's'115d '"t'116 d '0'111 d 'r'114 d 'e'101 d 148
d3d'p'112d 't'116 d 'r'114 d 149

d3d'g'103 d 'e'101 d "t'116 d 150

d3d's'115d 'e'101 d '"t'116 d 151

d3d'p'112d '0'111 d 'p'112 d 152

d4d 'c'99d 'a'97d '1'108 d '1'108 d 154
d3d'r'114d 'e'101 d 't'116 d 157

d4d 'r'114d 'e'101 d 't'116 d 'v'118 d 158

d2d 'f'102 d 'n'110 d 102

d6d 's'115d 't'116d 'a'97 d 't'116 d 'i'105 d 'c'99 d 115

o
[S)

We continue with the implementation of Algorithms 16.1 and 16.2:

5182 fn mem_compare 3 (ptri1, ptr2, size)
+2 cst_ 0 — 1
+3 :step2
+3 get i:7 get size:2 ifge 38step4
+10  get ptr1:0 get 1:7 add call 4624load8 get ptr2:1 get i:7 add call 4!
16241o0ad8 ifne 38step4
+29 get i:7 cst_1 add set i:7 goto 3step2
+38 :step4
+38 get size:2 get i:7 sub retv

5226 fn tc_get_keyword 2 (start, length)
+2 cst_@ — len
+3  cst 791455TC_KEYWORDS — ptr
+8 :step2
+8 get ptr:7 call 4624load8 set len:6
+15  get len:6 cst_0 ifne 24step4
+21 cst8 TC_IDENTIFIER=3 retv
+24 :step4
+24  get length:1 get len:6 ifne 57step7?
+31 get start:0 get ptr:7 cst_1 add get length:1 call 5182mem_compare c!
!st_@ ifne 57step7
+46  get ptr:7 get len:6 add cst_1 add call 4624load8 retv
+57 :step7
+57  get ptr:7 get len:6 add cst8 2 add set ptr:7 goto 8step2

To implement the next scanner functions we need to decide where to store
the 7 scanner variables src, src_end, next_char, next_char_type, next_token,
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next_token_data and next_token_length. Passing them as function parameters
would be cumbersome (because there are many variables, and because we would
actually need to pass their addresses). Storing them at some fixed addresses, such as
537329664, 537329668, 537329672, etc is not better. Instead, we assume that these
variables are stored next to each other, somewhere in RAM, and we pass the address of
the first one, noted self, to each scanner function. Hence, src, src_end, next_char,
etc can be read or written by loading or writing the word at self, self + 4, self + 8,
etc (respectively). With this hypothesis, Algorithm 16.3 can be implemented with the
following function, which returns next_char_type (or panics with error = 10):

5296 fn tc_read_char 1 (self)
+2  get self:0Q tc_src=cst_0@ add load — src
+7  get self:0 cst8 tc_src_end=4 add load — src_end
+13  get src:5 get src_end:6 iflt 25step2
+20  cst8 10 call 4748panic
+25 :step2
+25  get src:5 cst_1 add set src:5 cst_@ — char cst_@ — type
+33  get src:5 get src_end:6 ifge 60@end
+40  get src:5 call 4624load8 set char:7
+47  cst 791199TC_CHAR_TYPES get char:7 add call 4624load8 set type:8
+60 :end
+60  get self:@ tc_src=cst_0 add get src:5 store
+67  get self:0 cst8 tc_next_char=8 add get char:7 store
+75  get self:@ cst8 tc_next_char_type=12 add get type:8 store
+83  get type:8 retv

We continue with the implementation of Algorithm 16.4 (as before, to simplify,
we do not check if v fits in a word):

5382 fn tc_read_integer 1 (self)
+2  get self:0@ cst8 tc_next_char_type=12 add load — type
+8 cst_.0 —v
+9 :step2
+9  get type:5 cst8 TC_INTEGER=2 ifne 43step5
+16  get v:6 cst8 10 mul get self:0 cst8 tc_next_char=8 add load cst8 48!
! sub add set v:6
+33  get self:0 call 5296tc_read_char set type:5
+40  goto 9step2
+43 :stepb
+43  get self:0 cst8 tc_next_token_data=20 add get v:6 store
+51 cst8 TC_INTEGER=2 retv

and of Algorithm 16.5:

5436 fn tc_read_identifier 1 (self)

+2  get self:0 tc_src=cst_0 add load - start

+7  get self:0 cst8 tc_next_char_type=12 add load — type
+13 :step2

+13  get type:6 cst8 TC_IDENTIFIER=3 ifeq 27step3
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+20  get type:6 cst8 TC_INTEGER=2 ifne 37step4

+27 :step3

+27  get self:@ call 5296tc_read_char set type:6 goto 13step2

+37 :step4

+37 get self:@ tc_src=cst_0 add load get start:5 sub - length

+45  get self:@ cst8 tc_next_token_data=20 add get start:5 store
+53  get self:0 cst8 tc_next_token_length=24 add get length:7 store
+61 get start:5 get length:7 call 5226tc_get_keyword retv

With this we can finally implement Algorithm 16.6 in the main scanner function:

5505 fn tc_read_token 1 (self)
+2  get self:0@ cst8 tc_next_char_type=12 add load — type
+8 :stepl
+8  get type:5 cst8 32 ifne 25step3
+15  get self:@ call 5296tc_read_char set type:5 goto 8stepl
+25 :step3
+25 get type:5 — token
+27  get type:5 cst8 TC_INTEGER=2 ifne 44step5
+34  get self:@ call 5382tc_read_integer set token:6 goto 73end
+44 :stepb
+44  get type:5 cst8 TC_IDENTIFIER=3 ifne 61step6b
+51 get self:0 call 5436tc_read_identifier set token:6 goto 73end
+61 :stepb
+61 get type:5 cst_@ ifeq 73end
+67 get self:@ call 5296tc_read_char pop
+73 :end
+73  get self:0 cst8 tc_next_token=16 add get token:6 store
+81 ret

16.3.2 Backend

We start the backend implementation with a small function which increments the
pointer at address ptrP by size and returns the previous pointer at this address. We
use it later on to increment dst and heap:

5587 fn mem_allocate 2 (size, ptr_p)

+2  get ptr_p:1 load — ptr

+5  get ptr_p:1 get ptr:6 get size:@ add store
+13 get ptr:6 retv

To implement the backend itself we need to decide where to store the dst variable.
We assume here that it is stored after the 7 scanner variables. Hence, dst can be read
and written by loading or writing the word at self + 2§. We can then implement 3
functions to write a byte, a half-word or a word at dst, respectively:

5603 fn tc_write8 2 (self, value)
+2  cst_1 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get value!
1:1 call 4645store8
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+16 ret
5620 fn tc_writel6 2 (self, value)
+2  cst8 2 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get valu!
le:1 call 4663storel6
+17 ret
5638 fn tc_write32 2 (self, value)
+2  cst8 4 get self:0 cst8 tc_dst=28 add call 5587mem_allocate get valu:
le:1 store
+15 ret

We continue the backend with functions to manage placeholders. Placeholders
were introduced while describing the parser, but managing them involves writing and
updating bytes in the dst buffer, which is the backend’s responsibility. The following
function adds a new placeholder for an unresolved symbol, with Algorithm 16.8. It
takes the symbol’s value address value? as parameter, and uses y = dst. Step 4 only
returns y — x, and lets the caller fill the placeholder:

5654 fn tc_add_placeholder 2 (self, value_p)
+2  get self:0Q cst8 tc_dst=28 add load —y
+8 get value_p:1 load — x
+11 get value_p:1 get y:6 store
+16  get x:7 cst_0 ifne 26step4 get y:6 set x:7
+26 :step4
+26  get y:6 get x:7 sub retv

The next function fills all the placeholders in the list starting at placeholder with
value, using Algorithm 16.9 (step 1 must be done by the caller):

5686 fn tc_fill_placeholders 2 (placeholder, value)
+2 cst_@ — offset
+3 :step2
+3  get placeholder:0 cst_0 ifeq 4@end
+9 :step3
+9  get placeholder:@ call 46331loadl16 set offset:6
+16  get placeholder:@ get value:1 call 4663storel6
+23  get offset:6 cst_@ ifne 3@0step6 ret
+30 :stepb
+30  get placeholder:@ get offset:6 sub set placeholder:@
+37  goto 3step2
+40 :end
+40 ret

We finish the backend with a small function to write a fn instruction and its
argument, the function’s number of parameters, also called its arity:

5727 fn tc_write_fn_insn 2 (self, arity)

+2  get self:0 cst8 25 call 5603tc_write8

+9  get self:0 get arity:1 call 5603tc_write8
+16 ret
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16.3.3 Parser

We start the parser implementation with a function to search for a symbol in the list of
symbols starting with symbol, with Algorithm 16.7. We assume that the symbol’s
name, length, kind, data, and next symbol are stored at symbol, symbol + 4,
symbol + 8, symbol + 12, and symbol + 16, respectively (as in Figure 16.1.):

5744 fn sym_lookup 3 (symbol, name, length)

+2
+2
+8
+19

+35
+38
+38
+49
+49

:step2
get
get
get

get
:stepb

get
:step7

symbol:@ cst_0 ifeq 49step7

symbol:@ cst8 sym_length=4 add load get length:2 ifne 38step6

symbol:@ sym_name=cst_0 add load get name:1 get length:2 call 5!
1182mem_compare cst_0 ifne 38step6

symbol:@ retv

symbol:@ cst8 sym_next=16 add load set symbol:@ goto 2step2

cst_0 retv

We continue with a function to add a new symbol with the given name, length,
kind and value in the symbols list. We assume here that the heap and symbols
variables are stored after dst, i.e., at self + 32 and self + 36, respectively. We start
by reserving 20 bytes to store the 5 words of the new symbol at heap:

5795 fn tc_add_symbol 5 (self, name, length, kind, value)

+2

cst8

20 get self:0 cst8 tc_heap=32 add call 5587mem_allocate — sym?
{ — bol

If the symbol is already in the symbols list, this is an error:

+12

+29

get

cst8

self:0 cst8 tc_symbols=36 add load get name:1 get length:2 call:
! 5744sym_lookup cst_@ ifeq 34ok
30 call 4748panic

otherwise we store the symbol’s name, length, kind and value, and set its next symbol
to symbols. Finally, we update symbols and return the new symbol:

+34
+34
+41
+49
+57
+65

+77
+85

1ok
get
get
get
get
get

get
get

symbol:9 sym_name=cst_0 add get name:1 store

symbol:9 cst8 sym_length=4 add get length:2 store

symbol:9 cst8 sym_kind=8 add get kind:3 store

symbol:9 cst8 sym_value=12 add get value:4 store

symbol:9 cst8 sym_next=16 add get self:0 cst8 tc_symbols=36 add!

