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Real-time High-Quality Rendering of Non-Rotating Black Holes

Eric Bruneton

Figure 1: Some results obtained with our method. Left: distorted images of an accretion disc due to gravitational light bending, with relativistic
Doppler and beaming effects. Middle: gravitational lensing creates several amplified images of each punctual star and creates Einstein rings.
Right: near the speed of light, light is amplified and blue-shifted ahead, and is reduced and red-shifted behind.

Abstract

We propose a real-time method to render high-quality images of a non-rotating black hole with an accretion disc and background
stars. Our method is based on beam tracing, but uses precomputed tables to find the intersections of each curved light beam
with the scene in constant time per pixel. It also uses a specific texture filtering scheme to integrate the contribution of the light
sources to each beam. Our method is simple to implement and achieves high frame rates.

1. Introduction

Black holes are strange objects which recently got a lot of public
exposure with the Interstellar movie [JVTFT15], the detection of
gravitational waves from merging black holes [AAAT16], and the
first image of a black hole [EHT19]. A real-time, high-quality visu-
alization of a black hole could help the public in getting an intuitive
"understanding" of their properties, for instance in planetariums or
in 3D astronomy software. It could also be useful in space games. In
this context, we propose a real-time high-quality rendering method
for non-rotating black holes, with 2 contributions: a precomputa-
tion method for constant time beam tracing, and a texture filtering
scheme to compute the contribution of the light sources to each
beam.

We present the related work in Section 2, our model in Section 3
and its implementation in Section 4. We conclude with a discussion
of our results, limitations and future work in Sections 5 and 6.

2. Related work

Black hole visualization has a long history starting with [Lum79],
and summarized in [Lum19]. Offline rendering methods generally
use beam tracing in curved space-time, support rotating black holes
and produce very high-quality images [Ham14, Rial4, JVTFT15].
However, they are complex to implement and are not interac-
tive (e.g. an IMAX Interstellar frame requires at least 30 minutes

with 10 cores and the renderer has 40kLoC [JvTFT15]). Physi-
cally accurate general relativistic magnetohydrodynamics simula-
tions of accretion discs are even more complex and require super-
computers [LHT"18].

Our work is more related to interactive visualization methods,
usually restricted to non-rotating black holes to reduce the com-
plexity of the problem. [MW10] render about 120000 background
stars around a black hole, whose apparent positions, colors and in-
tensities change due to the gravitational effects. Each star is ren-
dered with a point primitive, and its projection(s) on screen are
found in constant time by using a precomputed 4096 x 4096 lookup
table. [MB11] render a torus and a background night sky texture
for an observer orbiting a black hole, with a ray-tracing method.
Ray intersections with the scene are found in constant time thanks
to lookup tables precomputed with a parallelized code (for a fixed
orbit radius). [MF12] use ray-tracing to render an accretion disc
around a black hole. Ray intersections are found in constant time
by using an analytic expression involving the Jacobi-sn function
(evaluated with arithmetic-geometric, complex number series).

In comparison, our method uses only two small tables (512 x 512
and 64 x 32) which are very fast to precompute. They are used
to find, in constant time, the intersection(s) of curved light beams
with the accretion disc and millions of background stars (stored in
a cubemap with a specific filtering scheme).
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Figure 2: Notations. (a) the camera reference frame and image plane (in red) and a curved light ray (in blue) intersecting the accretion disc.
(b) in the plane containing the light ray, the initial ray angle is noted 8 and the accretion disc inclination a. (c)  verifies tand = rd¢/dr (in
green), i.e. § = — arctan2(u, ). (d) the deflection A verifies A = @ + § — . The ray is symmetric around the axis through its apsis (in red).

3. Model

Our goal is to render a non-rotating black hole with an accretion
disc and background stars, illustrating the effects of gravitation on
light. Simulating a realistic accretion disc is not a goal: we thus use
a basic, infinitely thin disc model instead. However, we want to get
real-time and high-quality images, which is not easy:

e a simple ray-marching algorithm can render a sky map texture
distorted by a black hole in real-time, but not with a high quality
(e.g. stars become curved segments instead of staying punctual),

e conversely, offline beam-tracing methods produce high-quality
images but are not real-time [JVTFT15].

To this end, we propose a "precomputed beam tracing" method:
for each pixel, we initialize a light beam, compute its intersections
with the scene using precomputed tables, and then the light received
from the intersected objects. These 3 steps are explained below,
after a very short introduction to the Schwarzschild metric.