! load store
self:Q cst8 tc_symbols=36 add get symbol:9 store
symbol:9 retv

The following function adds a symbol with the given name, length and value to
the symbols list, as a resolved symbol. Unless this symbol is already in the list, in
which case it resolves it. We for this we first search this symbol. If it is not found, we
add one and return it:
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5883 fn tc_add_or_resolve_symbol 4 (self, name, length, value)
+2  get self:0Q cst8 tc_symbols=36 add load get name:1 get length:2 call!
! 5744sym_lookup —» symbol
+15  get symbol:8 cst_@ ifne 34found
+21 get self:0 get name:1 get length:2 SYM_RESOLVED=cst_@ get value:3 c!
tall 5795tc_add_symbol retv

If the symbol already exists, then it should be unresolved (otherwise it means we
are trying to define this symbol more than once). We thus check that this is the case,
and panic otherwise:

+34 :found
+34  get symbol:8 cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifeq 490!
'k cst8 31 call 4748panic

If everything is fine, we fill the symbol’s placeholders with value, update its kind
to “resolved”, update its value to value, and return it:

+49 ok

+49  get symbol:8 cst8 sym_value=12 add load get value:3 call 5686tc_fil:
!1_placeholders

+60  get symbol:8 cst8 sym_kind=8 add SYM_RESOLVED=cst_0@ store

+67  get symbol:8 cst8 sym_value=12 add get value:3 store

+75  get symbol:8 retv

To make it easier to implement the parsing functions corresponding to each
grammar rule, we first provide 3 basic functions to parse a token, an integer or an
identifier. The first one panics if the next token is not the one passed as parameter.
Otherwise it just reads this token:

5961 fn tc_parse_token 2 (self, token)
+2  get self:0 cst8 tc_next_token=16 add load get token:1 ifeq 180k cst!
18 20 call 4748panic

+18 :ok
+18  get self:@ call 5505tc_read_token
+23 ret

The second panics if the next token is not an integer. Otherwise it reads this token
and returns its numeric value:

5985 fn tc_parse_integer 1 (self)
+2 get self:0Q cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifeq 181
lok cst8 21 call 4748panic
+18 :ok
+18  get self:@ cst8 tc_next_token_data=20 add load — value
+24  get self:0 call 5505tc_read_token
+29  get value:5 retv

The last one panics if the next token is not an identifier. Otherwise it reads this
token, sets its length at address length? and returns the address of its first character:
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6017 fn tc_parse_identifier 2 (self, length_p)
+2  get self:0Q cst8 tc_next_token=16 add load cst8 TC_IDENTIFIER=3 ifeq!
! 180k cst8 22 call 4748panic
+18 :ok
+18  get self:0 cst8 tc_next_token_data=20 add load - name
+24  get length_p:1 get self:0 cst8 tc_next_token_length=24 add load sto!
re
+33  get self:@ call 5505tc_read_token
+38  get name:6 retv

We can now implement the parsing functions, one per rule of the grammar. We
implement them in reverse order, starting with the “static” rule. Parsing a static
block starts by parsing this keyword and the following identifier. We then compute
the final address of the following data, dst — dst_buffer + flash_buffer, and add a
symbol for this identifier and value. Here we assume that dst_buffer — flash_buffer
is stored in a flash_offset variable at self + 40:

6058 fn tc_parse_static 1 (self)
+2  get self:0@ cst8 TC_STATIC=115 call 5961tc_parse_token
+9  cst_@0 — length
+10  get self:0 ptr length:5 call 6017tc_parse_identifier — name
+17  get self:0 cst8 tc_dst=28 add load get self:@ cst8 tc_flash_offset=?
140 add load sub — value
+30 get self:@ get name:6 get length:5 SYM_RESOLVED=cst_@ get value:7 ci
tall 5795tc_add_symbol pop

Finally, while the next token is an integer, we parse it and append the corresponding
byte to the compiled code (to simplify we do not check if it fits in a byte):

+43 :loop

+43  get self:0 cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifne 67!
lend

+54  get self:0 get self:0 call 5985tc_parse_integer call 5603tc_write8

+64  goto 43loop

+67 :end

+67 ret

The next function implements the “argument” rule. If the next token is an integer
we just parse it and return its numeric value:

6126 fn tc_parse_argument 1 (self)
+2  get self:0Q cst8 tc_next_token=16 add load cst8 TC_INTEGER=2 ifne 19!
lidentifier get self:0 call 5985tc_parse_integer retv

Otherwise the next token should be an identifier. We get its name and length with
tc_parse_identifier:

+19 :identifier
+19 cst_@ — length
+20 get self:@ ptr length:5 call 6017tc_parse_identifier - name
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and then search it in the symbol table:

+27  get self:0 cst8 tc_symbols=36 add load get name:6 get length:5 call:
! 5744sym_lookup - symbol

If no symbol is found we add an unresolved one for this identifier:

+40  get symbol:7 cst_@ ifne 59found
+46  get self:0 get name:6 get length:5 SYM_UNRESOLVED=cst_1 cst_0@ call !
15795tc_add_symbol set symbol:7

Otherwise we jump here directly. In both cases we now have a symbol for the
identifier, but it might be unresolved. If it is, we add a new placeholder and return the
value to store in it:

+59 :found
+59  get symbol:7 cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifne 8@r:
lesolved
+69  get self:0 get symbol:7 cst8 sym_value=12 add call 5654tc_add_place!
lholder retv

Finally, if it is resolved, we just return its value:

+80 :resolved
+80  get symbol:7 cst8 sym_value=12 add load retv

Parsing a label starts by parsing a colon (58 in ASCII) and then an identifier:

6213 fn tc_parse_label 1 (self)
+2  get self:0 cst8 58 call 5961tc_parse_token
+9 cst_@ — length
+10  get self:@ ptr length:5 call 6017tc_parse_identifier - name

We then want to compute the instruction offset corresponding to this label. This is
dst minus the address of the current function’s first instruction, noted fn_dst. This
address can be computed in the parse_fn function. We assume here that it is stored
after tc_flash_offset, i.e., at self + 44

+17  get self:0 cst8 tc_dst=28 add load get self:0 cst8 tc_fn_dst=44 add:
! load sub — value

Finally, we add a symbol for this label or resolve it, and return:

+30 get self:0 get name:6 get length:5 get value:7 call 5883tc_add_or_r!
lesolve_symbol ret

To implement parse_instruction it is useful to have in a table — noted S in the
previous chapter — the argument size of each opcode (in bytes):

6255 static ARG_SIZES

d0dod1d4dodododododododod2d2d2d?2
d2d2d2dodod1i1dli1dl1dodod2dodododod?®o
If the next token is a colon (58 in ASCII) we just call parse_label and return:
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6287 fn tc_parse_instruction 1 (self)
+2  get self:0 cst8 tc_next_token=16 add load - token
+8  get token:5 cst8 58 ifne 21not_label

+15  get self:0 call 6213tc_parse_label

+20 ret

Otherwise the next token should be an opcode keyword, and we assume here
that the caller has already checked this. We then compute the corresponding opcode
(token — 128 by construction), write it, and read the token:

+21 :not_label

+21 get token:5 cst8 128 sub — opcode

+26  get self:0 get opcode:6 call 5603tc_write8
+33  get self:0 call 5505tc_read_token

Then there are 4 cases, depending on the argument size (computed with ARG_SIZES).
If it is O we have nothing to do and thus return directly:

+38  cst 792687ARG_SIZES get opcode:6 add call 4624load8 > arg_size
+49  get arg_size:7 cst_0 ifne 56no0t®@
+55 ret

Otherwise we need to parse the argument, and then write it in 1, 2 or 4 bytes:

+56 :not@

+56  get self:@ call 6126tc_parse_argument — arg
+61 get arg_size:7 cst_1 ifne 75not1

+67  get self:0 get arg:8 call 5603tc_write8 ret
+75 :notl

+75 get arg_size:7 cst8 2 ifne 90not2

+82  get self:0 get arg:8 call 5620tc_writel6 ret
+90 :not2

+90  get self:0 get arg:8 call 5638tc_write32 ret

Parsing a function name starts by parsing an identifier, and by storing its address
(dst) in fn_dst, as we assumed above. We then compute the value of this identifier,
i.e., the argument which much be used in a call instruction to call this function.
This is its final address in flash memory, dst — dst_buffer + flash_buffer, minus
C00004¢.

6385 fn tc_parse_fn_name 1 (self)
+2 cst_@ — length
+3  get self:0Q ptr length:5 call 6017tc_parse_identifier —> name
+10  get self:0 cst8 tc_dst=28 add load — fn_dst
+16  get self:0 cst8 tc_fn_dst=44 add get fn_dst:7 store
+24  get fn_dst:7 get self:0 cst8 tc_flash_offset=40 add load sub cst 78:
16432 sub — value

Finally, we add or resolve a symbol with this value, and return it:
+39 get self:0 get name:6 get length:5 get value:8 call 5883tc_add_or_r!

lesolve_symbol retv
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Parsing the body of a function is done as explained in the previous section. The
following function takes as parameter the symbol computed by parse_fn_name. If
the next token is a semi-colon (59 in ASCII), it reads this token and changes this
symbol to “unresolved”, with an empty list of placeholders:

6436 fn tc_parse_fn_body 2 (self, function)

+2  get self:0 cst8 tc_next_token=16 add load cst8 59 ifne 33body
+13  get self:0 call 5505tc_read_token

+18 get function:1 cst8 sym_kind=8 add SYM_UNRESOLVED=cst_1 store
+25  get function:1 cst8 sym_value=12 add cst_0 store

+32 ret

Otherwise it parses an integer (the function’s arity) and writes it as an argument
of an fn instruction:

+33 :body
+33  get self:0 get self:0 call 5985tc_parse_integer call 5727tc_write_f!
!n_insn

Finally, it parses an instruction while the next token is a colon or an opcode (i.e.,
while next_token = 58 or next_token > 128):

+43 :loop

+43  get self:0 cst8 tc_next_token=16 add load cst8 58 ifeq 66insn
+54  get self:0 cst8 tc_next_token=16 add load cst8 128 ifge 66insn
+65 ret

+66 :insn

+66  get self:@ call 6287tc_parse_instruction goto 43loop

A jump instruction can reference a label which is not yet defined, but this label
must be defined before the end of the function. We thus need to verify, when we
reach the end of the function, that all its label symbols are resolved. To this end, we
implement the following function, which checks that all the symbols from symbol to
end_symbol (excluded) are resolved (and panics otherwise):

6510 fn tc_check_symbols 2 (symbol, end_symbol)
+2 :loop
+2  get symbol:@ get end_symbol:1 ifeq 35end
+9  get symbol:@ cst8 sym_kind=8 add load SYM_UNRESOLVED=cst_1 ifne 24n)
lext
+19  cst8 32 call 4748panic
+24 :next
+24  get symbol:Q cst8 sym_next=16 add load set symbol:@ goto 2loop
+35 :end
+35 ret

With this we can now implement the parse_fn function. It simply needs to parse
the fn token, and then call the above functions to parse the function name and body,
and to check that all the labels are resolved. As explained in the previous section,
this function saves the heap and symbols variables before parsing the body, and
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restores their values once this is done. Note that we only check the symbols added
in tc_parse_fn_body. Indeed, it is not an error if a symbol added before that is
undefined (it corresponds to a forward function reference).

6546 fn tc_parse_fn 1 (self)

+2
+9
+14
+20
+26
+33

+44
+52
+60

get self:
get self:
get self:
get self:
get self:
get self:

get self:
get self:

ret

0
0
0
0
0
0

cst8 TC_FN=102 call 5961tc_parse_token

call 6385tc_parse_fn_name — function

cst8 tc_heap=32 add load - heap

cst8 tc_symbols=36 add load — symbols

get function:5 call 6436tc_parse_fn_body

cst8 tc_symbols=36 add load get symbols:7 call 651@tc_ch!
leck_symbols

cst8 tc_symbols=36 add get symbols:7 store

cst8 tc_heap=32 add get heap:6 store

We can finally implement the last parsing function, corresponding to the main
grammar rule. For this we loop while the next token is fn or static and, if so, call
the corresponding parsing function:

6607 fn tc_parse_program 1 (self)

+2
+2

+13
+21
+21

+32

:loop

get self:0 cst8 tc_next_token=16 add load cst8 TC_FN=102 ifne 21not!

{_fn

get self:0 call 6546tc_parse_fn goto 2loop

:not_fn

get self:0 cst8 tc_next_token=16 add load cst8 TC_STATIC=115 ifne 4!

|@end

get self:0 call 6058tc_parse_static goto 2loop

We then test if the next token is the special END token (0), and panic otherwise.
Finally, we check that all the symbols are resolved, i.e., that all the functions declared
with the fn name; syntax are effectively implemented:

+40
+40
+50
+55
+55

:end

get self:0 cst8 tc_next_token=16 add load cst_0 ifeq 550k
cst8 23 call 4748panic

1ok

get self:0 cst8 tc_symbols=36 add load cst_@ call 6510tc_check_symb:

lols ret

The last function of our compiler is the tc_main function which was declared
at the very beginning. This function initializes the compiler variables, sets a panic
handler, and finally calls tc_parse_program. We start by initializing the variables
defined above on the stack. Since the stack grows in decreasing address order, we
define them in reverse order, i.e., from fn_dst to src. fn_dst can be set to any
value (it is reset in parse_fn). flash_offset is equal to flash_buffer — dst_buffer.
symbols must be initialized to 0 (an empty list). We set heap 12 KB after dst_buffer,
which leaves more than enough space for the compiled code (the current compiled
code size is about 2 KB). dst starts after the 4 bytes buffer header. The next scanner
variables can be set to any value (see below):
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6673 fn tc_main 3 (src_buffer, dst_buffer, flash_buffer)
+2  cst_@ — fn_dst
+3  get dst_buffer:1 get flash_buffer:2 sub — flash_offset
+8 cst_@ — symbols
+9  get dst_buffer:1 cst 12288 add - heap

+17  get dst_buffer:1 cst8 4 add — dst

+22 cst_@ — next_token_length

+23  cst_@ — next_token_data

+24  cst_@ — next_token

+25 cst_@ — next_char_type

+26  cst_@ — next_char

We then initialize src_end to the end of the source code, src_buffer + 4 +
mem32[src_buffer], and src to the start of the source code minus 1 (see below):

+27  get src_buffer:0 cst8 4 add get src_buffer:@ load add — src_end
+36  get src_buffer:@ cst8 3 add — src

We continue with a call to panic_result so that calls to panic directly return
here, just after the call instruction. As explained in the previous section, this function
saves the 4 values necessary for this at some pt¢r address. Here we push 4 zeros on
the stack and use the address of the top one as pir:

+41 cst_@ — panic3
+42 cst_@ — panic2
+43 cst_@ — panicl
+44  cst_@ — panic@
+45  cst_@ — error
+46  ptr panic@:22 call 4726panic_result set error:23

This first call returns O but, in case of panic, panic_result returns again with a
non-zero value (stored in error just above). Thus, if error # 0, we store the location
of this error in the source code, src — src_buffer — 4 at the dst_buffer address, and
return the error itself (as per the compiler requirements):

+53  get error:23 cst_0 ifeq 730k
+59  get dst_buffer:1 get src:18 get src_buffer:@ sub cst8 4 sub store
+70  get error:23 retv

We finally call tc_parse_program, set the compiled code size dst— dst_buffer—/
in the dst_buffer header, and return O (meaning “no error”’). Before this, since all
parsing functions, and tc_parse_program in particular, assume that information
about the next token is already available in next_token, we call tc_read_token.
And since this function assumes that information about the next character is already
available in next_char, we call tc_read_char first (which explains why src was set
to 1 byte before the start of the source code, and why the other scanner variables could
be initialized to any value).

+73 :ok
+73  ptr src:18 call 5296tc_read_char pop
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+79  ptr src:18 call 5505tc_read_token

+84  ptr src:18 call 6607tc_parse_program

+89  get dst_buffer:1 get dst:11 get dst_buffer:1 sub cst8 4 sub store
+100  cst_0@ retv

16.4 Compilation and tests

To compile the above source code proceed as follows (see also Figure 16.4). First
launch the command editor by typing “w000c1172”+Enter in the memory editor,

[Tt}

followed by “r”.

Edit v1 Type “F27+“r” to create a new program, and “F4”+“r” to edit it. Then type
the 1%¢ version of the labels compiler (that is, the above code with the parts highlighted
in red). For convenience, we also provide this code in the labels_compiler_v1.txt
file in https://ebruneton.github.io/toypc/sources.zip. When you are done, type Escape
to exit the text editor and “F5”+“1r” to save your work. Alternatively, you can “cheat” by
saving it via an external computer, as follows. First run the boot_mode_select_rom
function by typing “w000c02b4”+Enter in the memory editor, followed by “r”. Then
reset the Arduino and, on the host computer, run the following command (then restart
the command editor and type “F3”+“r”):

user@host:~$ python3 flash_helper.py < part3/labels_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed. If
all goes well, after about 1 second, you should get a result equal to 0, meaning that
no error was found. If this is not the case, type “F4”+“” to fix the error. The text
editor should open right at the error location. Fix the error indicated by the error code
returned by the compiler (see Appendix D), save the program and compile it again.

Repeat this process until the compilation is successful. Then type “F7”+“r” to save
the result.

Test vl Type “F9”+“e” to edit a new command, and type the following code:

fn @
cst 537330176 cst 537379328 cst 803328 call 4612
get 4 cst_0 ifne 47
cst 537379328 cst 66 call 2836
cst 803332 calld set 4
get 4 retv
d TEST_COMPILER

[Tt}

Then type Escape and “s” to save it. The first line calls the labels compiler
with src_buffer=200702001¢, dst_buffer=2007C2001¢, and flash_buffer=C4200¢
(12 KB after “saved program” — see Figure 15.3). If there is a compilation error
the second line returns it by jumping to the fifth line. Otherwise the third line calls
buffer_flash to save the compiled program in flash_buffer, which corresponds to
page 66. The last lines call this compiled program and return its result.
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FIGURE 16.4 The memory content after each step of Section 16.4. White, blue and
gray areas represent source code, bytecode and unused memory, respectively (not
to scale). See also Figure 15.3.

Type “F2”+%“t” to create a new program, “F4”+“r” to edit it, and type the following

small test program, which computes the factorial of 6:
fn factorial;
fn test @

cst 6 call factorial retv
fn factorial 1

get @ cst_0 ifne not_zero cst_1 retv

:not_zero get @ cst_1 sub call factorial get @ mul retv
Then type “F9”+“1r” to compile and run it. The result should be 720 = 2D0;4. If this
is not the case this means that the compiler is wrong. Repeat the previous steps and
double check everything until this test passes.

Edit v2 Type “F37+“r” to load the 1%? version of the labels compiler and “F4”+“r”
to edit it. Then update it to the 274 yersion (that is, the code in the previous section,
with the parts highlighted in green). For convenience, we also provide this code in the
labels_compiler_v2. txt file. Then save this new version with the F5 command.
Alternatively, run the following command on an external computer (see above):
user@host:~$ python3 flash_helper.py < part3/labels_compiler_v2.txt

Compile v2 To compile this new code we need to update command number 6 first,
in order to use the labels compiler instead of the opcodes compiler. Type “F6”+“¢” to
edit this command and change its code to the following:
fn 0

cst 856064 cst 537379328 cst 791040 call 4612 retv

d COMPILE_SOURCE_CODE

Then type “s” to save it, and “r” to run it. The result should be 0, meaning “no error”.
If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all errors are
fixed, as explained in “Compile v1”.
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Test v2 The compilation of the 2"*¢ version of the labels compiler should give the
same function addresses and instruction offsets as those we computed manually to
write the 1%¢ version. Consequently, the compiled code of the 2" version (at address
2007C200;¢) should be identical to that of the 15 version (at address C12004¢). To
check this we can use the following function, which compares the buffers at these two
addresses with Algorithm 16.1:

compare_compiled_code() fn 0 00000
Step 1. Initialize ptrl and ptr2 to the cst 537379328 — pirl +002
above addresses. cst 791040 — pir2 +007
Initialize size to the size of the ptrl  get 4  ptrl +012
buffer, which is the value at this address load +014
plus 4. cst8 4 +015
add — size +017

Initialize 7 to O. cst 0 — 1 +018
Step 2. If i is not less than size, goto get 7 1 +019
step 4. get 6 size +021
ifge 50 +023

If the two bytes at ptri 44 and ptr2+:  get 4  pirl +026

are different, go to step 4. get 7 +028
add +030

call 960 load_byte +031

get 5 ptr2 +034

get 7 1 +036

add +038

call 960 load_byte +039

ifne 50 +042

Step 3. Increment the top stack value ¢  cst_1 +045

by 1 and go back to step 2. add +046
goto 19 +047

Step 4. Return size — 1. get 6 size +050
get 7 +052

sub +054

retv +055

Type “F10”+“e” to edit a new command, and type the source code of the above
function:

fn 0
cst 537379328 cst 791040
get 4 load cst8 4 add
cst_0
get 7 get 6 ifge 50
get 4 get 7 add call 960 get 5 get 7 add call 960 ifne 50
cst_1 add goto 19
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get 6 get 7 sub retv
d COMPARE_COMPILED_CODE

Then type Escape and “s” to save it. Finally, type “r”” to run it. The result should
be 0, indicating that the two compiler versions have the same compiled code. If this
is not the case, repeat the steps from “Edit v2” until this test passes. It might also
happen that the 15¢ version is wrong despite the “Test v1” step. In this case you need
to restore the “F6” command to its previous value and restart from the “Edit v1” step.
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The labels compiler written in the previous chapter removes the need to manually
compute function addresses and instruction offsets, which is a huge improvement.
However, it still requires us to use numbers to refer to function arguments or values
on the stack. This is easier to do than to use function addresses and instruction offsets,
but it would be better if we could avoid this. Another issue is that computing simple
expressions such as 2 + 3 * 4 requires a “lot” of code, in an unnatural order (cst8 2
cst8 3 cst8 4 mul add). It would be better if we could just type 2+3#4 instead. This
chapter extends our toy programming language and its compiler in order to solve these
issues.