3.1. Schwarzschild metric

The space-time geometry around a non-rotating black hole can be
described with the Schwarzschild metric. In units such that the ra-
dius of the black hole’s event horizon and the speed of light are 1,
this metric is

—1
ds? = (1 - %) dr’ — (1 - %) dr® — r2de* — ¥ sin?0do> (1)

where ds is the line element and (,7,6,0) are the Schwarzschild
coordinates [Wei72]. r,0, ¢ are (pseudo-)spherical coordinates, and
in the following we also use the corresponding (pseudo-)Cartesian
coordinates x,y,z, as well as the inverse radius « = 1/r. In partic-
ular, the Cartesian coordinates of an orthonormal basis é, é, €g, €y
for a static observer at (¢,r,8,¢) are, respectively (see Fig. 2a)

1 0 0 0
1 0 ~—— | sinBcos ¢ cosOcosd —sin¢
Vi—u |0’ —u sin@sin¢ | ’ [ cosOsind | * | cos® 2)
0 cos9 —sin® 0

3.2. Beam initialization

The first step of our method is to compute, for each pixel, the ini-
tial direction of the corresponding light beam. As [MW10], and in
order to simplify the next steps, we take advantage of some sym-
metries to reduce this direction to a single angle 8, as shown below.

Let p = (p',p", p®, p®) be the camera position in Schwarzschild
coordinates, and A the Lorentz transformation [Wei72] specifying
the camera orientation and velocity with respect to a static observer
at p. An orthonormal basis for the camera is thus €z, €y, €;,€, (see
Fig. 2a), given by

¢ =A’2, ic{tuwhd}, je{1,r6,0} 3)

where ¢ is the camera 4-velocity and éy, €, €; define its orienta-
tion. For a pinhole camera with focal length f, and since beams are
traced backward, the initial beam direction d for a pixel with screen
coordinates ¢"', ¢ is (see Fig. 2a)

q"ew+q"es— feq
(@) + (") + f?

where v denotes the projection of ¥ on the €;,ég, €y hyperplane.

d=—er+ (4)

We now take advantage of the spherical symmetry of the metric,
and of the fact that its geodesics are planar [Wei72], to reduce d to
a single angle. Let (¢,r,, @) be rotated Schwarzschild coordinates
such that the beam’s axial ray is contained in the equatorial plane
¥ =1/2. They can be defined as the (pseudo-)spherical coordinates
corresponding to the following new orthonormal basis vectors (for

the Euclidean metric — see Fig. 2b):
€y é Er ey/ é 7‘32/ /\exl ez/ é 7exl /\d
p llex Aevl llev Adl

&)

In these rotated coordinates the metric (1) keeps the same form
and the light beam starts from (p, p”,7/2,0) with an initial angle
3 £ arccos(e, -d/||d||) from the x” axis (see Fig. 2b).

Finally, note that in the O = 1/2 plane the accretion disc becomes
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two line segments at angles o and o+ 7 from the x’ axis, with
o = arccos(ey -t) t=te;Ae,/|e;Aeys| (6)

and where the sign is chosen such that t-e,» > 0 (see Fig. 2b).

3.3. Beam tracing

The second step of our method is to compute the beam intersections
with the scene, and the light emitted there. For this we first need to
determine the geodesic followed by the beam’s axial ray.

For light rays ds = 0, and there exist curvilinear coordinates
o, defined up to an affine transform, such that (1 — u)dt/dc and
72 sin® ¥d@/dc are constant along the ray [Wei72]. We can thus
choose ¢ such that the second constant is 1, leading to

dr . 2.de o
l—u)— = d B~ = 7
(1—u) do —¢ and sin"® - =u (7
where e happens to be the inverse of the ray’s impact parameter
(see Fig. 2d). By substituting this in (1) with ds =0 and 0 = w/2
we get the geodesic equation

2 A 39
2o (WY _2_2q_ i=u’
i (d(P) e —u(1—u) = i u" —u (8

Integrating this numerically at each pixel, with a high precision,
would be too slow (see Section 5). Alternatively, the analytic solu-
tion for u(¢), using the Jacobi-sn function (not available on GPU),
could be implemented with numerical series [MF12]. However, we
also need the retarded time (to animate the accretion disc) and the
light ray deflection (for the stars). To compute all this easily and ef-
ficiently, we use instead two small precomputed tables. We explain
below how we precompute and use these tables to find the beam
intersections, thanks to some ray properties that we present first.

3.3.1. Ray properties

Light rays can be divided in 3 types. If e is larger than the maxi-
mum g £ 4/27 of u? (1 —u) over [0, 1], reached at the photon sphere
u =2/3, then (8) shows that all values of u are possible. The light
ray thus comes from infinity into the black hole, or vice-versa. Oth-
erwise, some values around 2/3 are excluded. The ray either stays
in the (empty) region u > 2/3, or comes from infinity, reaches an
apsis ug < 2/3, and goes back to infinity. In the later case ug is
given by setting 1 = 0 in (8):

1 2 1 262
Ug = §+§sin <3arcsin (; — 1)) )

and the light ray is unchanged by the reflection @ — 2¢, — ¢ (see
Fig. 2d). In any case, ¢ — —¢@ changes a solution of (8) into an-
other, with e, 6,1t and o changed into their opposite and & into 7T — 9.

3.3.2. Precomputations and beam tracing: background stars

For background stars we first compute the beam’s escape angle, and
then sum the light emitted by all the stars in the beam’s footprint
on the celestial sphere, around this escape direction.

procedure PRECOMPUTE(€)
foralle >0

10, u+0,t1¢¢, @+ 0,dp<+¢

while u < 1 and (i > 0or ¢ <m)
ifii >0 then D(e,u) + [t, A= @ — arctan2(u, i)
ifo<m then Ue,¢) < |1, u]
ifu>0 thens < r+edo/(u® —u)
i 1+ (3u? )2 — u)dQ, u < u+ud, ¢ < @+do

procedure TRACERAY (p”, 8, O, ujc, uoc )
u1/p", i —ucotd, e « i® +u(1 —u)
if e <pand u >2/3 then return (co,()
s < sign(i), [t,A] < D(e,u), [ta,Ad] <+ D(e,uq)
QO A+(s=12n—8 : &) +s0, Qg+ Ag+m/2
Qo < ¢ mod T, [tg,up] + Ule,9g),I + 0
if 09 < @4 and uoe < uy < ;e and sign(ug —u) = s then
I+ IU[s(tg—1), up, 0.+ @ — @]
ifez<,uands:1 then
Q4200 — @, 91 <= @ mod, [ry,u1] — Ule, 1)
if 01 < @4 and upe < uy < uje then
I(—IU[ZZ‘a—l—tl, up, (X+(P—(P1}
ifii>0 then A« (¢ <u?2A,—A : o)
return (8’ =8+ A, 1)

Algorithm 1: PRECOMPUTE is based on (7), (8) and the properties
illustrated in Fig. 2d. TRACERAY uses the properties and symme-
tries presented in Section 3.3.1.

Escape angle Let 8’ be the beam’s escape angle (or oo if it falls
into the black hole), measured from the x’ axis. For efficient ren-
dering, & could be precomputed for all initial conditions p”, 5. But
this would yield an O(n*) algorithm. Instead, we precompute the
deflection A of rays coming from infinity (see Fig. 2d) in a D(e, u)
table, for all ¢ > 0 and u < 1 or u < u, (depending on e and tak-
ing advantage of the above symmetries). This gives a trivial O(nz)
algorithm (see Algorithm 1 — we use the Euler method but Runge-
Kutta or other methods are possible too). At runtime, we compute
8 as 84+ A or 8+ Aso — A = 8+ 2A, — A, depending on the ray
direction (see Fig. 2d and Algorithm 1).

In practice D(e, u) is defined only in a subset D of [0,00[ X0, 1],
diverges at (\/fi ,uq) and (,/u",1), and varies rapidly around
u = 2/3 (because rays make more and more turns near the pho-
ton sphere before falling or escaping). For good precision we thus
map D non-linearly into a square [0,1]* domain, designed to get
more samples in these regions (see Appendix A).