171 Requirements

1711 Function parameters

So far we used comments to give a symbolic name to each function parameter. We also
used these symolic names in comments next to each get, set or ptr instruction, in
order to make them easier to understand. To avoid using numbers in these instructions,
the same solution as in the previous chapter can be used: we can use symbolic names
directly in the source code, instead of in comments. The compiler can then keep track
of the value of these symbols (i.e., their index in the stack frame), like it does for
function names and labels. To this end, we now require function parameters to be
declared after the function name, between parentheses and separated by commas, as
in the following example:
fn gpu_set_color(red, green, blue) ...

We could then use these names in instructions such as get red, set green or ptr
blue (instead of writing get 0, set 1 or ptr 2). In fact, to get shorter programs we
simply use “red” instead of get red and “&blue” instead of ptr blue (see below).

171.2 Expressions

A well-formed series of arithmetic and logic instructions (see Section 8.2.1) computes
a single value on the stack which can be written in a shorter mathematical form. For
instance, as noted above, cst8 2 cst8 3 cst8 4 mul add computes 2+3*4, which is
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much shorter to write and is called an expression. For this reason, we now require our
programming language to support expressions. This means that it should be possible
to write 2+3*4 in a program, for instance, and that the compiler should automatically
compile this into cst8 2 cst8 3 cst8 4 mul add (in binary form).

More precisely, our programming language should support the following expres-
sions (where e; is an expression and code[e; ] the corresponding compiled code, x is
a symbolic name corresponding to the i*" stack frame slot, and f is the name of a

function whose address is a + C00001¢):

e integer constants: compiled to cst_0, cst_1, cst8, or cst, depending on the value.
e ¢1 + ey: compiled to code[e;] code[es] add.

e ¢1 - ey: compiled to code[e;] code[es] sub.

e ¢ eo: compiled to code[e;] code[ea] mul.
[ ]
[ ]
[ ]
[

e1 & eo: compiled to code[e;] codeles] and.

e1 | eo: compiled to code[e;] codeles] or.

*e1: compiled to code[e;] load.

e &x: compiled to ptr .

e x: compiled to get .

o f(e1, es, ...): compiled to code[e;] codeles] ... call a.

*

e1 / eg: compiled to code[e;] codeles] div.
&
I

These expressions correspond to all the bytecode instructions which produce a
value on the stack, except the ones we don’t need for now (namely 1s1, 1sr, callr,
and calld). The call instruction is a special case: the callee might not return a value.
However, functions used in subexpressions must return a value.

171.3 Local variables

The result of most expressions is immediately consumed in other expressions or
instructions. Some results, however, are left on the stack and used later on with get,
set or ptr instructions. This currently requires keeping track of which value is stored
in which stack frame slot. To avoid this, our programming language should provide a
way to give a symbolic name to an expression whose value is stored on the stack. In
this chapter we use the “let x e;” syntax, where x is an identifier, and e an expression.
x can then be used in other expressions, such as “‘x+1” or “&x” (unlike labels, x must
be declared with 1et before it can be used). It is called a local variable because it can
only be used in the current function (since get, set and ptr can only refer to slots in
the top stack frame). This does not prevent another function to declare a variable with
the same name, but it is then independent (i.e., refers to a different slot).

171.4 Grammar

We can now extend the grammar of our programming language in order to support
the above requirements. Lets look at expressions first. The above definitions might
suggest a grammar rule of the following form:
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expr: expr (“+7 | <=7 %7 /7 ...) expr | “*” expr | “&” IDENTIFIER | ...

meaning that an expression is either a binary expression made of two subexpressions
with an operator in between, or an unary expression with an operator followed by an
expression, etc. However, this rule has several issues:

o It is ambiguous. Consider for instance the 2 4 3 * 4 expression. It can be seen as a

binary + expression with subexpressions 2 and 3 * 4. But it can also be seen as
a binary * expression with subexpressions 2 4+ 3 and 4. Both interpretations are
valid for the above grammar, but they don’t give the same value! In practice anyone
would give the value 14 because we use implicit operator precedence rules. One
such rule is that multiplications have a higher precedence than additions, meaning
that they must be performed first. When we want to use the other interpretation we
use parentheses, which have the highest precedence: (2 + 3) * 4.
Another ambiguity of the above rule is that 2 — 3 — 4 can be seen as “2 — 3” minus
4, or as 2 minus “3 — 4”. Here again, both interpretations are valid for the grammar
(and for the precedence rules), but they don’t give the same value. In practice one
always uses the first interpretation, because we use another implicit rule saying that
operations are done from left to right.

e [t can not be implemented with a recursive descent parser. This is because the “expr”
rule is used on the leftmost position in the definition of one of its alternatives (such
grammars are called left recursive). This would give a parse_expr function which
would call itself recursively without reading any token in between, i.e., indefinitely
(if the stack was unbounded).

To solve these issues, a solution is to use several rules, one per precedence level.
For instance, considering only the four basic operations for now, we can use

expr: term ((“+” | “=”") term)*
term: factor ((“*”’| “/”) factor)*
factor: INTEGER | “(” expr “)”

where precedence increases from top to bottom. Indeed, with these rules, 24 3 %4 can
be interpreted in only one way, the one we are used to (because 2 4 3 is not a factor).
Similarly, 2 — 3 — 4 can only be seen as an expression with an unambiguously ordered
list of 3 terms. This does not tell in itself whether these terms must be evaluated
from left to right or right to left, but this choice can be enforced in the compiler
implementation. Finally, these rules can be implemented with a recursive descent
parser (“expr” indirectly uses itself recursively, but only after the “(”” token; hence
there is no left recursion).

The following grammar applies this idea to all the expressions in Section 17.1.2,
and takes into account the requirements in Sections 17.1.1 and 17.1.3. It does this by
extending the previous grammar as follows (unchanged parts are in gray):

program: (fn | static | const)™ END
fn: “fn” fn_name fn_parameters fn_body

261



CHAPTER 17 Expressions Compiler

fn_name: IDENTIFIER

fn_parameters: “(” (IDENTIFIER (““,” IDENTIFIER)*)? “)”

fn_body: “{” statement™® “}” | ©“;”

statement: label | let_stmt | (expr (,” expr)*)? instruction? *;”
let_stmt: “let” IDENTIFIER expr “;”

instruction: “iflt” argument | “ifeq” argument | ... | “store” | “pop” | ...
expr: bit_and_expr (“|” bit_and_expr)*

bit_and_expr: add_expr (“&” add_expr)*

add_expr: mult_expr ((“+” | “~”") mult_expr)*

mult_expr: pointer_expr ((“*” | “/”’) pointer_expr)*

pointer_expr: “x” pointer_expr | “&” IDENTIFIER | primitive_expr
primitive_expr: INTEGER | IDENTIFIER fn_arguments? | “(” expr “)”
fn_arguments: “(” (expr (““,” expr)*)? “)”

label: “:” IDENTIFIER

argument: IDENTIFIER

static: “static” IDENTIFIER INTEGER*

const: “const” IDENTIFIER INTEGER

where “?7” denotes an optional element. Thus, for instance, the “fn_parameters” rule
means “a left parenthesis, optionally followed by an a non-empty list of parameters,
followed by a right parenthesis” (the non-empty list of parameters being defined as an
identifier, followed by any number of “comma identifier” groups).

The body of a function is now defined as a list of statements between curly braces
(added to more clearly separate functions from each other, but also to simplify the
parser). Each statement is either a label, a local variable declaration, or a comma
separated list of expressions! followed by an optional instruction and ending with a
semi-colon. Examples of the latter case include “ret;”, “0 set x;”, “x, y ifeq ok;”
(an instruction preceded by 0, 1 or 2 expressions, respectively), or “panic(1);” (an
expression not followed by any instruction).

Instructions are defined as in the previous chapter, except that all the instructions
listed in Section 17.1.2 (add, sub, etc) are now removed (expressions must be instead).
Similarly, instruction arguments can no longer be integers: label, function parameter
or local variable names must be used instead.

Expressions are defined as explained above, with 6 levels of precedence. Constants,
identifiers, function calls, parentheses, and the address-of operator “&” have the same
highest precedence?. They are followed by the dereference operator “x” which
loads the value at some address. Then comes multiplicative expressions, additive
expressions, bitwise and expressions, and finally bitwise or expressions. Thus, for
instance, “a + *b * c & d”isequivalentto “(a + ((*b) * c)) & d” and not to

1t is possible to use more strict rules to enforce a precise number of expressions before each instruction
(e.g., 0 before ret, 1 before set, or 2 before ifeq). We use this less strict rule to simplify the grammar,
and thus the implementation.

2We put the address-of operator in the pointer_expr rule for convenience, but it could be moved in the
primitive_expr rule instead, thus showing that it has the same precedence as the others.
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“a + ((*b) * (c & d))’or“a + (x(b * ¢) & d)”, for instance. However, when
in doubt, it is preferable to use explicit parentheses.

Finally, the new “const” rule adds a syntax to give a symbolic name to a constant
value. For instance, “const RESOLVED 0" makes it possible to use “RESOLVED” in an
expression, which is more meaningful than using “@”. To simplify the implementation,
a constant must be defined before it is used.

171.5 Scanner

As a last new requirement, our programming language should support INTEGER
tokens of the form “’¢’”, where c is a printable character (ASCII code between 32
and 127, excluded), and whose numeric value is the ASCII code of c. For instance, it
should be possible to write ’a’ instead of a’s ASCII code 97, or ’’’ instead of the

quote’s ASCII code 39.

17.2 Algorithms

Compiling function parameters, local variable names and const declarations can be
done with the same algorithms used for function names and labels. Namely those to
add a symbol in the list of symbols, and to use this list to find the value of a symbol.
Similarly, compiling expressions can be done with the same recursive descent method
already used, namely with one function per grammar rule. Hence we do not really
need any new algorithm in this chapter. Instead, we list here the main implementation
differences compared with the previous compiler version.