Emitted light It now remains to compute the light emitted from
all the stars in the beam’s footprint on the celestial sphere, around
d’ =cosde, + sinS/e;. For extended sources such as nebulae or
galaxies, we can simply take advantage of anisotropic texture fil-
tering, by storing these sources in a cube map. For punctual stars,
however, this would yield unrealistically stretched star images. Our
solution is to use a manually filtered cube map (see Fig. 3):

e Each texture element (or texel) stores the color and position (in
the texel) of at most one star. A color sum (and not average) and
luminosity-weighted position average is used for mip-mapping.
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Figure 3: Filtering. We compute the emitted light for a pixel by
summing the light from the stars in its extended footprint (dashed
parallelogram, computed with screen space partial derivatives) in a
stars map, weighted by their pixel overlap area (cyan).

e We compute the beam’s footprint in the cube map by using
screen space partial derivatives (implemented with finite differ-
ences by the rendering pipeline). To avoid discontinuities at cube
edges, we compute the partial derivatives d,,d’ and 9,d’ of d’,
and then compute the derivatives of the cube map face texture
coordinates U,V analytically from them (e.g. for the +z face
U=d"/d"? dyU = (dwd™ —Udywd’®)/d").

e We compute a mipmap level from the size of the footprint, fetch
all the texels at this level in the footprint, and accumulate the col-
ors of the corresponding stars. For anti-aliasing, and to conserve
the total intensity, we view each star as a 1 x 1 area and multiply
its intensity with the area of its intersection with the considered
screen pixel (i.e. with f(w)f(h), where f(x) = max(1 — |x|,0)
and(w,h) is the star’s subpixel coordinates — the pixel domain
being [f%, %}2). Note that this requires to consider an extended
footprint (see Fig. 3). In our implementation, we select the
mipmap level so that it is at most 9 x 9 texels.

Note that this method approximates quadrilateral footprints with
parallelograms, and does not use interpolation across mipmap lev-
els. This would be easy to fix, but is not really necessary since our
method already gives very good results.

3.3.3. Precomputations and beam tracing: accretion disc

As for stars, we compute the beam intersection(s) with the accre-
tion disc by using a precomputed table. We then compute the light
emitted there by using a simple procedurally animated disc model.

Intersections Let r;. and ryc be the inner and outer radius of the
disc (with rj. > 3, the innermost stable circular orbit [Las16]).
Since the intersections can only occur at ¢ = o+ m7 (see Fig. 2b),
we only need the function u(@) to check if there exist m such that
toe 2 rot < u(o+mm) < uje 2 ri:l < 1/3. For this we precompute
u(e, @), for light rays coming from infinity, in a U(e, @) table. At
runtime, u(0+ mm) can then be computed with U(e, @ + o+ m),
where @ is the camera position (which can be obtained from the
deflection A, =D(e,1/p") since A = ¢+ 8 — 1 — see Fig. 2d).

Note that we don’t need U for all @: we can stop when u > 1/3
since no intersection can occur between this point and the apsis, if
any (and the rest can be deduced by symmetry). In practice, this

Figure 4: Accretion disc. We compute the density with a sum of
linear particles moving along precessing orbits (left), whose density
at a point & depends on its "distance" d(dr,8¢) from the particle
center o (see Appendix B).

means that we only need U(e,@) for 0 < @ < m, which has two
consequences:

o we don’t need to evaluate U(e, @, 4 0.+ mm) for all m: in fact we
only need U(e, (¢p +0a) mod 1),

e there can be at most two intersections: one on each symmetric
part of the ray (if it does not fall into the black hole).

The algorithms to precompute U(e, ¢) and to find the accretion disc
intersections (ug,Qp), (u1,9;) follow from these properties, and
those of Section 3.3.1, and are shown in Algorithm 1. As for D, we
map U’s domain non-linearly into [0, 1]2 to get good precision in
large gradient areas (see Appendix A).

Finally, note that for an animated disc we also need to compute
the retarded time between the intersections and the camera. For this
we also precompute and store ¢ — using dz/d@ = e/(u* — u®), from
(7) —in D and U. This allows the computation of the retarted times
to, 11 at the disc intersections, as shown in Algorithm 1.

Emitted light It now remains to compute the light emitted by the
accretion disc at the intersection points. For this we use the light
emitted by a black body at temperature T (u), times the disc den-
sity. We use T (i) o u (1 — v/3u) [Las16], and compute the den-
sity with a sum of procedural particles moving along quasi-circular
precessing orbits (see Fig. 4 and Appendix B).

3.4. Shading

Due to gravitational effects, the light received at the camera is dif-
ferent from the emitted light, computed above. We present these
effects below, and explain how we compute them.