The scanner needs an updated CHAR_TYPES table to support the new single character
tokens (parentheses, curly braces, +, -, *, /, &, | and ,). It also needs an updated
KEYWORDS table (let and const are added, add, sub, etc are removed). Finally, a new
function is needed to read the new quoted character tokens defined above.

The backend should provide new functions to write the opcode instructions needed
to compile expressions (cst_9, ... add, ...). The goal is to simplify the parser by
encapsulating the low level instruction encoding details in simple to use functions.

The compiler needs to keep track of the stack frame slot index corresponding to
each function parameter and local variable. The former is easy: the i*" parameter is
in the i*” slot. For the latter we assume that let statements are the only ones which
leave a value on the stack (this forbids, for instance, statements such as “1;”). We also
assume, without verification, that let statements are executed in the same order as in
the source code, and exactly once (unless the function returns before). Then the it"
local variable is in the (i + 4)!" slot (recall that 4 saved register values are pushed
after the function arguments).

Compiling a const ¢ v declaration does not need to produce any code. Instead,
we can simply add a corresponding symbol in the symbols list. Then, each time c is
used, a cst* instruction to push v on the stack can be produced. Note however that,
in order to do this, the parser must know that c refers to a constant. Indeed, if ¢ is
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referring to a local variable or function argument, a get instruction must be produced
instead. To this end, we introduce a new symbol kind, VARIABLE (2), in addition to
the RESOLVED and UNRESOLVED kinds. And we use RESOLVED for const symbols and
VARIABLE for local variables and function arguments.

17.3 Implementation

We can now extend the labels compiler in order to support expressions. We first
need to write it without using expressions, so that it can be compiled with the labels
compiler. We then compile this source code, which gives us the expressions compiler
bytecode. Finally, we rewrite this source code with expressions, and we compile it
with the expressions compiler bytecode. As before, to save space, we give the two
compiler versions at the same time (without expressions in red, with in green).

The start of the compiler does not change in the 1%¢ version (changes are indicated
with a vertical bar in the margin), but can be rewritten in a clearer way in the 2"¢:

fn tc_main(src_buffer, dst_buffer, flash_buffer);

fn main 3(src_buffer, dst_buffer, flash_buffer) {
get @ get 1 get 2 call tc_main(src_buffer, dst_buffer, flash_buffer) ret:
LV,

fn load8 1(ptr) { get @ load cst8 255 and(*ptr) & 255 retv; }

fn load16 1(ptr) { get @ load cst 65535 and(*ptr) & 65535 retv; }

fn store8 2(ptr, value) { get Optr, get @ load cst 4294967040 and get 1 or!
| (*ptr) & 4294967040 | value store; ret; }

fn storel6 2(ptr, value) { get Optr, get @ load cst 4294901760 and get 1 0!
r(xptr) & 4294901760 | value store; ret; }

const PANIC_BUFFER 1074666152
fn panic_copy 2(src, dst) {
get 1dst, get @ load*src store;
get 1 cst8 4 add(dst + 4), get @ cst8 4 add load*(src + 4) store;
get 1 cst8 8 add(dst + 8), get @ cst8 8 add load*(src + 8) store;
get 1 cst8 12 add(dst + 12), get @ cst8 12 add load*(src + 12) store;
ret;
3
fn panic_result 1(ptr) {
ptr @ cst8 16 sub get @ call panic_copy(&ptr - 16, ptr);
cst 1074666152PANIC_BUFFER, get Optr store;
cst_0 rety;
3
fn panic 1(error) {
cst 1074666152 load ptr @ cst8 16 sub call panic_copy(*PANIC_BUFFER, &er!
lror - 16);
get Qerror retv;

3
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17.31 Shared constants

We then declare, in the 2% version, a set of constants for token values, symbol’s
kind values, for the offset of each symbol’s variable (and their total size), and for the
offset of the compiler variables from self. For convenience, we set the token values
of +, -, *, /, &, and | to their corresponding opcode (4, 5, 6, 7, 8, and 9, respectively).

const TC_INTEGER 2
const TC_IDENTIFIER 3
const TC_ADD 4
const TC_SUB 5
const TC_MUL 6
const TC_DIV 7
const TC_BIT_AND 8
const TC_BIT_OR 9
const TC_FN 'f'
const TC_LET '1'
const TC_CONST 'c'
const TC_STATIC 's'

const SYM_RESOLVED @
const SYM_UNRESOLVED 1
const SYM_VARIABLE 2

const sym_name @

const sym_length 4
const sym_kind 8

const sym_value 12
const sym_next 16
const sizeof_symbol 20

const tc_src @

const tc_src_end 4

const tc_next_char 8

const tc_next_char_type 12
const tc_next_token 16
const tc_next_token_data 20
const tc_next_token_length 24
const tc_dst 28

const tc_heap 32

const tc_symbols 36

const tc_flash_offset 40
const tc_fn_dst 44

17.3.2 Scanner

The CHAR_TYPES table must be updated to support the new single character tokens
(+, -, *,/, &, |, comma, parentheses and curly braces). For convenience, we set the
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character types of +, -, *, /, &, and | to the corresponding token values. And we set
the type of the others, including the quote, to their ASCII code. The KEYWORDS table
must also be updated to remove instructions now handled with expressions (add, sub,
etc) and to add the new let and const keywords.

static TC_CHAR_TYPES

tT1T11111113232111111111111111111111
321111183940 416444517222222222258591111
13333333333333333333333333311113
133333333333333333333333333123912511

L T T e e s e e e e e A I O A A B B R
1111111111111 1111111111111111111

5 T T e e s e e e e e e e e e s s O A A O B

L e T e e e e e e e e e T A O R O B B

static TC_KEYWORDS

4

O OO Ul W NP WWWOU MDD

105'i' 102'f' 108'1' 116't' 140

105'i' 102'f' 101'e' 113'q' 141

105'i' 102'f' 103'g' 116't' 142

105'i' 102'f' 108'1' 101'e' 143

105'i' 102'f' 110'n' 101'e' 144

105'i' 102'f' 103'g' 101'e’ 145

103'g' 111'0' 116't' 111'0' 146

115's’ 116't' 111'0' 114'r' 101'e' 148
115's' 101'e' 116't" 151

112'p' 111'0" 112'p' 152

114'r' 101'e' 116't' 157

114'r' 101'e" 116't" 118'v' 158

102'f' 110'n' 102

108'1' 101'e' 116't' 108

99'c’' 111'0' 110'n' 115's' 116't' 99
115's' 116't' 97'a' 116't' 105'i' 99'c' 115

The first scanner functions are unchanged compared with the labels compiler:

fn mem_compare 3(ptrl, ptr2, size) {
let i cst_0;
:step2
get 7i, get 2size ifge step4;
get @ get 7 add call load8(ptrl + i), get 1 get 7 add call load8(ptr2 + !

1i) ifne step4;

get 7 cst_1 addi + 1 set 7i; goto step2;
:step4
get 2 get 7 subsize - i retyv;

}

fn tc_get_keyword 2(start, length) {
let len cst_0;
let ptr cst TC_KEYWORDS;
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:step2
get 7 call load8(ptr) set 6len;
get 6len, cst_0 ifne step4;
cst8 3TC_IDENTIFIER retv;
:step4
get 1length, get 6len ifne step7;
get @ get 7 cst_1 add get 1 call mem_compare(start, ptr + 1, length), cs!
1t_0 ifne step7;
get 7 get 6 add cst_1 add call load8(ptr + len + 1) retv;
:step7
get 7 get 6 add cst8 2 addptr + len + 2 set 7ptr; goto step2;
B

fn tc_read_char 1(self) {
let src get @ cst_0 add loadx(self+tc_src);
let src_end get @ cst8 4 add loadx(self+tc_src_end);
get 5src, get 6src_end iflt step2;
cst8 10 call panic(10);
:step2
get 5 cst_1 addsrc + 1 set 5src;
let ¢ cst_0;
let type cst_0;
get 5src, get 6src_end ifge end;
get 5 call load8(src) set 7c;
cst TC_CHAR_TYPES get 7 add call load8(TC_CHAR_TYPES + c) set 8type;
:end
get @ cst_0 add(self+tc_src), get 5src store;
get @ cst8 8 add(self+tc_next_char), get 7c store;
get @ cst8 12 add(self+tc_next_char_type), get 8type store;
get 8type retv;
3

fn tc_read_integer 1(self) {
let type get @ cst8 12 add loadx(self+tc_next_char_type);
let v cst_o;
:step2
get 5Stype, cst8 2TC_INTEGER ifne step5;
get 6 cst8 10 mul get @ cst8 8 add load cst8 48 sub addv * 10 + (x(self+!
ltc_next_char) - '@') set 6v;
get @ call tc_read_char(self) set 5type;
goto step2;
:step5
get @ cst8 20 add(self+tc_next_token_data), get 6v store;
cst8 2TC_INTEGER retv;
i

Gy 90

To support the new quoted characters tokens such as “’a’” we add the following
function. It starts by reading the first quote (the caller should check that the next
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character is a quote). It then checks if the second character, in value, is printable,
and panics otherwise. Finally, it checks that the third character is a quote, sets the
next_token_data to value and return the INTEGER token type:

fn tc_read_quoted_char 1(self) {
get @ call tc_read_char(self) pop;
let value get @ cst8 8 add loadx(self+tc_next_char);
get Svalue, cst8 32 iflt not_printable;
get 5Svalue, cst8 127 iflt printable;
:not_printable
cst8 11 call panic(11);
:printable
get @ call tc_read_char(self), cst8 39''' ifeq ok;
cst8 12 call panic(12);
1ok
get @ call tc_read_char(self) pop;
get @ cst8 20 add(self+tc_next_token_data), get 5value store;
cst8 2TC_INTEGER retv;

3

The remaining scanner functions are essentially unchanged compared with the
labels compiler. We just add a new case in tc_read_token, which calls the above
function if the next character is a quote:

fn tc_read_identifier 1(self) {
let start get @ cst_0 add load*(self+tc_src);
let type get @ cst8 12 add loadx(self+tc_next_char_type);

:step2
get 6type, cst8 3TC_IDENTIFIER ifeq step3;
get 6type, cst8 2TC_INTEGER ifne step4;

:step3
get @ call tc_read_char(self) set 6type; goto step2;

:step4
let length get @ cst_0 add load get 5 subx(self+tc_src) - start;
get @ cst8 20 add(self+tc_next_token_data), get 5start store;
get @ cst8 24 add(self+tc_next_token_length), get 7length store;
get 5 get 7 call tc_get_keyword(start, length) retv;

B

fn tc_read_token 1(self) {

let type get @ cst8 12 add loadx(self+tc_next_char_type);
:stepl

get 5type, cst8 32' ifne step3;

get @ call tc_read_char(self) set 5type; goto stepl;
:step3

let token get 5type;

get 5Stype, cst8 2TC_INTEGER ifne step4;

| get @ call tc_read_integer(self) set 6token; goto end;