3.4.1. Gravitational lensing effects

Due to gravitational lensing, the light emitted by a punctual star
is received amplified by a factor Q/Q’, where Q (resp. Q') is the
beam’s solid angle at the camera (resp. emitter) [VE99]. We com-
pute it by using the screen space partial derivatives of the beam
directions at the camera and at the emitter:

Q _ [|owgAdugll

Q' [owd Aoy (19)
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where q is the normalized [¢", qh, - f}T vector. Note that this does
not apply to area light sources, because the beam’s subtended area
varies in inverse proportion.

3.4.2. Doppler and beaming effects

Due to gravitational and relativistic time dilation and length con-
traction effects, the frequency v of the received light differs from
the emitted frequency Vv'. The ratio is given by [PHL17]

Vi (kI

where & is the 4-velocity of the receiver, Tis the tangent 4-vector
ds/do, at the receiver, of the light ray curve s(c), and k' and I” are
the corresponding emitter quantities. We thus need 75, Z’, 7, and 7’,
that we compute as follows.

In rotated Schwarzschild coordinates, [ and I’ are given by
[dt/do,dr/do,dd/do,dg/do] T . Using (7), this gives

= e T e
[= {—,—u,o,uz} I = [

. 2 T

where e is the negative root of (8) — for the actual light rays de/d¢
is negative, unlike in the previous section where rays were traced
backward. In non-rotated Schwarzschild coordinates, we have

-
7 2 M/3
k= V 2—3u”0707 \/ 2 —3u/ a3

for the accretion disc (if we assume a circular motion) [PHL17],
¥ = [1,0,0, 0]T for static stars, and ¥ = & for the camera. Finally,
to compute g(k,[) and g(K’,1"), we need the corresponding rotated
coordinates: k' and k" are unchanged, k? is not needed since {¥ = 0
and k® =% - 54) / = uk- e,/ (and similarly for 75/). For instance, for
the accretion disc, we get k'® = Ke, -e, and

2 u3

¥ = - e 14
g( ) ) € 2_31/[/ 2_3u/ez eZ ( )

The above Doppler effect has an associated beaming effect:
the received intensity differs from the emitted one because, from
Liouville’s theorem, I(Vv) /V3 is invariant [MTW73]. In terms of
wavelength A 2 v=!, and with I(A)d\ = I(v)dv, this gives /(L) =
(M /A)°1(X). For black bodies the two effects result in a temper-
ature shift 7 = (v/v')T". For other light sources however, that we
want to support, the result is more complex. We thus precompute
it in a 3D texture C(xy, D), for each chromaticity xy and Doppler
factor D2 v/V'.

To this end we need to choose a spectrum for each chromatic-
ity, among the infinite number of possible spectrums. For simplic-
ity and to get black body spectrums for black body colors, we use
spectrums of the form I(A") = Br (M) (1 —a1A1 (X)) — axA; (M),
where Br is the black body spectrum for temperature 7', T is the
correlated color temperature, and A; and A, are two fixed absorp-
tion spectrums. A linear system gives a; and a, from the xy chro-
maticity, and the Doppler and beaming effects give CIE XYZ colors

Figure 5: Camera orbit. The orbit, in red, is specified by an inclina-
tion % and the initial conditions ry, 8y and v (see Appendix C).

that we precompute with

1(DA) [£(A),5(A), Z(W)] " dh
ClayD) = D*

2 =D IR 00 + 50+ 20) dh
where ¥, y and Z are the CIE color matching functions. At runtime,

the emitted XYZ color computed in Section 3.3 is transformed into
the received color (X +Y + Z)C(xy,v/v') with (11).

1s)

3.4.3. Lens glare effects

Due to light scattering and diffraction inside the eye, haloes appear
around very bright light sources, which would otherwise be hard to
distinguish from fainter sources. For this reason we apply a bloom
shader effect on the final image, before tone-mapping. We use a
series of small support filter kernels on mipmaps of the full image,
approximating a point spread function from [SIST95], but more
precise methods are possible too [HESL11].

4. Implementation

We implemented our method in C++ for the precomputations, and
WebGL 2 for the rendering. The full source code and an online
demo are available at https://github.com/ebruneton/
black_hole_shader. The demo simulates a static or freely
falling observer (see Fig. 5) and allows the user to set various pa-
rameters (black hole mass, disc temperature and density, camera
orbit, etc).