:step4
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get Stype, cst8 39''' ifne step5;

get @ call tc_read_quoted_char(self) set 6token; goto end;
:step5

get 5S5type, cst8 3TC_IDENTIFIER ifne step6;

get @ call tc_read_identifier(self) set 6token; goto end;
:stepb

get 5Stype, cst_0 ifeq end;

get @ call tc_read_char(self) pop;
rend

get @ cst8 16 add(self+tc_next_token), get 6token store;

ret;

3

17.3.3 Backend

The backend is extended with new functions to write the opcode instructions needed
by the parser. Its first functions are unchanged compared with the labels compiler:

fn mem_allocate 2(size, ptr_p) {
let ptr get 1 load*ptr_p;
get 1ptr_p, get 6 get @ addptr + size store;
get 6ptr retv;
3
fn tc_write8 2(self, value) {
cst_1 get @ cst8 28 add call mem_allocate get 1 call store8(mem_allocate!
1(1, self+tc_dst), value);
ret;
b
fn tc_writel6 2(self, value) {
cst8 2 get @ cst8 28 add call mem_allocate get 1 call storel6(mem_alloca!
1te(2, self+tc_dst), value);
ret;
B
fn tc_write32 2(self, value) {
cst8 4 get 0 cst8 28 add call mem_allocate(4, self+tc_dst), get Tvalue s!
ltore;
ret;

3
We then add a generic utility function to write an instruction with a single byte
argument, used later on:
fn tc_write_insn 3(self, opcode, argument) {
get @ get 1 call tc_write8(self, opcode);
get @ get 2 call tc_write8(self, argument);
ret;
}
The next two functions are unchanged (1ast_placeholder and new_placeholder
refer to x and y in Algorithm 16.8, respectively):
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fn tc_add_placeholder 2(self, placeholder_p) {

let new_placeholder get @ cst8 28 add load*(self+tc_dst);

let last_placeholder get 1 load*placeholder_p;

get 1placeholder_p, get 6new_placeholder store;

get 7last_placeholder, cst_@ ifne step4; get 6new_placeholder set 7last_!

!placeholder;

:step4

get 6 get 7 subnew_placeholder - last_placeholder retv;
B

fn tc_fill_placeholders 2(placeholder, value) {
let offset cst_0;

:step2
get @Oplaceholder, cst_0 ifeq end;

:step3
get @ call loadl16(placeholder) set 6offset;
get @ get 1 call storel6(placeholder, value);
get 6offset, cst_0 ifne step6; ret;

:stepb
get @ get 6 subplaceholder - offset set @placeholder;
goto step2;

:end
ret;

3

The following new function writes an instruction to push a given value on the stack.
It encapsulates the details related to the cst_0, cst_1, cst8 and cst instructions by
writing the appropriate instruction depending on value:
fn tc_write_cst_insn 2(self, value) {
get 1value, cst_1 ifgt not@_or_1;
get @ get 1 call tc_write8(self, value); ret;
:not@_or_1
get 1value, cst 256 ifge not_byte;
get @ cst8 2 get 1 call tc_write_insn(self, 2, value); ret;
:not_byte
get @ cst8 3 call tc_write8(self, 3);
get 0 get 1 call tc_write32(self, value); ret;
B
The next function writes the instruction to perform the arithmetic operation speci-
fied by token, which must be one of TC_ADD, TC_SUB, TC_MUL, TC_DIV, TC_BIT_AND,
or TC_BIT_OR. It is trivial since these values are equal to the corresponding opcodes:
fn tc_write_binary_insn 2(self, token) {
get 0 get 1 call tc_write8(self, token);
ret;
B
The following 3 functions write the instruction corresponding to their name. They
encapsulate the details related to their encoding.
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fn tc_write_load_insn 1(self) {
get @ cst8 19 call tc_write8(self, 19);
ret;

3

fn tc_write_ptr_insn 2(self, variable) {
get @ cst8 21 get 1 call tc_write_insn(self, 21, variable);
ret;

3

fn tc_write_get_insn 2(self, variable) {
get @ cst8 22 get 1 call tc_write_insn(self, 22, variable);
ret;

b
The next function is simplified by using the new tc_write_insn function:

fn tc_write_fn_insn 2(self, arity) {
get @ cst8 25 get 1 call tc_write_insn(self, 25, arity);
ret;

3

The last backend function writes the instruction to call a given function, specified
with a symbol. It writes the call opcode, followed either by a new placeholder if the
symbol is unresolved, or by the symbol’s value. By hypothesis, this value is the call
instruction argument which must be used to call function. The following function
encapsulates the details of its computation.

fn tc_get_fn_value 2(self, fn_dst) {
get 1 get @ cst8 40 add load sub cst 786432 subfn_dst - *(self+tc_flash_:
loffset) - 786432 retv;
B
fn tc_write_call_insn 2(self, function) {
get @ cst8 26 call tc_write8(self, 26);
get 1 cst8 8 add load*(function+sym_kind), cst_1SYM_UNRESOLVED ifne reso!
!1lved;
get 0 get @ get 1 cst8 12 add call tc_add_placeholder call tc_writel6(se!
11f, tc_add_placeholder(self, function+sym_value));

ret;
:resolved
get @ get 1 cst8 12 add load call tc_writel6(self, *(function+sym_value)!
;s
ret;

3

17.3.4 Parser

The start of the parser is the same as in the labels compiler:

fn sym_lookup 3(symbol, name, length) {
:step2
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get @symbol, cst_0 ifeq step7;
get @ cst8 4 add load*(symbol+sym_length), get 2length ifne step6;
get @ cst_0 add load get 1 get 2 call mem_compare(*(symbol+sym_name), na!
!me, length), cst_0 ifne step6;
get O@symbol retv;
:stepb
get @ cst8 16 add load*(symbol+sym_next) set @symbol; goto step2;
:step7
cst_0 retyv;

}

fn tc_add_symbol 5(self, name, length, kind, value) {
let symbol cst8 20 get @ cst8 32 add call mem_allocate(sizeof_symbol, se
| 1f+tc_heap);
get @ cst8 36 add load get 1 get 2 call sym_lookup(*(self+tc_symbols), n:
lame, length), cst_0 ifeq ok;
cst8 30 call panic(30);

1ok
get 9 cst_0 add(symbol+sym_name), get Tname store;
get 9 cst8 4 add(symbol+sym_length), get 2length store;
get 9 cst8 8 add(symbol+sym_kind), get 3kind store;
get 9 cst8 12 add(symbol+sym_value), get 4value store;
get 9 cst8 16 add(symbol+sym_next), get @ cst8 36 add loadx(self+tc_symb!

lols) store;
get @ cst8 36 add(self+tc_symbols), get 9symbol store;
get 9symbol retv;
b

fn tc_add_or_resolve_symbol 4(self, name, length, value) {
let symbol get @ cst8 36 add load get 1 get 2 call sym_lookup(*(self+tc_
!symbols), name, length);
get 8symbol, cst_0 ifne found;
get @ get 1 get 2 cst_0 get 3 call tc_add_symbol(self, name, length, SYM:
| _RESOLVED, value) retv;
: found
get 8 cst8 8 add loadx(symbol+sym_kind), cst_1SYM_UNRESOLVED ifeq ok;
cst8 31 call panic(31);
1ok
get 8 cst8 12 add load get 3 call tc_fill_placeholders(*(symbol+sym_valu:
le), value);
get 8 cst8 8 add(symbol+sym_kind), cst_OSYM_RESOLVED store;
get 8 cst8 12 add(symbol+sym_value), get 3value store;
get 8symbol retv;
B

fn tc_parse_token 2(self, token) {
get @ cst8 16 add loadx(self+tc_next_token), get Ttoken ifeq ok;
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cst8 20 call panic(20);
1ok
get @ call tc_read_token(self);
ret;
3
fn tc_parse_integer 1(self) {
get @ cst8 16 add loadx(self+tc_next_token), cst8 2TC_INTEGER ifeq ok;
cst8 21 call panic(21);
1ok
let value get @ cst8 20 add load*(self+tc_next_token_data);
get @ call tc_read_token(self);
get 5Svalue retv;
3
fn tc_parse_identifier 2(self, length_p) {
get @ cst8 16 add loadx(self+tc_next_token), cst8 3TC_IDENTIFIER ifeq ok!
5
cst8 22 call panic(22);
1ok
let name get @ cst8 20 add loadx(self+tc_next_token_data);
get 1length_p, get @ cst8 24 add loadx(self+tc_next_token_length) store;
get @ call tc_read_token(self);
get 6name retv;

3

Here we add a new utility function to parse an identifier which must correspond to
an existing symbol. This function parses an identifier and returns its corresponding
symbol in the list passed as argument in symbol (or panics if no symbol is found):

fn tc_parse_symbol 2(self, symbol) {
let length cst_o;
let name get @ ptr 6 call tc_parse_identifier(self, &length);
get 1 get 7 get 6 call sym_lookup(symbol, name, length) set 1symbol;
get 1symbol, cst_0 ifne ok;
cst8 33 call panic(33);
1ok
get 1symbol retv;
3

The tc_parse_static function is unchanged, but a new trivial tc_parse_const
function is added for the new “const x v” syntax. This function simply adds a new
symbol for x, with value v.

fn tc_parse_const 1(self) {
get @ cst8 99 call tc_parse_token(self, TC_CONST);
let length cst_o;
let name get @ ptr 5 call tc_parse_identifier(self, &length);
get 0 get 6 get 5 cst_0 get @ call tc_parse_integer call tc_add_symbol(s!
lelf, name, length, SYM_RESOLVED, tc_parse_integer(self)) pop;
ret;
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B
fn tc_parse_static 1(self) {
get @ cst8 115 call tc_parse_token(self, TC_STATIC);
let length cst_o;
let name get @ ptr 5 call tc_parse_identifier(self, &length);
let value get 0@ cst8 28 add load get @ cst8 40 add load sub*(self+tc_dst!
1) - *(self+tc_flash_offset);
get @ get 6 get 5 cst_0 get 7 call tc_add_symbol(self, name, length, SYM;
{_RESOLVED, value) pop;
:loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 2TC_INTEGER ifne end;
get @ get @ call tc_parse_integer call tc_write8(self, tc_parse_integer(}
!self)); goto loop;
:end
ret;

}

The parse_argument function is updated to match the new “argument” grammar
rule, which no longer allows INTEGER arguments. As a consequence, the start of
this function, which was calling tc_parse_integer, is removed. On the other hand,
the tc_parse_label function is unchanged (the “label” rule has not changed):

|fn tc_parse_argument 1(self) {
let length cst_o;
let name get @ ptr 5 call tc_parse_identifier(self, &length);
let symbol get @ cst8 36 add load get 6 get 5 call sym_lookup(*(self+tc_
!symbols), name, length);
get 7symbol, cst_0 ifne found;
get @ get 6 get 5 cst_1 cst_0 call tc_add_symbol(self, name, length, SYM:
! _UNRESOLVED, @) set 7symbol;
: found
get 7 cst8 8 add loadx(symbol+sym_kind), cst_1SYM_UNRESOLVED ifne resolv!
led;
get @ get 7 cst8 12 add call tc_add_placeholder(self, symbol+sym_value) !
lretv;
:resolved
get 7 cst8 12 add loadx(symbol+sym_value) retv;
B

fn tc_parse_label 1(self) {

get @ cst8 58 call tc_parse_token(self, ':');

let length cst_0;

let name get @ ptr 5 call tc_parse_identifier(self, &length);

let value get @ cst8 28 add load get @ cst8 44 add load subx(self+tc_dst?
1) - *x(self+tc_fn_dst);

get @ get 6 get 5 get 7 call tc_add_or_resolve_symbol(self, name, length!