We precompute D(e,u) and U(e,®) in 512 x 512 and 64 x 32
RG32F textures, respectively. PRECOMPUTE takes about 11 sec-
onds on a 3.2GHz Intel Core i5-6500 CPU, with & = 10™>, and unit
tests show that TRACERAY results &', ug and u; are within 1073 of
reference values computed without intermediate textures. We pre-
compute C(xy,D) in a 64 x 32 x 64 RGB32F texture, in about 7
seconds.

We also precompute two 6 x 2048 x 2048 RGBYES cubemaps
for the area and punctual light sources, from the Gaia DR2 [Gail8]
and Tycho 2 [HFM ' 00] star catalogs. This requires downloading
and processing 550GB of compressed data, which can take a day,
and yields ~ 3.6 million punctual light sources. In our implemen-
tation we don’t store a sub-texel position for each star: instead, we
use a hash of its color to compute a pseudo-random position.
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View | M1 | M2 | M3 | Stars | Disc | Bloom

1 150 | 64 | 43 | 2.99 | 0.82 1.11
2 160 | 59 | 45 | 2.64 | 0.78 1.15
3 153 | 67 | 45 | 2.99 | 0.69 1.10
4 114 | 64 | 41 | 4.14 | 1.87 1.08

Table 1: The framerate obtained with our method (M1), with stars
rendered with [MW10] (M2), and with TRACERAY replaced with
ray-marching (M3), on the views shown in Fig.1 and numbered
from left to right (1920 x 1080p, NVidia GeForce GTX 960). The
other columns give the time used per frame (in milliseconds), to
render the stars, the accretion disc and the bloom effect with our
method.

5. Results and discussion

Some results obtained with our method are shown in Fig. 1. They
are rendered in Full HD at about 150 fps on an NVidia GeForce
GTX 960 (see Table 1).

The benefit of our precomputed tables can be measured by re-
placing TRACERAY with a ray-marching method integrating (8)
numerically (and keeping everything else unchanged). To get the
same performance as with the precomputed tables, only 25 integra-
tion steps at most can be used, and stars end up at several degrees
from their correct positions. To get (almost) the same precision, up
to 1000 integration steps must be used, and the framerate drops to
about 45 fps (see method M3 in Table 1).

The benefit of our custom texture filtering method to render
the stars can be measured by replacing it with the method from
[MW10] (and keeping everything else unchanged). Each of the 3.6
million stars is then rendered with n 2 x 2 anti-aliased point prim-
itives (we used n = 2 in our tests). The point position is computed
with a lookup in a 4096 x 4096 precomputed texture. This gives
about 65 fps (see method M2 in Table 1). The main bottleneck is
due to the fact that, inside the region of Einstein rings, many stars
project into the same pixel, leading to a lot of overdraw.

A limitation of our method is that views from inside the horizon
are not supported. Indeed, since no observer can remain static in
this region, we can no longer specify the camera and initialize light
beams by using a reference static observer. Also the Schwarzschild
metric diverges at the horizon. However, by using different coordi-
nates, as in [MW10], we believe that our method can be extended
to support this case.

Another limitation is that motion blur, which is necessary for
very high quality animations, is not supported. Also, because of
the approximations in our custom texture filtering method, in some
cases a few stars flicker when the camera moves. Fixing both qual-
ity issues might be easier by extending [MW10] rather than by ex-
tending our method, at the price of decreased performance.

Finally, another limitation of our method, and of [MW10] as
well, is that rotating black holes are not supported. Because they
are only axially symmetric, the "inverse ray tracing" approach of
[MW10] would probably be hard to generalize to this case. Our
precomputed ray tracing method, on the other hand, could in prin-
ciple be generalized to 4D tables containing the deflected direction

and the accretion disc intersections of any ray (specified with 2 po-
sition and 2 direction parameters). In practice however, obtaining
precise 4D tables of reasonable size might be hard.

6. Conclusion

We have presented a beam tracing method relying on small precom-
puted textures to render real-time high-quality images of non rotat-
ing black holes. Our method is simple to implement and achieves
high frame rates. Extending it to views from inside the horizon, and
to rotating black holes, if this is possible, is left as future work.
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Appendix A: Texture mappings

We store D(e, u) at texel coordinates

{%7 fbngHMﬁQvaTjW%}ﬁg<ﬂ

1 23+ lu—2/3]
5+~ log(1—p/e?)/50, V23413

where = is the sign of u —2/3, and U(e, @) at texel coordinates

] otherwise

I gl+6e’
1+6e2” 3 14¢2

as explained at https://ebruneton.github.io/black_
hole_shader/black_hole/functions.glsl.html.