!, value);
ret;

274



173 Implementation

The following functions are the main new part of the compiler. They implement
the expressions rules in reverse order, starting with “fn_arguments”. This rule uses
“expr” but since tc_parse_expr is implemented last, we need to declare it first.

|fn tc_parse_expr(self);

The tc_parse_fn_arguments function parses the arguments of a function call
f(eo,e1,...), and takes as argument the symbol corresponding to f. It first checks
that this symbol is not a local variable, and panics otherwise. It then parses the
arguments with the recursive descent method: after parsing the opening parenthesis, it
parses a first expression unless the next token is a closing parenthesis. Then, while the
next token is a comma, it reads it and parses another expression. This generates the
compiled code for the arguments, after which we just need to write a call instruction.

fn tc_parse_fn_arguments 2(self, function) {
get 1 cst8 8 add loadx(function+sym_kind), cst8 2SYM_VARIABLE ifne ok;
cst8 34 call panic(34);
1ok
get @ cst8 40 call tc_parse_token(self, '(');
get @ cst8 16 add loadx(self+tc_next_token), cst8 41')' ifeq end;
get @ call tc_parse_expr(self);
:loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 44',' ifne end;
get @ call tc_read_token(self);
get @ call tc_parse_expr(self);
goto loop;
:end
get @ cst8 41 call tc_parse_token(self, ')');
get @ get 1 call tc_write_call_insn(self, function);
ret;

}

A primitive expression can either start with an integer, an identifier, or an opening
parenthesis. In the first case we generate the code to push this integer on the stack:

fn tc_parse_primitive_expr 1(self) {
let symbol cst_0;
get @ cst8 16 add loadx(self+tc_next_token), cst8 2TC_INTEGER ifne not_i!

!nteger;
get @ get @ call tc_parse_integer call tc_write_cst_insn(self, tc_parse_!
linteger(self));

ret;

In the second case, there must be a symbol for this identifier. If it is followed by
an opening parenthesis this is a function call, and we parse it with the above function.

:not_integer
get @ cst8 16 add loadx(self+tc_next_token), cst8 3TC_IDENTIFIER ifne pa!
lrentheses;
get @ get @ cst8 36 add load call tc_parse_symbol(self, *(self+tc_symbol!
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!s)) set 5symbol;
get @ cst8 16 add loadx(self+tc_next_token), cst8 40'(' ifne identifier;
get @ get 5 call tc_parse_fn_arguments(self, symbol);
ret;

Otherwise we write the appropriate instruction depending on the kind of symbol
referred to by the identifier (or panic if the symbol is unresolved).

:identifier
get 5 cst8 8 add loadx(symbol+sym_kind), cst8 2SYM_VARIABLE ifne not_var:
liable;
get @ get 5 cst8 12 add load call tc_write_get_insn(self, *(symbol+sym_v!
lalue));
ret;

:not_variable
get 5 cst8 8 add loadx(symbol+sym_kind), cst_@SYM_RESOLVED ifne error;
get @ get 5 cst8 12 add load call tc_write_cst_insn(self, *(symbol+sym_v}
lalue));
ret;
:error
cst8 35 call panic(35);

In the last case, we simply need to parse an expression between parentheses:

:parentheses
get @ cst8 40 call tc_parse_token(self, '(');
get @ call tc_parse_expr(self);
get @ cst8 41 call tc_parse_token(self, ')');
ret;

3

A pointer expression either starts with “*” or “&”, or is a primitive expression.
Following the recursive descent method, the first case is trivial: we just need to read
the “x” token, parse a pointer expression recursively, and finally generate a load
instruction (recall that “*e” means “the value at address €”). The second case is also
simple: the “&” must be followed by an identifier which must correspond to a local
variable or function parameter x. If it is we must generate a ptr x instruction (recall
that “&x” means “the address of x’s stack frame slot”), otherwise this is an error:

fn tc_parse_pointer_expr 1(self) {
let symbol cst_0;
get @ cst8 16 add loadx(self+tc_next_token), cst8 6TC_MUL ifne not_mul;
get @ call tc_read_token(self);
get @ call tc_parse_pointer_expr(self);
get @ call tc_write_load_insn(self);
ret;
:not_mul
get @ cst8 16 add loadx(self+tc_next_token), cst8 8TC_BIT_AND ifne not_b!
lit_and;
get @ call tc_read_token(self);
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get @ get @ cst8 36 add load call tc_parse_symbol(self, *(self+tc_symbol:
!s)) set 5symbol;

get 5 cst8 8 add load*(symbol+sym_kind), cst8 2SYM_VARIABLE ifne error;

get @ get 5 cst8 12 add load call tc_write_ptr_insn(self, *(symbol+sym_v!

lalue));
ret;
:error
cst8 36 call panic(36);
:not_bit_and
get @ call tc_parse_primitive_expr(self);
ret;

3

The remaining expression parsing functions are straightforward, again by following
the recursive descent method. After parsing a first subexpression, a loop is used, while
the next token is a permitted operator (e.g., “+” or “~” for the “add_expr” rule), to
read the operator, parse a subexpression, and write the operator’s instruction:

fn tc_parse_mult_expr 1(self) {
get @ call tc_parse_pointer_expr(self);
let next_token get @ cst8 16 add load*(self+tc_next_token);
:1loop
get 5Snext_token, cst8 6TC_MUL ifeq mul_or_div;
get Snext_token, cst8 7TC_DIV ifne end;
:mul_or_div
get @ call tc_read_token(self);
get @ call tc_parse_pointer_expr(self);
get @ get 5 call tc_write_binary_insn(self, next_token);
get @ cst8 16 add loadx(self+tc_next_token) set 5next_token;
goto loop;
:end
ret;
}
fn tc_parse_add_expr 1(self) {
get @ call tc_parse_mult_expr(self);
let next_token get @ cst8 16 add load*(self+tc_next_token);
:1loop
get Snext_token, cst8 4TC_ADD ifeq add_or_sub;
get Snext_token, cst8 5TC_SUB ifne end;
:add_or_sub
get @ call tc_read_token(self);
get @ call tc_parse_mult_expr(self);
get @ get 5 call tc_write_binary_insn(self, next_token);
get @ cst8 16 add loadx(self+tc_next_token) set 5next_token;
goto loop;
rend
ret;
3
fn tc_parse_bit_and_expr 1(self) {
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get @ call tc_parse_add_expr(self);
:1loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 8TC_BIT_AND ifne end;
get @ call tc_read_token(self);
get @ call tc_parse_add_expr(self);
get @ cst8 8 call tc_write_binary_insn(self, TC_BIT_AND);
goto loop;
:end
ret;
3
fn tc_parse_expr 1(self) {
get @ call tc_parse_bit_and_expr(self);
:loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 9TC_BIT_OR ifne end;
get @ call tc_read_token(self);
get @ call tc_parse_bit_and_expr(self);
get @ cst8 9 call tc_write_binary_insn(self, TC_BIT_OR);
goto loop;
:end
ret;
B
The tc_parse_instruction function is similar to its previous version in the
labels compiler and is even simpler, since an instruction can no longer be a label
(labels have been moved to the “statement” rule):
static ARG_SIZES
0014000000002222222001110020000

fn tc_parse_instruction 1(self) {
let opcode get @ cst8 16 add load cst8 128 subx(self+tc_next_token) - 127
18;
get @ get 5 call tc_write8(self, opcode);
get @ call tc_read_token(self);
let arg_size cst ARG_SIZES get 5 add call load8(ARG_SIZES + opcode);
get 6arg_size, cst_0 ifne noto;
ret;
:noto
let arg get @ call tc_parse_argument(self);
get 6arg_size, cst_1 ifne notl;
get @ get 7 call tc_write8(self, arg); ret;
:not1
get barg_size, cst8 2 ifne not2;
get @ get 7 call tc_writel6(self, arg); ret;
:not2
get @ get 7 call tc_write32(self, arg); ret;
B

The following function parses the new “let z e;” syntax. It takes as parameter
the stack frame slot index of x and returns the index to use for the next let. The
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parsing itself is trivial. No code needs to be generated besides the one generated while
parsing e. We just need to add x in the list of symbols, with value variable.

fn tc_parse_let_stmt 2(self, variable) {

get @ cst8 108 call tc_parse_token(self, TC_LET);

let length cst_o;

let name get @ ptr 6 call tc_parse_identifier(self, &length);

get @ call tc_parse_expr(self);

get @ cst8 59 call tc_parse_token(self, ';');

get @ get 7 get 6 cst8 2 get 1 call tc_add_symbol(self, name, length, SY:
!M_VARIABLE, variable) pop;

get 1 cst_1 addvariable + 1 retv;

The next function implements the “statement” rule. It takes as parameter the stack
frame slot to use if the statement is a let construct, and returns the slot to use for
the next statement. If the next token is a colon or the let keyword, we just need to
call the function to parse a label or a let statement. Otherwise, if the next token is not
an opcode keyword (token > 128) or a semicolon, we need to parse an expression.
Then, while the next token is a comma, we should read it and parse another expression.
Finally, we should parse an instruction if the next token is not a semicolon.

fn tc_parse_statement 2(self, next_variable) {
get @ cst8 16 add loadx(self+tc_next_token), cst8 58':' ifne not_label;
get @ call tc_parse_label(self);
goto end;
:not_label
get @ cst8 16 add loadx(self+tc_next_token), cst8 108TC_LET ifne expr_or:
!_insn;
get @ get 1 call tc_parse_let_stmt(self, next_variable) retv;
:expr_or_insn
get @ cst8 16 add loadx(self+tc_next_token), cst8 59';' ifeq insn;
get @ cst8 16 add loadx(self+tc_next_token), cst8 128 ifge insn;
get @ call tc_parse_expr(self);
:loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 44',' ifne insn;
get @ call tc_read_token(self);
get @ call tc_parse_expr(self);
goto loop;
:insn
get @ cst8 16 add loadx(self+tc_next_token), cst8 59';' ifeq insn_end;
get @ cst8 16 add loadx(self+tc_next_token), cst8 128 ifge ok;
cst8 24 call panic(24);

:ok

get @ call tc_parse_instruction(self);
:insn_end

get @ cst8 59 call tc_parse_token(self, ';');
:end
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get Tnext_variable retv;

}

The tc_parse_fn_name function is the same as in the labels compiler, except that
it now computes the symbol’s value with the new tc_get_fn_value function:

fn tc_parse_fn_name 1(self) {

let length cst_0;

let name get @ ptr 5 call tc_parse_identifier(self, &length);

let fn_dst get @ cst8 28 add loadx(self+tc_dst);

get @ cst8 44 add(self+tc_fn_dst), get 7fn_dst store;

| let value get 0@ get 7 call tc_get_fn_value(self, fn_dst);

get 0 get 6 get 5 get 8 call tc_add_or_resolve_symbol(self, name, length!

!, value) retv;

The overall algorithm of the tc_parse_fn_parameters function is the same as
the one parsing function arguments, and derives from the recursive descent method.
This function parses an opening parenthesis and then, while the next token is not a
closing parenthesis, parses a comma (except at the first iteration) and an identifier.
Each identifier is added to the list of symbols with its index ¢ as value. ¢ is initialized
to 0, incremented after each identifier, and finally returned to the caller.

fn tc_parse_fn_parameters 1(self) {
let i cst_0;
let name cst_0;
let length cst_o;
get @ cst8 40 call tc_parse_token(self, '(');
:loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 41')' ifeq end;
get 5i, cst_0 ifle identifier;
get @ cst8 44 call tc_parse_token(self, ',');
:identifier
get @ ptr 7 call tc_parse_identifier(self, &length) set 6name;
get @ get 6 get 7 cst8 2 get 5 call tc_add_symbol(self, name, length, SY!
IM_VARIABLE, i) pop;
get 5 cst_1 addi + 1 set 5i;
goto loop;
rend
get @ call tc_read_token(self);
get 51 retv;
B

The parse_fn_body function is updated to parse the new curly braces, and no
longer parses the function’s arity, now passed as argument. It also parses statements
instead of instructions, and keeps track of the stack frame slot to use for let statements
(initialized to arity + 4 — cf. Section 17.2).

|fn tc_parse_fn_body 3(self, function, arity) {
get @ cst8 16 add loadx(self+tc_next_token), cst8 59';' ifne body;
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get @ call tc_read_token(self);
get 1 cst8 8 add(function+sym_kind), cst_1SYM_UNRESOLVED store;
get 1 cst8 12 add(function+sym_value), cst_0 store;
ret;
:body
get @ cst8 123 call tc_parse_token(self, '{');
get @ get 2 call tc_write_fn_insn(self, arity);
let next_variable get 2 cst8 4 addarity + 4;
:1loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 125'}' ifeq end;
get @ get 7 call tc_parse_statement(self, next_variable) set 7next_varia!

(ble;
goto loop;
rend
get @ call tc_read_token(self);
ret;

3
The tc_check_symbols function is unchanged, while tc_parse_fn is updated
to parse the function parameters before parsing its body. Note that restoring the heap
and symbols variables now also deletes the symbols added for the function parameters
and for the local variables (in addition to the label symbols). This is what we want, so
that parameters and local variables defined in one function cannot be used in another.
fn tc_check_symbols 2(symbol, end_symbol) {
:1loop
get O@symbol, get lend_symbol ifeq end;
get @ cst8 8 add load*(symbol+sym_kind), cst_1SYM_UNRESOLVED ifne next;
cst8 32 call panic(32);
:next
get @ cst8 16 add load*(symbol+sym_next) set @symbol; goto loop;
rend
ret;
3
fn tc_parse_fn 1(self) {
get @ cst8 102 call tc_parse_token(self, TC_FN);
let function get @ call tc_parse_fn_name(self);
let heap get @ cst8 32 add load*(self+tc_heap);
let symbols get @ cst8 36 add load*(self+tc_symbols);
let arity get @ call tc_parse_fn_parameters(self);
get @ get 5 get 8 call tc_parse_fn_body(self, function, arity);
get @ cst8 36 add load get 7 call tc_check_symbols(*(self+tc_symbols), s!
lymbols);
get @ cst8 36 add(self+tc_symbols), get 7symbols store;
get @ cst8 32 add(self+tc_heap), get 6heap store;
ret;
3
Finally, tc_parse_program is updated to handle the new “const” case, while the
tc_main function is unchanged:
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fn tc_parse_program 1(self) {
:1loop
get @ cst8 16 add loadx(self+tc_next_token), cst8 102TC_FN ifne not_fn;
get @ call tc_parse_fn(self); goto loop;
:not_fn
get @ cst8 16 add loadx(self+tc_next_token), cst8 115TC_STATIC ifne not_!
!static;
get @ call tc_parse_static(self); goto loop;
:not_static
get @ cst8 16 add loadx(self+tc_next_token), cst8 99TC_CONST ifne end;
get @ call tc_parse_const(self); goto loop;
rend
get @ cst8 16 add loadx(self+tc_next_token), cst_0 ifeq ok;
cst8 23 call panic(23);
1ok
get @ cst8 36 add load cst_@ call tc_check_symbols(*(self+tc_symbols), 0!
1); ret;
B
fn tc_main 3(src_buffer, dst_buffer, flash_buffer) {
let fn_dst cst_0;
let flash_offset get 1 get 2 subdst_buffer - flash_buffer;
let symbols cst_0;
let heap get 1 cst 12288 adddst_buffer + 12288;
let dst get 1 cst8 4 adddst_buffer + 4;
let next_token_length cst_0;
let next_token_data cst_0;
let next_token cst_0;
let next_char_type cst_o;
let next_char cst_0o;
let src_end get @ cst8 4 add get @ load addsrc_buffer + 4 + *src_buffer;
let src get @ cst8 3 addsrc_buffer + 3;
let panic3 cst_o;
let panic2 cst_0;
let panicl cst_0;
let panic@ cst_o;
let error cst_0;
ptr 22 call panic_result(&panic@) set 23error;
get 23error, cst_0 ifeq ok;
get 1dst_buffer, get 18 get @ sub cst8 4 subsrc - src_buffer - 4 store;
get 23error retyv;
1ok
ptr 18 call tc_read_char(&src) pop;
ptr 18 call tc_read_token(&src);
ptr 18 call tc_parse_program(&src);
get 1dst_buffer, get 11 get 1 sub cst8 4 subdst - dst_buffer - 4 store;
cst_0 rety;
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17.4 Compilation and tests

To compile the above source code proceed as follows (see also Figure 16.4). First
launch the command editor by typing “w000c1172”+Enter in the memory editor,

[T}

followed by “r”.

Edit v1 Type “F3”+“r” and “F4”+“r” to load and edit the current compiler version.
Then update it to the 15¢ version of the expressions compiler (that is, the above code
with the parts highlighted in red). For convenience, we also provide this code in the
expressions_compiler_v1.txt file in https://ebruneton.github.io/toypc/sources.
zip. When you are done, exit the text editor and type “F5”+“r” to save your work.
Alternatively, you can “cheat” by running the following command on an external
computer (see Section 16.4 for more details):

user@host:~$ python3 flash_helper.py < part3/expressions_compiler_v1.txt

Compile v1 In the command editor, type “F6”+“r” to compile the code you typed.
If all goes well, after about 2 seconds, you should get a result equal to O (meaning
that no error was found). If this is not the case use Appendix D to get the error code
meaning, fix this error, save the program and compile it again. Repeat this process
until the compilation is successful. Then type “F7”+“t” to save the result.

[T 1}

Test v1 Type “F2”+“r” to create a new program, “F4”+“r” to edit it, and type the
following small test program, which computes the factorial of 6:

fn factorial(n);

fn test() { factorial(6) retv; }

fn factorial(n) {
n, @ ifne not_zero; 1 retyv;
:not_zero factorial(n - 1) * n retv;

}

Then type “F9”+“r” to compile and run it. If the result is not 720 = 2D0, ¢ this means
that the compiler is wrong. In this case, type “F8”+“r” to restore the labels compiler.
Then repeat the previous steps and double check everything until this test passes.

Editv2 Type “F3”+“r" to load the 1% version of the expression compiler and “F4”+“r”
to edit it. Then update it to the 274 version (that is, the code in the previous section,
with the parts highlighted in green). For convenience, we also provide this code in
the expressions_compiler_v2.txt file. Then save this new version with the F5
command. Alternatively, run the following command on an external computer:
user@host:~$ python3 flash_helper.py < part3/expressions_compiler_v2.txt

Compile v2 Type“F6”+“r” to compile this new code. The result should be 0, meaning

“no error”. If this is not the case, repeat the “Edit v2” and “Compile v2” steps until all
errors are fixed.
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Test v2 The compilation of the 2"¢ version of the expressions compiler should give
the same code for each expression as the manually written code in the 1%¢ version.
Consequently, the compiled code of the 2" version should be identical to that of the
1%t version. To check this type “F10”+“r”. The result should be 0. If this is not the
case, repeat the steps from “Edit v2” until this test passes.
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We now have a compiler for a toy programming language which no longer requires
us to manually compute function addresses, instruction offsets or stack frame slot
indices. We also have a natural syntax for expressions. However, writing conditional
instructions or loops is still not very easy. The main reason is that one must still use
raw bytecode instructions for that, which have two main drawbacks. The first is an
unnatural syntax. For instance, one must write “x, y ifgt greater;” to implement
“if x > y jump to the greater label”. The second drawback is the use of labels.
Although they are much better than instruction offsets, their use is still not very natural.
For instance, to implement “if x < y call f(z)”, one must put a label after the call
to jump to it if the condition is not true: “x, y ifgt greater; f(x); :greater”.
This chapter extends our toy programming language and its compiler in order to solve
these issues.

18.1 Requirements

This section introduces new grammar rules to replace the remaining bytecode instruc-
tions in our current programming language, namely iflt, ifeq, ifgt, ifle, ifne,
ifge, goto, store, set, pop, ret, and retv.

18.1.1 Assignment and return

To replace ret and retv we introduce the new “return” keyword. We then use

“return;” instead of “ret;”, and “return e;” instead of “e retv;” (where e is an

expression). To replace set we introduce the assignment syntax “x = e;”, where

z is a function parameter or local variable name, and e an expression. “x = e;” is

equivalent to “e set z;” (sometimes noted = <— e). Similarly, to replace store, we
)

use the assignment syntax “xa = e;”’, where a and e are expressions. “*a = e;” is
equivalent to “a, e store;” and means “store e at address a”.

181.2 Expression statements

To remove the pop instruction we make it implicit in all expression statements “e;”.
This syntax was already used