Appendix B: Disc particles

The orbit of a point particle in the accretion disc is given by

U —u
u:u|+(u27u1)sn2 ? uz—u,K|), K= 2=
2 uz —uj

where sn is the Jacobi-sn function, u; <wup <1/3,and uz =1—
uy — up [Dar59]. For quasi-circular orbits this can be approximated
with

L

u(t) =~ uy + (un —ul)sin2 (Rq)(t) u3 —u1>

T8 1 dx
o) ~ \Ezmo, K= ——

where it = (u; +uy) /2 since, for circular orbits, (13) gives d¢/dr =
\/u3/2. For a linear particle parameterized by a € [0,2x], the po-
sition uq(t),9a(¢) of a point a is obtained by replacing ¢(¢) with
0a(t) = a+0(r) in (16). Thus, given a ray hit point k', A" h?,
we compute the parameter a of the "nearest" particle point with
a=h®—¢(h') mod 2. We then compute the "distance" between
h and the linear particle center (at a = &) with d*> = (a/m—1)* +
(h" —1/uq(h'"))?. We finally compute the particle density at & with
a smoothly decreasing function of d.

16)



https://ebruneton.github.io/black_hole_shader/black_hole/functions.glsl.html
https://ebruneton.github.io/black_hole_shader/black_hole/functions.glsl.html
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Appendix C: Camera orbit

Position The camera position is specified by its polar coordi-
nates (r,y) in an orbital plane with inclination ) (see Fig. 5). In
Schwarzschild coordinates adapted to this orbital plane the camera
4-velocity is ke = [d;, g;, , dTlT =[1%, GIT,O 11*]", where e and
[ are two constants of motion. Substituting this in (1) gives

2 2 2.3 2 4 2
d d - —
(1) PP P 1 S 2w =3 —u”

dt dz? 2

We use these relations to update the coordinates (7,r,y) at each
proper time step dt. The corresponding Cartesian coordinates are

COS Y, COS sin p® cos p®
r| siny | =p" |sinp®sinp?
sin cos cos p®

from which we deduce the Schwarzschild coordinates p' =1, p”" =
r, p¥ = arccos(cosysiny) and p® = arctan2(siny, cosy cos ).

The above relations require the constants of motion e and /. We
compute them from the initial position, direction and speed, noted
ro = 1/ug, 8o, and vg (see Fig. 5). We get ¢* = (1 —ug)/(1 —1§)
from the Lorentz factor Y= g(ke,ks) = e/v/1—u = 1/v1—12,
where ks = [1/4/1 —u,0,0,0] ' is the 4-velocity of a static ob-
server. Finally, using tan & = rdy/dr and the above equations, we

2 2 2
get 12 = (e? +ug— 1)/ (uf (1 — ug + cot? 3y)).

Lorentz transform We compute the Lorentz transform A from the
static observer basis é;,ér, €g, € to the camera basis €z, €y, €, €, by
using the intermediate orthonormal basis €;,€:,€y, €y where ey is
the orbital plane’s normal (see Fig. 5), as follows.

Let R,/ be the rotation matrix from é,€r, 89,8y 10 €;,&r,éy,Ey:

& =Ri‘e;, k€ {t,r,x, v}, j € {t,1,0,0}. Its lower right block is

€x-€  ex € i ex-ee:sinxcospecoqu’—l—cosxsinpe
—ey-€ey, e€y-eg ey - ey =siny sinp¢

In the €, €, €y, éy basis the camera 4-velocity and speed are:

o[Vt g e
< dt'\/1—udt’ udrt
1 dr  dt
V= —/—,
l—udt’ dt

Yyl l

A reference frame for the camera is thus &y = B(V)k/ké'k, K e
{t',lrl7x’,l|1’}/, where B(v) is a Lorentz boost: B(v)i/* = B(—v)¥ ,,
dp* = B(v)* dp* [WeiT2].

Finally, let O; ¥ be a user specified rotation matrix. We then
compute A with A;/ = 0; k'B(v)k/kRkj . Note that this procedure
assumes that the camera orientation is actively controlled, i.e. is
not freely evolving as a gyroscope would be.
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